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Abstract. We use the global construction which was made in [6, 7] of the secular
systems of the planar three-body problem, with regularized double inner collisions.
These normal forms describe the slow deformations of the Keplerian ellipses which
each of the bodies would describe if it underwent the universal attraction of only one
fictitious other body. They are parametrized by the masses and the semi major axes
of the bodies and are completely integrable on a fixed transversally Cantor set of the
parameter space. We study this global integrable dynamics reduced by the symmetry
of rotation and determine its bifurcation diagram when the semi major axes ratio is
small enough. In particular it is shown that there are some new secular hyperbolic
or elliptic singularities, some of whose do not belong to the subset of aligned ellipses.
The bifurcation diagram may be used to prove the existence of some new families
of 2-, 3- or 4-frequency quasiperiodic motions in the planar three-body problem [7],
as well as some drift orbits in the planar n-body problem [8].

Keywords: three-body problem, secular system, averaging, KAM theorem, regu-
larization, singularity

1. Introduction

In perturbative studies of the three-body problem, the dynamics is
split into two parts: a fast, Keplerian dynamics, which describes the
motion of the bodies along three ellipses as if each body underwent the
attraction of only one fictitious center of attraction; and a slow, secular
dynamics, which describes the deformations of these Keplerian ellipses,
due to the fact that each body actually undergoes the attraction of
the other two. This splitting is not unique and amounts to writing the
Hamiltonian as the sum

F = FKep + Fper

of a Keplerian part FKep, that is the Hamiltonian of the uncoupled fic-
titious two-body problems, and a supposedly small perturbing function
Fper, which determines the secular dynamics . If we want to preserve
the symmetry of translations, the choice of the splitting boils down to
that of only two 2-body problems.1

1 Cf. Chap. II, first Vol. of Poincaré’s Leçons [15].
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2 JACQUES FÉJOZ

In the 18th century, when Lagrange and Laplace tried to prove the
stability of the system consisting of the Sun, Jupiter and Saturn, they
introduced the averaged system.2 Its Hamiltonian

〈F 〉 =
1

4π2

∫

T
2
F dλ1 dλ2

is obtained by averaging the initial Hamiltonian along the Keplerian
ellipses which are parametrized by the mean anomalies λ1 and λ2 of
the two fictitious Kepler problems.

A striking feature of 〈F 〉 is that it extends, where the eccentricity
of the inner ellipse is e1 = 1, to an analytic function, whereas the
perturbing function itself extends by continuity to a function which is
not even differentiable. In [6], I proved that the averaged system 〈F 〉
actually agrees with the averaged system 〈F〉 of the Hamiltonian F
obtained from F by regularizing double inner collisions on some given
energy manifold.

In turn, 〈F〉 agrees on some transversally Cantor set3 with the first
of the normal forms which I denote Fn

sec, n ≥ 0, which are obtained
by trying to eliminate the fast angles from the regularized Hamiltonian
F , up to increasing orders of smallness.4 These normal forms are the
secular systems of the regularized three-body problem; they describe
the slow deformations of the Keplerian ellipses. In the planar prob-
lem, they are completely integrable in the sense of Pöschel [16] on the
transversally Cantor set where the regularized Keplerian frequencies
satisfy some homogeneous diophantine conditions. More precisely, F n

sec

is the sum of a (Liouville-) integrable part Fn
int which does not depend

on the mean anomalies, and of a resonant part Fn
res whose infinite jet5

vanishes along this transversally Cantor set; in particular,

F1
int = 〈F〉.

2 Cf. the Averaging Principle, in the Russian Encyclopaedia [2], Chap. 5,
Section 1.1.

3 In dynamics, Cantor sets occur mainly through diophantine conditions of the
frequencies of quasiperiodic motions along invariant tori (cf. Section 2.2). Diophan-
tine conditions are arithmetic conditions on the frequencies which ensure that the
motion is evenly spread along the torus.

By definition, a subset K of a topological space is Cantor if each point in K is
both an accumulation point (i.e. K is perfect) and a connected component (i.e. K
is totally disconnected). A subset L is transversally Cantor if it is the topological
product of a Cantor set K and a line segment.

4 For an introduction to the theory of normal forms, see [2], Chap. 5, Section 2.
5 The infinite jet of a function at a point can be thought of as the formal Taylor

series of the function at the given point, in some local coordinates.
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SECULAR DYNAMICS 3

Hence Fn
int gives some formal quasiperiodic skeleton of F . The purpose

of this paper is to study the dynamics of Fn
int as globally as possible in

the direct product of the phase and parameter spaces.

In Sections 2 and 3, the setting and some definitions from [6, 7]
are recalled, coping with the regularization of double inner collisions
in the planar three-body problem, the construction of the (regularized)
secular systems and the description of the secular space. In Section 4,
we describe the topology of the reduction by the symmetry of rotations.
In particular we show that the subset of aligned ellipses plays the role
of a “real form” of the whole phase space. In Section 5, we list some
discrete symmetries of the first and higher order secular systems. These
symmetries allow to forsee the existence of all the singularities (i.e. fixed
points) that will be proved to exist in the next section, and show that
the real form of the secular space is an invariant submanifold of the
averaged system. In Section 6, the singularities of the integrable part
Fn

int of the secular systems are described, assuming that the semi major
axes ratio is small enough. In particular, Fn

int has a hyperbolic singular-
ity for which the inner ellipses are almost degenerate. In Section 7, we
describe the singularities of the system Fn

int reduced by the symmetry
of rotation–that is, secular fixed points in a rotating frame of reference.
In particular, we prove that the averaged system has some singularities
which do not belong to the subset of aligned ellipses, contrary to what
the study of the planetary and lunar regions alone had let think. A
bifurcation diagram is eventually given in the five-dimensionnal pa-
rameter space, always assuming that the semi major axes ratio is small
enough.

All the figures are drawings. Footnote explanations will hopefully
help non-mathematician readers to better grasp the technical part of
this paper.

Existing studies of the secular systems call for a few comments. Since
Lagrange and Laplace introduced the averaged system, secular systems
of the three-body problem have been extensively studied, but, for as-
tronomical reasons, mainly in the neighborhood of the configuration
where the three Keplerian ellipses are circular. By a simple symmetry
argument (cf. § 2), this configuration is a singularity of the secular
systems at any order. A number of results is collected in Tisserand’s
Traité [17]. In particular the averaged system 〈F 〉 was shown there to
have two fixed points in a rotating frame of reference, assuming that
the angular momentum is large enough, that is, close enough to the tri-
circular configuration. These two singularities were used by Poincaré
to find his periodic orbits of the second kind [14].
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4 JACQUES FÉJOZ

More recently, Lieberman [13] in the planar case and Jefferys and
Moser [11] in the spatial case have found some new secular singularities,
with a finite eccentricity or inclination; Lieberman’s singularity is the
continuation of one of those used by Poincaré. However their study re-
mains local. For instance, we did not know whether all the singularities
of the system reduced by the rotations were located on the submanifold
of aligned ellipses. This was a natural hypothesis given the fixed points
we knew the existence of. We will see that a global point of view in
the parameter space will let us show that this hypothesis is wrong.
Moreover, we will show the existence of some hyperbolic singularities
which can be used for proving the existence of diffusion in the n-body
problem [8].

Lidov and Ziglin [12] do have a global point of view in the spatial
problem, although they restrict their study to a 2-dimensional subman-
ifold of the parameter space. But the dynamics of only the first term
of the averaged system is investigated. Besides, eventhough Lidov and
Ziglin do not assume that the angular momentum is large, their study
is not relevant when eccentricities get close to one. On the other hand,
our global point of view in the phase space itself leads to both a better
understanding of the bifurcation diagram of the secular systems, and
the existence of some new families of quasiperiodic motions on invariant
punctured tori in the planar three-body problem [4, 7].

2. Regularized System

2.1. Initial Hamiltonian

Consider three points of masses m0, m1 and m2 undergoing gravita-
tional attraction in the plane. By choosing a frame of reference, identify
the physical plane to the complex plane C, endowed in particular with
its Euclidean norm | · |. The phase space is the space

{

(qj, pj)0≤j≤2 ∈ (C×C∗)3 | ∀ 0 ≤ j < k ≤ 2, qj 6= qk

}

of position vectors qj and linear momentum covectors pj of the bodies.
It is the open set of the cotangent bundle T ∗C3 which is obtained by
ruling out collisions. Hence it is naturally endowed with the symplectic
form

ω = <(dq0 ∧ dp̄0 + dq1 ∧ dp̄1 + dq2 ∧ dp̄2),

where < stands for the real part of a complex number. If the frame of
reference is Galilean, the Hamiltonian is

1

2

∑

0≤j≤2

|pj |2
mj
− γ

∑

0≤j<k≤2

mjmk

|qj − qk|
,
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SECULAR DYNAMICS 5

where γ is the universal constant of gravitation. Thanks to the invari-
ance of Newton’s equations with respect to change of the time unit, we
may suppose that γ = 1.

Let (Pj , Qj)j=0,1,2 be the Jacobi coordinates of the three bodies.6

The phase space reduced by translations can be identified to the open
set of T ∗R4 which is described by the Jacobi coordinates (Pj , Qj)j=1,2

outside collisions. If the frame of reference is attached to the center of
mass, i.e. if P0 = 0, and if Q2 6= 0, the reduced Hamiltonian can be
written as

F = FKep + Fper,

where FKep and Fper are defined by

FKep =
|P1|2
2µ1

+
|P2|2
2µ2

− µ1M1

|Q1|
− µ2M2

|Q2|

and

Fper = −µ1m2









1

σ0

(

1

|Q2 − σ0Q1|
− 1

|Q2|

)

+
1

σ1

(

1

|Q2 + σ1Q1|
− 1

|Q2|

)









with the fictitious masses themselves defined by







M1 = m0 + m1
1

µ1
=

1

m0
+

1

m1

and







M2 = M1 + m2
1

µ2
=

1

M1
+

1

m2

and the adimensional coefficients σ0 and σ1 by

1

σ0
= 1 +

m1

m0
and

1

σ1
= 1 +

m0

m1
.

For a discussion of these choices, see Poincaré’s Leçons [15] (Chap. ii,
first Vol.), and, for a closer point of view, my paper [7]. For instance, the
heliocentric splitting, which is used by Lieberman [13], is not relevant
in the neighborhood of double inner collisions Q1 = 0 because in the
neighborhood of such collisions the heliocentric perturbing function is
not uniformly small.

The Hamiltonian FKep is the Keplerian Hamiltonian. We will exclu-
sively pay attention to bounded motions and their perturbations. Then
FKep is the completely integrable Hamiltonian of two fictitious bodies

6 Cf. Chap. ii, first Vol. of the Leçons [15]. By definition, Q0 = q0, Q1 = q1 − q0

and Q2 give the position of the third body with respect to the center of mass of
the other two. Then the Pjs are given by the contragredient map of (qj)j=0,1,2 7→
(Qj)j=0,1,2.
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6 JACQUES FÉJOZ

of masses µ1 and µ2 which revolve along ellipses around a fixed center
of attraction, without mutual interaction.

The Hamiltonian Fper is the perturbing function. It is real analytic
outside collisions of the bodies and outside collisions of the fictitious
body Q2 with the center; the latter restriction is not bothering insofar
as we will suppose that the ellipse which is described by Q2 is the outer
ellipse.

2.2. Regularization of double inner collisions

Let us restrict ourselves to pairs of elliptic motions such that the two
ellipses do not meet one another. Moser’s and Levi-Civita’s regular-
izations of the two-body problem easily extend to a regularization of
double inner collisions in the three-body problem [6], of which we now
give a short account.

Since we want to rule out collisions involving the outer body, the
relevant part of the phase space is diffeomorphic to

T ∗ (C \ 0)×
(

T ∗ (C \ 0) \ ((C \ 0)×R)
)

' (T ∗ (C \ 0))×X2,

where X2 ' R × S1 ×R2 × S0 is the phase space of the outer body;
the factor S0 corresponds to the two possible ways the outer body can
move around the inner ellipse.

Let L.C. be the two-sheeted (symplectic) covering of Levi-Civita7,
defined as the product of the cotangent map of z 7→ z2 by idX2

:

L.C. : T ∗(C \ 0)×X2 −→ T ∗(C \ 0)×X2

((z, w), x2) 7−→ ((Q1, P1), x2) =

((

z2,
w

2z̄

)

, x2

)

.

For any real number f > 0, the Hamiltonian

|z|2L.C.∗(F + f) = |z|2(F ◦ L.C. + f)

=
|w|2
8µ1

+

(

f +
|P2|2
2µ2

− µ2M2

|Q2|

)

|z|2 − µ1M1 + |z|2L.C.∗Fper

extends to an R-analytic Hamiltonian on T ∗C × X2. Let f1 be the
function

f1 := f +
|P2|2
2µ2

− µ2M2

|Q2|
;

on the manifold of constant energy L.C.∗(|Q1|(FKep + f)) = 0, it is the
opposite of the energy of the inner body. Also, it is a first integral of

7 Two-sheeted means that every point (Q1, P1) has two preimages.
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SECULAR DYNAMICS 7

|z|2L.C.∗(FKep + f). Thus |z|2L.C.∗(FKep + f) is the skew-product of a
rotator (outer body) slowed down by a pair of (1, 1)-resonant harmonic
oscillators (inner body).

The point z = w = 0 from the phase space can be ignored, because
it corresponds to an infinite energy for the initial problem. The phase
space is then diffeomorphic to

(T ∗C) \ 0×X2 ' S3 ×R×X2.

Since the L.C. mapping is a two-sheeted covering, the pull-backs by
L.C. of all the initial observables (e.g. Q1, the slowed-down perturbing
function |Q1|Fper, etc.) descend through the antipodal mapping of the
sphere,

S3 ×R×X2
(z,w,x2)∼(−z,−w,x2)−→ X1 ×X2 = SO3 ×R×X2,

where X1 stands for the (regularized) phase space of the inner body.8

Moreover, if some pull-back by L.C. extends to an analytic function on
S3 × R × X2, then the induced observable iteslf is analytic on X =
X1×X2. We will generally denote the latter by the name of the initial
observable (e.g. Q1, etc.).

The phase spaces of the two bodies, X1 = SO3 × R ' T 1S2 × R

(where T 1S2 denotes the circle bundle of the 2-sphere) and X2 = S1×
R3 × S0, can be thought of as S1-bundles over S2 × R and R3 × S0

respectively.

DEFINITION 1. The (regularized) total Hamiltonian

F = |Q1|(F + f),

the Keplerian Hamiltonian

FKep = |Q1|(FKep + f)

and the perturbing function

Fper = |Q1|Fper

on
X = (SO3 ×R)× (R3 × S1 × S0)

will be the direct images by the antipodal mapping, of the extensions of
L.C.∗ (|Q1|(F + f)), L.C.∗ (|Q1|(FKep + f)) and L.C.∗ (|Q1|Fper).

8 In other words, observables such as Q1 ◦ L.C. take the same value on any two
points of the type (z, w, x2) and (−z,−w, x2).
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8 JACQUES FÉJOZ

A direct and important consequence of the Leibniz rule9 is that on
the energy surface F = 0, outside collisions, the Hamiltonian vector
fields associated to F and F define the same field of oriented straight
lines.

The perturbing function equals

Fper = −µ1m2|Q1|









1

σ0

(

1

|Q2 − σ0Q1|
− 1

|Q2|

)

+
1

σ1

(

1

|Q2 + σ1Q1|
− 1

|Q2|

)









,

while the Keplerian Hamiltonian is described in the next paragraph.

2.3. Keplerian dynamics

We recall angle-action variables for the Keplerian Hamiltonian FKep.
After lemma 2.1 of [6]10:

LEMMA 1. There are an immersed submanifold T2×R2×X2 of full
Liouville-measure in X, and symplectic coordinates

((l1, L1, g1, G1), (λ2,Λ2, ξ2, η2))

on each of its two connected components, such that






(l1, g1, λ2) ∈ T3

L1,Λ2 > 0
|G1| < L1 and 0 ≤ ξ2

2 + η2
2 < 4L1,

and the Keplerian part is

FKep = L1

√

2f1(Λ2)

µ1
− µ1M1,

where f1 may be thought of as a function of Λ2:

f1(Λ2) = f − µ3
2M

2
2

2Λ2
2

.

Besides, the position of the inner body in the physical plane is ex-
plicitly given by

Q1 =
eig1

√

2µ1f1(Λ2)

(

−
√

L2
1 −G2

1 + L1 cos l1 + iG1 sin l1

)

,

9 If XH denote the Hamiltonian vector field associated to a Hamiltonian H,

XF = |Q1|XF + FX|Q1|;

hence, when F = 0 the two vector fields XF and XF are colinear.
10 The notations are slightly changed, because here we consider only the regular-

ized problem. The proof is elementary.
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SECULAR DYNAMICS 9

and G1 is the angular momentum of the inner body.

Hence the Keplerian dynamics is a direct product, which allows for
the following definition:

DEFINITION 2. The (regularized) Keplerian action of the 2-torus on
X is the T2-action induced by the dynamics of FKep.

Since the slow-down function |Q1| only depends on the inner body,
orbits of the outer body are unchanged by the regularization and their
projections on the physical space thus are ellipses. From the construc-
tion of the coordinates [6], the variables (λ2,Λ2, ξ2, η2) of the outer body
are Poincaré’s coordinates, except the angle λ2, which substitutes for
the mean longitude and which depends on l1.

Moreover, in the latter lemma, the formula expressing Q1 as a func-
tion of the angle-action coordinates shows that the orbits of the ficti-
tious inner body in the physical plane (coordinate Q1) are ellipses not
only on the regularized submanifold of constant energy FKep = 0, but
everywhere. Incidentally, this formula also proves that on FKep = 0
the coordinates (l1, L1, g1, G1) agree with the Delaunay coordinates,
up to the fast angle l1, which agrees with the eccentric anomaly and
substitutes for the mean anomaly. Under the Keplerian action, the real
bodies describe ellipses whose foci all are the moving center of mass of
m0 and m1. In particular, the two ellipses of m0 and m1 are described
by σ1Q1 and −σ0Q1. Hence they have the same excentricity

√

1− G2
1

L2
1

and are in opposition.

After their construction in [6], coordinates (l1, L1, g1, G1) may be
extended to coordinates on some blow-up T2 × I2 of X1 (where I

stands for the closed interval). Just as for the Delaunay coordinates in
the non-regularized Kepler problem, the blow-up consists in artificially
providing circular inner ellipses with a pericenter.

The regularized analogue (λ1,Λ1, ξ1, η1) of the Poincaré coordinates
of the inner body is defined over some blow-up S1 ×R3 of X1 by







λ1 = l1 + g1

Λ1 = L1

ξ1 + iη1 =
√

2(L1 −G1) eig1 .

They are smooth coordinates on X1 in the neighborhood of positively
oriented circular ellipses (G1 = L1), up to and without including neg-
atively oriented circular ellipses (G1 = −L1). In turn, they have an
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10 JACQUES FÉJOZ

analogue (λ̃1,Λ1, ξ̃1, η̃1) which faithfully describes the neighborhood of
negatively oriented circular inner ellipses (G1 = −L1) up to but not
including positively oriented circular ellipses, and which is defined by











λ̃1 = l1 − g1

Λ1 = L1

ξ̃1 + iη̃1 =
√

2(L1 + G1) e−ig1 .

3. Regularized Secular Systems

The regularized Keplerian dynamics is dynamically degenerate just as
the initial Keplerian dynamics, because FKep depends on only half
the action variables. It is the perturbing function which breaks the
degeneracy down and determines the secular dynmics. We outline the
construction which is made in [7] of the secular systems, in some region
of the phase space where the perturbing function Fper is small in the
C∞-topology.

3.1. Perturbing region

We will always restrict ourselves to a small neighborhood of the hy-
persurface FKep = 0, because this hypersurface is close to the per-
turbed hypersurface F = 0, which is the only dynamically relevant
energy level, and because a priori our estimates of the perturbing func-
tion would not hold outside such a neighborhood. More precisely, for
any given energy f and masses m0,m1,m2, we will assume that the
Euclidean distance of R2 between the point (a1, a2) ∈ R2 and the set

Af = {(a′1, a′2), FKep(a′1, a
′
2) = 0}

is smaller than a1/2 (and hence than a2/2); a1 and a2 stand for the
two semi major axes.

We will also always assume that the eccentricity e2 of the outer
ellipse is upper bounded: e2 < emax

2 < 1. This symplifying hypothesis
is not compulsory. In [5, 7] indeed, it is shown to which extent the
outer ellipse may be close to the other two, provided that the mass
of one of the two inner bodies is large. However, the singularity where
the Keplerian ellipses meet one another is certainly not regularizable in
the same sense as double inner collisions, since not only the perturbing
function gets large in the Ck-topology, but the average system itself.

DEFINITION 3. For ε > 0, the perturbing region11 of order ε, which
is denoted by Pε, is the subset of the direct product of the phase space X

11 Pε is a subset of what I called the perturbing region Πk
ε in [7] (e2 < emax

2 < 1).
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SECULAR DYNAMICS 11

and of the space M ' R3 of the masses where d((a1, a2), Af ) < a1/2,
e2 < emax

2 and

(µ1 + m2)M2

M2
1

a1

a2
< ε.

The mass ratio which occurs in the definition is small exactly if two
of the real masses, including the outer mass, are small when compared
to the third mass (planetary problem). Given that the outer eccentricity
is upper bounded, the semi major axis ratio a1/a2 is small exactly if
the outer body is far from the other two (lunar problem). Hence the
perturbing region generalizes the planetary and the lunar regions.

The following lemma justifies the latter definition.12

LEMMA 2 (Appendix A of [7]). Let k ≥ 0 be an integer. There is a
local Ck-norm ‖·‖k which depends only on the semi major axes and the
masses13, such that the regularized perturbing function Fper satisfies
the estimate

‖Fper‖k < Cstk ε

over a uniform neighborhood of the level set FKep = 0 in Pε, for some
constant Cstk which depends on k but not on ε.

3.2. Averaging

We are going to try to eliminate the mean longitudes from the perturb-
ing function over the perturbing region. This can be done at some finite
order only where the Keplerian frequencies satisfy a finite number of
non-resonant conditions. Since our main purpose is to eventually apply
some kam theorem, we will actually carry out the elimination only
on the fixed set of diophantine Keplerian 2-tori. Let (ν1, ν2) be the
Keplerian frequency vector:

ν1 =
∂FKep

∂Λ1
=

√

2f1(Λ2)

µ1
, ν2 =

∂FKep

∂Λ2
=

Λ1
√

2µ1f1(Λ2)

µ3
2M

3
2

Λ3
2

.

12 Once an adequate scaling has been made in the action variables, it suffices to
prove the estimate in the C0-norm, because estimates in the Ck-norms just change
the constant in the estimate. Hence the proof is elementary.

13 The norm ‖·‖ is the norm of Proposition 2.1 of [7] up to a normalization by
a constant factor which makes this statement invariant by change of measurement
units. It is parametrized by the semi major axes and the masses and it measures the
size of a function and its derivatives of order less than or equal to k, with respect to
some symplectic coordinates of the secular space.

Secular_dynamics.tex; 10/01/2003; 17:36; p.11



12 JACQUES FÉJOZ

If p ≥ 1 is an integer and γ > 0 and τ ≥ p− 1 are real numbers, let















HDγ,τ (p) =

{

α ∈ Rp : ∀k ∈ Zp \ 0, |k · α| ≥ γ

|k|τ
}

hdγ,τ = {(x,m) ∈ X×M : (ν1(x,m), ν2(x,m)) ∈ HDγ,τ (2)} ,

where, for p-uplets k of Zp, | · | stands for the l2-norm:

|k| =
√

k2
1 + ... + k2

p;

HDγ,τ (p) is the tranversally Cantor set of frequency vectors in Rp

which satisfy homogeneous diophantine conditions of constants γ, τ ,
and hdγ,τ is the inverse image of HDγ,τ (2) by the Keplerian frequency
map (ν1, ν2) in the space X ×M. In the definition of hdγ,τ , nothing
prevents γ or τ to be functions on X×M. Let

hd = ∪
γ>0,τ≥1

hdγ,τ .

Also, let
∨
ν = min(ν1, ν2) be the smallest of the two Keplerian frequen-

cies.

PROPOSITION 1 (Féjoz [7]). Let n ≥ 0 and k ≥ 0 be integers and
γ > 0 and τ ≥ 1 be real numbers. For every ε > 0 there are a C∞-
Hamiltonian Fn

sec : Pε → R and a C∞-symplectomorphism φn : Pε →
φn(Pε) which is ε-close to the identity in the Ck-norm ‖·‖k and fibered14

over the parameter space M, and such that

− there exists a constant Cn,k > 0 such that, for every ε > 0,

‖F ◦ φn −Fn
sec‖k ≤ Cn,kε

1+n over Pε;

− the restriction of the infinite jet of Fn
sec to the transversally Can-

tor set hd
γ

∨
ν,τ

is invariant by the Keplerian action of the two-torus

and by the diagonal action of the circle15 making the two bod-
ies rotate simultaneously; hence Fn

sec is completely integrable on
hd

γ
∨
ν,τ

.

The Hamiltonians Fn
sec are built inductively. At each step, the fast

angles (λ1, λ2) are eliminated on the transversally Cantor set hd
γ

∨
ν,τ

14 φn leaves the parameters unchanged.
15 Diagonal means that the circle acts simultaneously on both ellipses, as if they

made up a rigid solid.
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up to an increasing order of smallness; then, by Whitney’s extension
theorem16, the averaged infinite jet along hd

γ
∨
ν,τ

may be extended into

a smooth function everywhere. Eliminating the angles only over hd
γ

∨
ν,τ

allows both to get a positive measure of invariant tori and to have
uniform estimates of the secular Hamiltonians over Pε.

DEFINITION 4. The Hamiltonian φn∗F can be split into the (nth or-
der, regularized) secular Hamiltonian Fn

sec, which is Pöschel-integrable
on hd

γ
∨
ν,τ

, and the complementary part Fn
comp, which is of Ck-size

O(ε1+n):

φn∗F = Fn
sec + Fn

comp,
∥

∥

∥Fn
comp

∥

∥

∥

k
≤ Cst ε1+n.

In turn, the secular Hamiltonian can be split into a (Liouville-) in-
tegrable part Fn

int and a resonant part Fn
res whose infinite jet vanishes

along hd
γ

∨
ν,τ

:

Fn
sec = Fn

int + Fn
res, with











Fn
int = FKep + 〈Fper〉+ ... + 〈Fn−1

comp〉

j∞Fn
res|hd

γ
∨
ν,τ

= 0.

The Keplerian Hamiltonian FKep can thus be thought of as the
zeroth order secular system, the perturbing function Fper as the zeroth
order complementary part, and the averaged system FKep + 〈Fper〉 as
the integrable part F 1

int of the first order secular system.
The purpose of this paper is to study the dynamics of the integrable

Hamiltonians Fn
int, whose infinite jets along hd

γ
∨
ν,τ

agree with those of

Fn
sec. We will loosely call Fn

int the secular Hamiltonians.

3.3. Secular space

The secular Hamiltonians Fn
int do not depend on the fast angles (λ1, λ2).

So they descend through the quotient

(SO3 ×R)× (S1 ×R3 × S0)
/T2

−→ (S2 ×R)× (R3 × S0)

by the Keplerian action17, and the momenta (Λ1,Λ2) may be thought of
as parameters. From the formula giving Q1 in terms of the regularized
Delaunay-like coordinates, we see that

Λ1 =
√

2µ1f1(Λ2) a1;

16 Cf. Appendix A of [1], or, in the context of dynamics, [16].
17 In other words, they induce Hamiltonians on the space of pairs of Keplerian

ellipses.
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14 JACQUES FÉJOZ

moreover the usual Poincaré coordinate Λ2 equals

Λ2 = µ2

√

M2a2.

Hence fixing these momenta is equivalent to fixing the semi major axes–
this is a way to think of the first theorem of stability of Laplace –,
and the symplectically reduced phase space is the space of pairs of
oriented ellipses with fixed semi major axes and foci such that the two
ellipses do not meet each other and the outer ellipse has an upper-
bounded eccentricity. It is diffeomorphic to S2 × (R2 ×S0) and can be
compactified to S2×S2, by gluing a cylinder of large-eccentricity outer
ellipses at infinity.

DEFINITION 5. The secular space will be the space diffeomorphic to
S2×S2 of pairs of oriented regularized ellipses with fixed foci and semi
major axes.

The secular spaces are parametrized by the masses, the semi major
axes and the regularized energy level −f < 0. We have compactified
them for symmetry purposes, but naturally the Hamiltonians F n

int, for
n ≥ 1, are only defined on some open subset of S2×S2 where the outer
eccentricity is upper bounded and where the Keplerian ellipses do not
meet each other.

If we think of the 2-sphere as the configuration space of one of the
two ellipses j = 1 or 2, we have the following non-symplectic chart: for
the standard embedding S2 ↪→ R3, as on Figure 1, the argument gj

of the pericenter of the ellipse, whenever defined, equals the longitude
of the point on S2, and the eccentricity is the distance between the
point and the vertical axes. The ellipse is positively (resp. negatively)
oriented in the northern (resp. southern) hemisphere.

It will be usefull to have some additional notations at hand. Let ϕj

be the colatitude on S2, so that the map

spher : T2 −→ S2 ↪→ R3

(gj , ϕj) 7−→ (cos gj sinϕj , sin gj sinϕj , cos ϕj)

is the usual spherical-coordinate map. The (signed) eccentricity ej and
centricity εj are

ej = sinϕj and εj = cos ϕj .

The northern and southern hemispheres have coordinates

(ej cos ϕj , ej sinϕj),
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gj

ϕj

ej

Collision ellipses

εj

Positively oriented circular ellipse

Negatively oriented circular ellipse

Figure 1. Sphere S2 of ellipses with fixed foci and semi major axes.

and the cylinder of non circular ellipses has coordinates (gj , εj). The
corresponding symplectic coordinates are the secular Poincaré variables
(ξj, ηj) and Delaunay variables (gj , Gj).

3.4. Expansion of the averaged system

Now, consider the averaged system

F1
int = 〈F〉 = FKep + 〈Fper〉.

The Keplerian part depends only on the masses and semi major axes.
Hence it is a constant and may be omitted. After Proposition 3.1 of [6],
the average 〈Fper〉 of the perurbing function agrees with the averaged
system 〈Fper〉 of the non regularized problem, up to the constant factor
a1, and provided that these Hamiltonians are seen as functions on the
abstract space of pairs of ellipses. Hence, after the computation of 〈Fper〉
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16 JACQUES FÉJOZ

in appendix C of [7],18

〈Fper〉 = −µ1m2ε2
a1

a2
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,

where g = g1 − g2 is the difference of the arguments of the pericenters,
and the σn’s are defined, for n ≥ 2, by

σn = σn−1
0 + (−1)nσn−1

1 .

In order to study the averaged system, we will assume that the semi
major axes ratio a = a1/a2 is small enough. However, once we know
some given property to hold for some value of a, then we may fix a and
let ε go to zero (possibly along the planetary problem) to apply KAM
theorem for instance, such as in [7].

4. Reduction by the Symmetry of Rotations

4.1. Subset of aligned ellipses

The circle S1 = RP1 of ellipses with fixed argument gj of pericenter
plays the role of a real form of the whole space S2 = CP1 of ellipses.19

Its analogue for pairs of ellipses the subset of pairs of aligned of ellipses,
that is, pairs of ellipses whose difference g = g1 − g2 of arguments of
pericenters satisfies g = 0 (mod π). In Sections 6.2–3, the structure of
secular singularities will be best understood by first restricting ourselves

18 Lieberman [13] gives a very similar expression. But the coefficients σ′
js there are

different, because Lieberman uses a heliocentric splitting, as opposed to the Jacobi
splitting which we use.

Besides, referring to Dziobek, Lieberman parametrizes both ellipses by their true
anomalies. But the computation can be simplified by rather parametrizing the inner
ellipse by its eccentric anomaly. Also there are two minor mistakes in Lieberman’s
computation.

19 By definition the real projective line RP1 is the manifold of real lines through
the origin in R2. Similarly, the complex projective line CP1 is the manifold of
complex lines (i.e. real planes) through the origin in C2.
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SECULAR DYNAMICS 17

to pairs of aligned ellipses. Dynamically, we will see in Section 4.1 that
it is an invariant manifold of the Riemannian gradient of the averaged
Hamiltonian.

LEMMA 3. The subset of aligned ellipses is an embedding in the sec-
ular space S2 × S2 of the symmetric cylinder Mspher of the spherical
coordinate map spher : T2 → S2.

Here, by the symmetric cylinder Mspher we mean the topological space
obtained by gluing two copies S2×S0 of the 2-sphere on the boundary
of the thickening T2 × I, with attaching map spher× idS0 . The upper
part of Figure 2 symbolically represents this cylinder.

/S1

Mspher

S2

Figure 2. Cylinder Mspher of aligned ellipses (Lemma 3). The quotient of Mspher

by the action of the circle is homeomorphic to S2 (Lemma 4).

Proof. Consider the blow-up

cyl : S2 × S1 × I −→ S2 × S2 ↪→ S2 ×R3

(x, g2, ε2) 7−→ (x, (
√

1− ε2
2 cos g2,

√

1− ε2
2 sin g2, ε2))

of the secular space, obtained by providing the outer ellipse with a
pericenter when it is circular; I stands for the closed interval [−1, 1]. In
S2 × S1 × I, the submanifold of aligned ellipses is
{

(x, g2, ε2) ∈ S2 × S1 × I; g = 0 (π)
}

'
{

(ϕ1, g2, ε2) ∈ T2 × I
}

.

Now, let us identify what has been blown up. The blow-up is bijective
on the interior of S2×I×S1. The intersection T2×S0 of the boundary
S2 × S1 × S0 with the submanifold T2 × I of aligned ellipses has two
connected components, which both are 2-tori parametrized by (ϕ1, g2);
hence the restriction of the mapping cyl to each of these tori is the
spherical-coordinate map spher.
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18 JACQUES FÉJOZ

4.2. Quotient by the diagonal action of the circle

By Proposition 1, the secular Hamiltonians and their integrable parts
Fn

int inherit from the initial Hamiltonian F the invariance by the lift
to the phase space of the rotations in the physical plane. This lift acts
on pairs of ellipses by simultaneous rotations, and on the secular space
S2×S2 diagonally. Let πS1 be the quotient map of the diagonal action
of the circle on S2 × S2.

LEMMA 4. The quotient πS1(S2 × S2) of the secular space by the
diagonal action of the circle is homeomorphic to S3.

The image by πS1 of the cylinder Mspher of aligned ellipses is a
sphere S2.

Proof. Intuitively, we wish we could choose a rotating frame of ref-
erence where for instance the outer ellipse had a fixed argument of
pericenter.

Consider the cylindrical-coordinate map cyl : S2×S1× I→ S2×S2

defined in the proof of Lemma 3. The diagonal action of the circle may
be lifted to S2 × S1 × I. This lifted action is free and its orbit space is
diffeomorphic to the global section

{

(x, g2 = 0, ε2) ∈ S2 × S1 × I
}

' S2 × I.

Blowing down in S2 × I what has previously been blown up yields S3.
This identification is represented in figure 3; the thikening S2× I of S2

has been cut into two parts, according to the orientation of the outer
ellipse, that is, to the sign of ε2:

S2 × [−1, 1] = S2 × [−1, 0] ∪
S2×{0}

S2 × [0, 1] ;

the quotients by cyl of S2× [−1, 0] and S2× [0, 1] are two 3-balls, whose
gluing along their boundary by the identity map is the 3-sphere indeed:

S3 = B3 ∪
S2

B3.

By the same arguments, the set of aligned ellipses modulo simulta-
neous rotations is a 2-sphere obtained by gluing two copies of the 2-disc
D2 along their boundaries. Following figure 2, the 2-sphere may also
be thought of as the symmetric mapping cylinder Mcos of the ramified
covering cos : S1 → I.

The quotient map πS1 fails to be a local fibration at the four points of
S2×S2 where both ellipses are circular, with two possible orientations
each. Indeed, these four configurations are fixed points of the diagonal
action of the circle. On the other hand, the following analyticity result
holds:
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Quotient
secular
space

Blown-up
quotient
secular
space

S2 × I

S3

⋃

S2

Figure 3. Blow-up of the circular outer ellipses of the quotient secular space.

LEMMA 5. The quotient map πS1 : S2 × S2 → S3 is analytic.
Proof. The result is clear in the neighborhood of points where the

quotient map is a local fibration.
So consider one of the four singularities, for instance the one where

both ellipses are circular and positiveley oriented. Let U be the neigh-
borhood of this singularity defined as the direct product of the two
open hemispheres where both ellipses are positively oriented. The map
(e1e

ig1 , e2e
ig2) defines a diffeomorphism from U to C2, or, equivalently,

to the set H = R ⊕ iR ⊕ jR ⊕ kR = C ⊕ jC of quaternions. The
induced diagonal action of the circle on H is given by

eiθ · (a + bj) = eiθa + eiθbj

for θ ∈ R/2πZ ' S1 and a, b ∈ C.
Now consider the Kustaanheimo–Stiefel map

K.S. : H −→ =H = {x ∈ H | <(x) = 0} ↪→ H

x 7−→ x̄ix,

where <(x) and x̄ stand for the real part and conjugate of x, and =H
is the subspace of purely imaginary quaternions. If x = a + bj is a
quaternion with a, b ∈ C, a straightforward computation shows that

K.S.(x) = αi + Ak, with α = |a|2 − |b|2 and A = 2āb.

Obviously, the images by K.S. of two quaternions x and eiθ ·x belong-
ing to the same S1-orbit agree. Conversly, if x and y are two quaternions
such that K.S.(x) = K.S.(y), setting z = xy−1 yields K.S.(z) = i or,
z ∈ C and |z| = 1; hence x and y belong to the same S1-orbit. In other
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20 JACQUES FÉJOZ

words, the quotient map πS1 is locally realized by the analytic map
K.S.

The “real form” of the map πS1 : S2 × S2 → S3 is a ramified two-
sheeted covering from T2 to S2. Hence, πS1 may be thought of as a
quaternionic generalization of Jacobi’s elliptic fonction. Also, in the
neighborhood of each ramified point, the real form of πS1

20 can be
identified to the base part

L.C. : R2 −→ R2

z 7−→ z2

of the Levi-Civita map L.C. (cf. Section 1.2).
The following commutative diagrams summarize the quotient maps.

The first one is local in the neighborhood of one of the four singularities,
while the second one is global:

S1
r ↪→ R2 ↪→ R4 ←↩ S3

r




yθ 7→ 2θ




yL.C.




yK.S.




yHopf

S1
r2 ↪→ R2 ↪→ R3 ←↩ S2

r2 ,

S1 × S1 ↪→ S2 × S2




y





y

πS1

S2 ↪→ S3.

The K.S. map sends each sphere S3
r centered at the origin and of

radius r in R4 onto a sphere S2
r2 of radius r2 in R3, through a Hopf

fibration;21 hence it is a cone over the Hopf fibration. As a consequence,
it does not have any continuous section. Hence there is no reason a
priori for the Hamiltonian induced by Fn

int on S3 to be differentiable,
although for instance F 1

int is analytic outside the branch points of πS1 .

LEMMA 6. If the semi major axes ratio a1/a2 and the order ε of the
perturbing region Pε are small, the Hamiltonians induced by the secular
Hamiltonians Fn

int on the quotient secular space S3 are not differentiable
at the branch points of the map πS1 .

However, the restrictions of these induced Hamiltonians to a regular
level sphere S2 of the angular momentum are of class C∞.

Proof. The critical level sets of the angular momentum agree with
the ramification points of the quotient map πS1 . So the restriction of πS1

to a regular sphere of constant angular momentum is a local fibration.
Hence, for regular values of the angular momentum, the reduced secular
Hamiltonians are smooth.

Now consider the neighborhood of the ramification points of πS1 .
Since Fn

int is ε-close to the averaged system 〈Fper〉 in the C1-topology,

20 that is, the restriction of πS1 to aligned ellipses.
21 By definition, the Hopf fibration S3 → S2 maps (x, y) ∈ S3 ↪→ C2, |x|2 + |y|2 =

1, to its orbit {(eiαx, eiαy), α ∈ R/2πZ} under the diagonal action of the circle.
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it suffices to prove that 〈Fper〉 is not differentiable on S3. After the
expansion of 〈Fper〉 given in § 2.4, it even suffices to prove that the
function e2

1 is not differentiable on S3.
If x = a + bj is a quaternion with a, b ∈ C, recall from Lemma 5

that

K.S.(x) = αi + Ak, with α = |a|2 − |b|2 and A = 2āb.

The function e2
1 = |a|2 on U ' H (cf. the proof of lemma 5) is invariant

by the diagonal action of the circle, and can thus be factorized by the
K.S. map; indeed, we have

e2
1 =

1

2

(

α +
√

α2 + 2|A|2
)

◦K.S.

The function
√

α2 + 2|A|2 of αi + Aj ∈ =H is not differentiable at
0, and hence neither are the Hamiltonians induced by the averaged
Hamiltonian or higher order secular Hamiltonians.

In the quotient secular space S3, outside the four singularities of
πS1 , we have the following local coordinates:

− (ϕ1, g = g1 − g2, ϕ2), and (ε1, g, ε2), if e1 6= 0 and e2 6= 0, because
then g1 + g2 is a submersion and its level sets are sections of the
S1-orbits of S2 × S2 ;

− (e1 cos g, e1 sin g, ϕ2) if e1 ' 0, because then e2 6= 0, so locally g2

is a submersion and its level sets are sections of the S1-orbits of
S2 × S2 ;

− (ϕ1, e2 cos g, e2 sin g) if e2 ' 0, by the same kind of argument.

At the four singularities, where both ellipses are circular, coordinates
mix eccentricities of the two ellipses. So it is more pleasant to consider
the blow-up

S2 × S2
id

S2×spher←−−−−−−− S2 ×T2





y
/S1





y
/S1

S3 ←−−− S2 × S1,

where, in S2×S1, S2 is the configuration space of the inner ellipse and
S1 is parametrized by ϕ2.

In the proof of Theorem 1, we will also consider the blow-up spher×
spher. In particular, the quotient of the blow-up of the subset of aligned

Secular_dynamics.tex; 10/01/2003; 17:36; p.21



22 JACQUES FÉJOZ

ellipses is a 2-torus T2 parametrized by (ϕ1, ϕ2):

Mspher
spher×spher←−−−−−−− T3 × S0





y
/S1





y
/S1

S2 antipodal←−−−−−−−−−−−−
(ϕ1,ϕ2)∼(−ϕ1,−ϕ2)

T2.

Furthermore, as we have already noticed it, T2 embeds in S2 × S2,
onto the set of pairs of ellipses with some fixed argument of pericenter
modulo π. Hence T2 may be thought of as a real form of S2 × S2.

4.3. Foliation by the level sets of the angular momentum

Since the diagonal action of the circle is the Hamiltonian flow of the
angular momentum

C = G1 + G2 = ±
(

Λ1 −
ξ2
1 + η2

1

2

)

±
(

Λ2 −
ξ2
2 + η2

2

2

)

,

the following result holds.

LEMMA 7 (Singularities of the angular momentum on S2 × S2). The
critical points of the angular momentum are the four ramification points
of the map πS1 . They are non- degenerate: elliptic when the two ellipses
have the same orientation, and hyperbolic of index 2 otherwise.

When the parameter Λ1/Λ2 goes through the value 1, the angular
momentum undergoes a heteroclinic bifurcation: the two hyperbolic
level sets

C = ±|Λ1 − Λ2|
agree and the foliation of the secular space S2 × S2 by the level sets
of the angular momentum is symmetric with respect to the diagonal of
pairss of ellipses with equal eccentricies. Also, since the flows of C and
of the secular Hamiltonians commute, the critical points of C, which
are isolated, automatically are fixed points of the secular systems, at
any order of averaging.

LEMMA 8 (Foliation by the level sets of the angular momentum). In
the secular space S2×S2, the level sets of the angular momentum C are
diffeomorphic to S3 within the two bounded outer intervals of regular
values of C, and diffeomorphic to S2 × S1 between the two hyperbolic
critical values of C.

In the quotient secular space S3, the regular level sets of C are
diffeomorphic to S2.
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Proof. Assume that Λ1 < Λ2. In S2 × S2, the local expression of
the angular momentum in the Poincaré coordinates shows that, in the
neighborhood of its extrema, the level sets of C are standard round
spheres S3. The quotient map by rotations is the Hopf fibration, whose
image is a family of standard round spheres S2. Within the two whole
outer bounded intervals

]− Λ1 − Λ2,Λ1 − Λ2[ and ]Λ2 − Λ1,Λ1 + Λ2[,

C is a fibration and hence its level sets still are 3- and 2-spheres before
and after quotient by the rotations.

Within the middle interval

]Λ1 − Λ2,Λ2 − Λ1[

of regular values of C, the expression

C = Λ1 cos ϕ1 + Λ2 cos ϕ2

shows that the conservation of the angular momentum does not prevent
the inner ellipse (Λ1 < Λ2) to be a collision ellipse (e1 = 1), but prevents
the outer ellipse to be circular. In other words, the level sets of C
are diffeomorphic to S2 × S1, where S2 is the configuration sphere of
the inner ellipse and S1 is parametrized by the argument g2 of the
pericenter of the outer ellipse. The quotient map is the trivial fibration
S2 × S1 → S2.

If Λ1 > Λ2, it suffices to switch the roles played by the two ellipses.
If eventually Λ1 = Λ2, the two hyperbolic level sets agree.

The angular momentum does not depend on the arguments of the
pericenters of the ellipses. Hence there is no loss of information on
Figure 4, which represents the level sets of the restriction of C to (a
fundamental domain of) the real form T2 of the secular space. The
circles corresponding to higher or lower regular levels are homotopic to
0; those corresponding to the levels which are close to 0 are homotopic
to one of the two generators of the homology, depending on the sign of
Λ1 − Λ2.

5. Secular Symmetries and Singularities
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ϕ2

ϕ1

e1 = 1

e2 = 2

Positively

oriented
inner

ellipse

Positively

Two

circular

ellipses

Negatively

oriented
inner
ellipse

oriented

outer
ellipse

oriented
Negatively

outer
ellipse

Figure 4. Level sets of the angular momentum in the real form T2 of the secular
space, in the case where Λ1 < Λ2. The fundamental domain of T2 which is drawn is
(ϕ1, ϕ2) ∈ [−π/2, 3π/2]2.

5.1. Symmetries of the secular systems

Up to the additive constant FKep, the averaged system 〈F〉 equals

〈Fper〉 = − a1

4π2

∫

T2

(

m0m2

|Q2 + σ1Q1|
+

m1m2

|Q2 − σ0Q1|
− M1m2

|Q2|

)

dλ1dλ2.

The coming three symmetries will let us forsee two new families of
singularities which are not singularities of the angular momentum.

Since the angular momentum commutes with the averaged system,
each family of singularities necessarily is an S1-orbit. Consider the
Hamiltonian induced by 〈Fper〉 over the quotient secular space S3; we
still denote this Hamiltonian by 〈Fper〉:

LEMMA 9 (Symmetries of the averaged system on S3).

1. 〈Fper〉 can be factorized through the 4-sheeted ramified covering
s1 : S3 → B3 which sends a pair of oriented ellipses (modulo
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rotations) to the corresponding pair of non oriented ellipses.22 The

ramification set of s1 is the set
4∪
S1

D2 obtained by gluing the four

discs where one of the ellipses is degenerate (ε1ε2 = 0) along their
boundaries.23

2. 〈Fper〉 can be factorized through the ramified covering s2 : S3 → B3

which identifies two pairs of oriented ellipses (modulo rotations)
which differ only by the sign of g. The ramification set of s2 is the
sphere S2 of aligned ellipses (g = 0 (π)).

3. When m0 = m1, 〈Fper〉 can be factorized through the ramified cov-
ering s3 : S3 → B3 which identifies two pairs of oriented ellipses
(modulo rotations) which differ only by their aguments of pericen-
ters g and π − g. The ramification set of s3 is the sphere S2 of
ellipses with orthogonal major axes.

Proof.

1. The change of variable formula for integrals shows that 〈Fper〉 does
not depend on the orientation of ellipses. Hence 〈Fper〉 descends
through the map s1. The ramification set of s1 is the inverse image
of the boundary S2 of the space B3 of pairs of non oriented ellipses.

2. Thanks to the latter symmetry and to the invariance of the per-
turbing function by the change of orientation of the physical plane,
the Hamiltonian 〈Fper〉 is invariant by the change of g = g1−g2 into
−g, the only angle it depends on. Hence 〈Fper〉 descends through
the map s2.

3. The perturbing function is invariant by

(Q1,m0,m1) 7→ (−Q1,m1,m0),

and 〈Fper〉 by (g,m0,m1) 7→ (g + π,m1,m0). Hence, if m0 = m1,
the perturbing function is symmetric with respect to the bodies m0

and m1, and 〈Fper〉 descends through the map s3.

These three symmetries can easily be visualized in the following
interpretation on 〈Fper〉, which does not have a simple analogue for
higher order secular systems (cf. Figure 5):

22 In other words, there is a function 〈Fper〉 such that 〈Fper〉 = 〈Fper〉 ◦ s1.
23 By definition, the ramification set of s1 is the set of points in S3 where s1 fails

to be a local fibration. Namely, the preimage of a generic point by s1 consists of four
points, whereas the preimage of a point in the image of the ramification set consists
of fewer points.
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− Let E0 and E1 be the homothetic ellipses of masses m0 and m1,
which under the Keplerian flow are described by the position vec-
tors σ0Q1 and −σ1Q1. Hence these two ellipses are rigidly attached
in opposition, and they have semi major axes σ1a1 and σ0a1, same
eccentricity e1 and arguments of pericenters g1 + π and g1.

− Let E2 be the ellipse of mass m2 which under the Keplerian flow
is described by Q2. Thus its semi major axis, eccentriciy and
argument of pericenter are a2, e2 and g2.

− Let E1/2 be the repulsive center at the origin, with negative mass
−M1.

� � �� �

E2

E1

E1/2

E0

g

Figure 5. System of ellipses for which 〈Fper〉 is the Newtonian potential (case where
m0 > m1).

Then the averaged Hamiltonian is the potential energy of the ellipse
E2 undergoing the quadrupolar potential created by E0, E1/2 and E1.
In particular, when m0 = m1, the two ellipses E0 and E1 are symmetric
with respect to the focus.

Now, consider the function 〈Fper〉 along the circle of S3 which is
parametrized by ϕ2, where the ellipses are aligned (g = 0 (mod π))
and where the inner ellipse is degenerate (e1 = 1). The intersection
of this circle with the domain of definition of 〈Fper〉 is the disjoint
union of the two line segments where the real ellipses do not meet each
other. When a = a1/a2 is small enough, computations in Section 4.2
will show that 〈Fper〉 reaches a maximum on each one of these line
segments. After the first two symmetries of Lemma 9, these two points
are critical points of 〈Fper〉.

Figure 6 represents the level sets of the restriction of the Hamiltonian
〈Fper〉 to the real form T2 of aligned ellipses. The domain of definition
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of this restriction consists of two connected components (e2 < Cst)
which both are diffeomorphic to the cylinder S1 × R. Only one of
these components is represented, but thanks to the first symmetry of
Lemma 9 the foliations on both components are diffeomorphic.
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Figure 6. Level curves of the averaged system 〈Fper〉 over the cylinder of aligned
ellipses, parametrized by (ϕ1, ϕ2) ∈ [−π/2, 3π/2]× [−π/2, π/2].

The symmetry s1 of Lemma 9 comes from the noteworthy fact that
the chosen perturbing function depends only on the positions; hence
higher order secular systems have no reason a priori for factorizing
through s1. Hence, although the hyperbolic singularities of the averaged
system necessarily persist for Fn

int if ε is small enough, they may move
away from the sphere of degenerate inner ellipses. However, the two last
symmetries of lemma 9 hold, provided that they are expressed without
referring to s1.

COROLLARY 1 (Symmetries of the secular systems on S3).

1. Fn
int can be factorized through the ramified covering s′2 : S3 → B3

whose fibers consist of pairs (E1, E2), (E′
1, E

′
2) of pairs of ellipses

such that Ei and E′
i have opposite orientations (i = 1, 2) and the

difference g (resp. g′) of arguments of the pericenters of E1 and E2

(resp. E′
1 and E′

2) satisfy g = −g′ (mod 2π). The ramification set
of s′2 consists of the two points where the two ellipses are aligned
and both degenerate.

2. When m0 = m1, Fn
int can be factorized through the ramified cov-

ering s′3 : S3 → B3 which identifies two pairs of oriented ellipses
which differ only by their aguments of pericenters g and g +π. The
ramification set of s′3 is the circle e1e2 = 0 where at least one of
the two ellipses is cicular.

The proof is similar to that of Lemma 9 and is left to the reader. The
two symmetries s′2 and s′3 do not have the same consequences as those of
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the averaged system in terms of existence of singularities because their
ramification sets are too small. However, non-degenerate singularities of
the averaged system persist for higher order secular systems, provided
the order ε of the perturbing region Pε is small enough.

5.2. Singularities

We now prove the heuristic description that we made in section 4.1 of
the critical points of 〈Fper〉, in the case when the semi major axes ratio
a = a1/a2 is small. Since 〈Fper〉 descends through the quotient by the
diagonal action of the circle, we get rid of this invariance by listing the
singularities of the induced Hamiltonian on S3, which we still denote
by 〈Fper〉. Actually, this Hamiltonian is only defined on the region of S3

where the ellipses do not meet each other and where the outer eccentric-
ity is upper bounded; this region is diffeomorphic to the disjoint union
of two 3-balls, which correspond to the two possible orientations of the
outer ellipse. Note that by Lemma 6 the Hamiltonian 〈Fper〉 induced on
B3∪B3 ↪→ S3 is not differentiable at the four branch points of the map
πS1 . Hence in the following statement “elliptic singularity” stands for
“local extremum”, or, more precisely, for “image by πS1 of an elliptic
singularity in the usual sense in S2 × S2”.

PROPOSITION 2 (Singularities of the averaged system on S3). If the
semi major axes ratio a = a1/a2 is small, the averaged Hamiltonian
〈Fper〉 possesses exactly six singularities:

− four elliptic singularities at the four branch points of πS1 (e1 =
e2 = 0)

− and two hyperbolic singularities on the circle of aligned ellipses
(g = 0 (π)) and degenerate inner ellipses (e1 = 1).

On both hyperbolic singularities, the outer eccentricity goes to zero when
a or m0 −m1 go to 0.

Proof. First consider a small neighborhood of the four branch points
e1 = e2 = 0. The induced averaged system on S3 is not differentiable
at e1 = e2 = 0 (cf. Lemma 6). However, 〈Fper〉 is analytic on S2 × S2

and so is (the pull-back of) 〈Fper〉 on the ramified covering

S2 ×T2 = (idS2 × spher)−1(S2 × S2).

Hence it induces an analytic Hamiltonian on the quotient S2×S1 of the
blow-up by the diagonal action of the circle. Now, in the neighborhood
of e1 = e2 = 0 in S2 × S1, the variables (x = e1 cos g, y = e1 sin g, e2)
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are analytic local coordinates. The first term of the expansion of 〈Fper〉
(cf. § 2.4) is positively proportional to

f0 = −2 + 3(x2 + y2)

(1− e2
2)

3/2
.

The branch points x = y = e2 = 0 are elliptical singularities of f0,
and by the implicit function theorem, they persist as such for 〈Fper〉
provided that a is small enough. Moreover, by local unicity and symme-
try, the perturbed singularities necessarily agree with the very branch
points themselves.

Second, assume that e2 6= 0. The variables (e1 cos g, e1 sin g, ϕ2) are
local coordinates in S3. Using these variables shows that f0 does not
have any critical point in this open set of S3. Since 〈Fper〉 is uniformly
Ck-close to f0 when a is small, given any compact subset K of {e2 6=
0} ⊂ S3, there is a small value of a below which 〈Fper〉 does not have
any critical point in K.

Lastly, assume that e1 6= 0. The variables (ϕ1, x = e2 cos g, y =
e2 sin g) are local coordinates, in terms of which the function f0 equals

f0 =
2 + 3 sin2 ϕ1

(1− x2 − y2)3/2
.

Since ϕ1 6= 0 (π), f0 has two unique critical points (ϕ1 = π/2 (π), e2 =
0), which are hyperbolic. By symmetry and local unicity, they persist
for 〈Fper〉 and their perturbations belong to the sphere S2 of aligned
ellipses. Furthermore, when m0 = m1, the third symmetry of Lemma 9
prevents these hyperbolic singularities from moving away from {e2 =
0}.

Figure 7 represents the foliation by the level sets of F n
int of one of

the two connected components B3 of the domain of definition of Fn
int

on S3.
Higher order secular systems Fn

int are ε-close to Fint = 〈Fper〉 in Pε.
So, if both a and ε are small, Fn

int is close to f0 (cf. the latter proof).
Since f0 is a Morse function on S2×S1, a similar result as Proposition 2
holds for Fn

int. The only difference is that Fn
int depends a priori on the

orientation of the ellipses. Hence the hyperbolic singularities have no
obvious reason for remaining located on the circle where the ellipses
are aligned and the inner ellipse is degenerate.

COROLLARY 2 (Singularities of secular systems on S3). If a and ε
are small, the n-th order secular Hamiltonian Fn

int possesses exactly
six singularities:
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Figure 7. Foliation by the level surfaces of 〈Fper〉 of the ball B3 ↪→ S3 where the
outer ellipse is positively oriented. The dashed line represents the boundary of B3.
For high values of 〈Fper〉, the level sets are pairs of topological 2-spheres around the
bi-circular points. At the hyperbolic critical value, the two spheres meet at one point.
For lower levels of 〈Fper〉, the level sets are connected and consist of one topological
2-sphere each.

− four elliptic singularities at the four branch points of πS1 (e1 =
e2 = 0),

− two hyperbolic singularities, which are ε-close to the circle of
aligned ellipses (g = 0 (π)) and degenerate inner ellipses (e1 = 1).

Singularities of Proposition 2 all arise from the symmetries listed in
Lemma 9, and there are no other obvious symmetries. This pleads for
the following conjecture.

CONJECTURE 1. Corollary 2 holds globally in the perturbing region
Pε without assuming that a is small.

6. Bifurcation Diagram of the Reduced Secular systems

In this section, we study the secular systems Fn
int after the symplectic

reduction by the symmetry of rotations, i.e. restricted to a sphere S2

of constant angular momentum (cf. Lemma 8) in S3. In particular,
singularities of the reduced system are secular fixed points in some
adequate rotating frame of reference.

Secular_dynamics.tex; 10/01/2003; 17:36; p.30



SECULAR DYNAMICS 31

6.1. Parameter space

The dynamics is invariant by changes of length and mass units. Hence
without loss of generality we may parametrize the two lengths a1, a2,
the three masses m0, m1, m2, the angular momentum C and the energy
f with only five parameters, by fixing M2 = a1 = 1 for instance.

Let a, b, c and d be the adimensional parameters defined by

a =
a1

a2
, b =

Λ1

Λ2
, c = bε1 + ε2, d = σ0 − σ1;

a is the semi major axis ratio, b is the ratio of the ‘circular linear
momenta’, c is the normalized angular momentum and d measures the
difference between the two inner masses. The careful reader will check
that the map

(a1, a2,m0,m1,m2, C, f) 7−→ (a1,M2, a, b, c, d, f)

is a homeomorphism between the two open sets of R7 defined by the
inequalities







a1, a2,m0,m1,m2, f ∈]0,+∞[
|C| < Λ1 + Λ2

d((a1, a2), Af ) < a1/2 (cf.§ 2.1)

in the range, and















a1,M2, a, b, f ∈]0,+∞[
|c| < 1 + b
|d| < 1
d((a1, a1/a), Af ) < a1/2

in the image. For computational reasons we will describe the bifurcation
diagram of the secular systems in terms of the coordinates (a, b, c, d, f)
of the parameter space.

6.2. Averaged system

Recall from Lemma 8 that regular level surfaces of the angular mo-
mentum C (or c) in the quotient secular space S3 are differomorphic
to S2. In particular, since the reduced secular space is 2-dimensional,
singularities of the Hamiltonian vector field on S2 agree with and have
the same index as critical points of the Hamiltonian itself.

For the sake of simplicity, we assume that the angular momentum
C is large enough so that the secular systems are defined over all the
level sphere S2 of constant angular momentum: c − b > εmin

2 , where
εmin
2 =

√

1− emax
2 (cf. the beginning of § 2.1). Dropping this assumption
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would only allow singularities for which the outer eccentricity is large,
to drift out of the perturbing region Pε.

We also assume that the angular momentum is larger, in absolute
value, than its hyperperbolic critical values: |c| > |1 − b|. When |c|
decreases through |1−b|, 〈Fper〉 undergoes a singular saddle-node bifur-
cation and one additional singularity appears, where the inner ellipse is
almost circular and the two ellipses have opposite orientations; this sin-
gularity is the analogue of Lieberman’s singularity [13], but for ellipses
of opposit orientations.

THEOREM 1 (Bifurcation diagram of the reduced averaged system).
There are an open set W of the parameter space, open sets W1, W2 and
W3 of W, functions c1(a, b, d), c2(a, b, d), d1(a, b, c) and d2(a, b, c) and
a constant Cst such that:

− W is defined by a < Cst, |c| > |1− b|, and c− b > εmin
2 ;

− the Wi’s are subsets of W defined by







W1 : b /∈ [0, 1] or |c| /∈ [c1, c2],
W2 : 0 < b < 1, c1 < |c| < c2, d /∈ [d1, d2],
W3 : 0 < b < 1, c1 < |c| < c2, d1 < d < d2,

so that W =W1 ∪W2 ∪W3 (mod 0) ;

− in W1, 〈Fper〉 has exactly two elliptic singularities, such that g =
0 (π) and e1e2 = O(a), that is these singularities belong to the
circle of aligned ellipses and are a-close to the two points of S2

where one of the ellipses is circular;

− in W2, 〈Fper〉 has exactly two additional singularities: a hyper-
bolic singularity such that g = O(a) (2π) (almost conjunction),
and an elliptic singularity such that g = π + O(a) (2π) (almost
opposition);

− inW3, 〈Fper〉 has exactly four more singularities than inW1: two
elliptic singularities such that g = O(a) (π), and two hyperbolic
singularities for which g = π/2 + O(a) + O(d/a) (π).

Figure 8 represents a section of W by the codimension-2 space of
equations a = Cst and f = Cst′, where Cst is the same constant as in
the theorem, and Cst′ is any positive real number. The graphs of the
functions c1 and c2 are saddle-node bifurcation surfaces; the graphs of
d1 and d2 are Z2-symmetric saddle-node bifurcation surfaces; and the
hyperplane d = 0 is a heteroclinic bifurcation surface.
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Figure 8. Section of the bifurcation diagram of 〈Fper〉 by the codimension-2 space
a = Cst, f = Cst′, where Cst is small enough.

Proof. Singularities of the reduced averaged system are more easily
described when unfolded in the quotient secular space S3, without fixing
the angular momentum. The set of these singularities consists of the
points where the level surfaces of 〈Fper〉 and C are in contact in S3.
Hence they are the solutions of the equation

d〈Fper〉 ∧ dc = 0.

Here the computations in local coordinates are similar to those of the
proof of Proposition 2. Hence some details will be left to the reader.

First consider the pull-back of this equation by

T2 α−→ S2 j
↪→ S3,

where α is the ramified antipodal covering (cf. end of § 3.2) and j is the
inclusion of aligned ellipses in the quotient secular space. The 2-torus
has coordinates (ϕ1, ϕ2), in terms of which the equation becomes

sinϕ1 sinϕ2(2 cos ϕ1 cos ϕ2 − b(5− 3 cos2 ϕ1)) = O(a).

At the limit a = 0, this equation makes sense over T2 (even where the
outer eccentricity is large) and the set of its solutions consists of

− four circles e1e2 = 0, whose images by α in S2, after the proof of
lemma 4, consist of a unique circle;

− if 0 < b < 1, the two circles ε1ε2 = b(5− 3ε2
1)/2, whose images by

α in S2 consist of two circles which entirely lie in the hemisphere
ε1ε2 > 0 of pairs of ellipses whose orientations agree;
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− if b = 0, the two circles ε1ε2 = 0, which are the standard generators
of the homology of T2, and whose images by α are consist of two
circles.

These solutions are represented by dashed lines in figure 9 when
0 < b < 1. Most of these points are non degenerate solutions of the
equation α∗j∗(d〈Fper〉∧dc)|a=0 = 0 and survive when a > 0 provided a
is small enough. The perturbed solutions are represented by solid lines
on the same figure. The degenerate unperturbed solutions are:

− the four points e1 = e2 = 0 which, by symmetry, are critical
points of both 〈Fper〉 and c, and hence which are singularities of
the reduced averaged system for a > 0;

− the eight singular points which belong to both a circle e1e2 = 0 and
a circle ε1ε2 = b(5−3ε2

1)/2, and which, by perturbation, disappear
as the point (0, 0) in the xy-plane would, for the local model xy =
a.

The traces of the solutions of j∗(d〈Fper〉 ∧ dc) = 0 on a level circle
of the angular momentum c in the sphere S2 of aligned ellipses consist
of either two or four points. Indeed, the curves e1e2 = O(a) meet all
the level curves of the angular momentum c = b cos ϕ1 + cos ϕ2, which
yields two solutions. On the other hand, the curves

ε1ε2 = b(5− 3ε2
1)/2 + O(a)

meet only those level curves of c for which c lies within two limiting
values satisfying

c1 = 2b + O(a) and c2 =
1

3
(2 +

√

(1 + 15b2)) + O(a).

The values c1 and c2 give the boundary of the region W1 and are
saddle-node bifurcations (cf. Figure 10 when 0 < b < 1).

Consider the full quotient secular space S3 again. Using local co-
ordinates, it is straightforward to check that the non degenerate sin-
gularities of j∗〈Fper〉 yield the singularities of the reduced averaged
system:

− The critical points of j∗〈Fper〉 such that e1e2 = O(a) give rise to
two elliptic singularities for the reduced system. A normal form
of the reduced averaged Hamiltonian the neighborhood of these
singularities is computed is the last section of [7].

− The points such that ε1ε2 = b(5− 3ε2
1)/3) are degenerate singular-

ities of the first term of the expansion of 〈Fper〉. It is the second
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Figure 9. Contact curves of the foliations by the level curves of 〈Fper〉 and c in
the ramified covering T2 of the sphere S2 of aligned ellipses. It is assumed that
0 < b < 1. The dashed lines represents the limit of these contact curves when a → 0,
that is, the contact curves of f0 and c.

term, in cos g, or the third one, in cos(2g), which breaks up the
degeneracy, according to the relative size of a and d. We have

∂

∂g
〈Fper〉 = f1. (A sin g + sin(2g) + O(a)) ,

where f1 is a non vanishing function and

A =
4

21

1

σ4e1e2

4 + 3e2
1

2 + e2
1

d

a
.

The value g = 0 (mod π) is always a zero of the function g 7→
A sin g + sin(2g). This function has an additional zero g in ]0, π[
(mod 2π) if and only if −2 < A < 2. These inequalities yield a
criterion for determining the boundary between W2 and W3, as
defined in the statement of the theorem:

−d1 = d2 =
6

5
σ4

2 + e∗21
4 + 3e∗21

e∗1e
∗
2a mod O(a2),

where e∗j =
√

1− ε∗2j , and (ε∗1, ε
∗
2) is either pair of solutions of the

equation ε1ε2 = b(5− 3ε2
1)/3, with c = bε1 + ε2. Hence, in addition
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to the two already mentionned elliptic singularities, the reduced
averaged Hamiltonian, inW2, has two additional singularities: one
hyperbolic singularity with g = 0 (mod 2π) (ellipses in conjunc-
tion) and one elliptic singularity with g = π (mod 2π) (ellipses
in opposition). In W3, the reduced averaged Hamiltonian has four
additionnal singularities rather than two: two elliptic singulari-
ties with g = 0 (mod π) (aligned ellipses), and two hyperbolic
singularities having non aligned ellipses.
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b = 0+ 0 < b < 1

b = 1− b > 1

Figure 10. Contact curves of the foliations by the level curves of 〈Fper〉 and c in the
disc of positively oriented and aligned ellipses, for different values of b.

The phase portraits of the reduced averaged system are represented
on figure 11 in three particuliar cases of Theorem 1. They can all be
factorized by a fold along the circle of aligned ellipses. The thrid one,
where d = 0, can also be factorized by a fold along the circle where the
inner and outer ellipses are perpendicular to one another.

6.3. Consequences

By Theorem 1, in the parameter region W3 the reduced averaged
system has two hyperbolic singularities in the subset of non-aligned
ellipses. One singularity is such that 0 < g < π (mod 2π), and the
other one is such that −π < g < 0 (mod 2π). Let B3

0 ↪→ S3 be
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Figure 11. Phase portrait of the reduced averaged system, respectively in W2,
W3 ∩ {d 6= 0} and W3 ∩ {d = 0}.

the ball consisting of pairs of positively oriented, non circular ellipses,
with a difference g of arguments of pericenters such that 0 < g < π
(mod 2π).

COROLLARY 3 (Surjectivity of singularities of the averaged system).
The function

W3 −→ B3
0

(a, b, c, d, f) 7→ Hyperbolic singularity of 〈Fper〉 in B3
0

is onto.
Proof. Consider a pair of ellipses in B3, with eccentricities e1 and e2

and difference of arguments of pericenters g ∈]0, π[. From the proof of
Theorem 1, if f > 0 is given and if a is small, there are unique values
of b and c such that (e1, e2) are solutions of the equation

α∗(d〈Fper〉 ∧ dc) = 0;

and there is a unique value of d such that the function g 7→ A sin g +
sin(2g) has a zero in ]0, π[, with

A =
4

21

1

σ4e1e2

4 + 3e2
1

2 + e2
1

d

a
+ O(a).

For those values of the parameters, the point (e1, e2, g) ∈ B3
0 is a

singularity of the averaged system with g 6= 0 (mod π). Hence the
point (a, b, c, d, f) is in W3, and fits the bill.

COROLLARY 4 (Reduced secular Hamiltonians). If ε is small, there
are open sets Wn

1 , Wn
2 and Wn

3 of W ∩Pε such that

− Wn
1 , Wn

2 and Wn
3 are ε-close to the subsets W1, W2 and W3

defined in Theorem 1, and

W ∩Pε =Wn
1 ∪Wn

2 ∪Wn
3 (mod 0);
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− Fn
int has the same number of singularities in Wn

1 and Wn
2 as

〈Fper〉 in W1 and W2, and is Ck-orbitally conjugate and Ck-close
to 〈Fper〉 in these respective regions of the parameter space;

− Fn
int has at least two elliptic singularities (and possibly more)

Wn
3 .

Proof. Consider the expansions of 〈Fper〉 and Fn
int − 〈Fper〉 with

respect to the powers of a. The first non-constant term of F n
int−〈Fper〉

certainly is smaller than the first term of 〈Fper〉, but maybe not than
the second or third terms of 〈Fper〉.

Now, as the proof of theorem 1 shows, when a is small the elliptic
singularities of 〈Fper〉 for which e1e2 = O(a) are perturbations of non
degenerates singularities of the first term

−µ1m2
2 + 3e2

1

8ε3
2

a3

of 〈Fper〉; hence they survive an additional small perturbation and yield
similar singularities for Fn

int = 〈Fper〉+ 〈F1
comp〉 if ε is small enough.

In W2, the other non degenerate singularities of 〈Fper〉 with aligned
ellipses are perturbations of non degenerate singularities of the first two
terms

−µ1m2

(

2 + 3e2
1

8ε3
2

a3 − 15

64
(σ0 − σ1)

(4 + 3e2
1)

ε5
2

e1e2 cos g a4

)

of 〈Fper〉. In order to prove that these singularities persist for F n
int,

we need to show that the first term of Fn
int − 〈Fper〉 is smaller than

the second term of 〈Fper〉, in the norm ‖·‖k of proposition 1. After
appendix A of [7], it actually suffices to look to the C0-estimates. The
norm ‖·‖0 is defined in [7] by

‖F‖0 = sup
T4

|F|
∨
Λ

∨
ν

= sup
T4

|F|
∨
Λ

(

∂FKep

∂Λ

)∨ ,

where T4 is the torus of the fast angles (λ1, λ2) and the arguments of

the pericenters (g1, g2),
∨
ν = min(ν1, ν2) is the smallest of the Keple-

rian frequencies and
∨
Λ = min(Λ1,Λ2) is the smallest of the Keplerian

momenta; one of the reasons for this norm to be natural is that it is
invariant by change of units. In this norm, the size of the first term of
Fn

int − 〈Fper〉 is
(

µ1m2a
3

∨
Λ

∨
ν

)2

,
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and the size of the second term of the averaged system is

µ1m2a
4

∨
Λ

∨
ν

.

We want this ratio to go to zero when ε goes to zero. Since the relevant

singularities exist only in W2, we may assume b < 1, that is
∨
Λ = Λ1.

Then the ratio is

m2
√

a√
M1M2

max

(
√

M2

M1
a3/2, 1

)

.

By using the inequality

(µ1 + m2)M2

M2
1

a < ε,

which holds in Pε (cf. Definition 3), it is elementary to check that this
ratio goes to zero with ε.

InW1 and W2, there are no other singularities. Therefore the state-
ment of the theorem concerning Wn

1 and Wn
2 holds.

In W3, the non circular singularities of the averaged system are
determined by the first three terms of the averaged Hamiltonian, and
a similar computation shows that in general the third term is no larger
than the first term in Fn

int which comes from the second order averaging.

The first non-vanishing term of the expansion of the perturbing func-
tion Fper depends on g only through cos(2g)–this is a consequence of the
fact that the second Legendre polynomial is even. Hence the first term
of Fn

int−〈Fper〉 too depends on g only through cos(2g). Hence, there is a
region Wn

3 close to W3 such that, up to this term, higher order secular
systems have at least as many singularities as the averaged system
in W3. However, proving that these singularities are non degenerate
and unique requires to actually compute this term coming from the
second-order averaging.

Figure 11 and Corollary 4 show that trajectories of the secular
systems fall into several categories:

− regular trajectories where ellipses rotate with respect to one an-
other (such a trajectory generates the first homotopy group of
the sphere of constant angular momentum minus the two poles
e1e2 = 0,24

24 These two poles only make sense asymptotically when ε goes to 0. Indeed, e1

and e2 do not denote the physical eccentricities, since the coordinates have been
deformed in order to compute the normal forms in Section 2.2.
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− regular trajectories where ellipses oscillates with respect to one
another (they are homotopic to zero),

− two regular trajectories of undetermined kind, along which one of
the two ellipses goes through its circular configuration,

− elliptic or hyperbolic singularities,

− degenerate singularities,

− heteroclinic or homoclinic trajectories.

In [7] it is shown how to apply a sophisticated version of kam the-
orem à la Herman [10] in order to prove the existence of a positive
measure of various types of quasiperiodic motions in the initial planar
three-body problem:

− regular secular orbits which do not meet the set of degenerate
inner ellipses give rise to some invariant quasiperiodic Lagrangian
four-tori,

− non degenerate secular singularities give rise to some quasiperiodic
isotropic invariant three-tori,

− and regular secular orbits which are transverse to the set of phys-
ical collisions give rise to some invariant quasiperiodic Lagrangian
punctured four-tori.

Also, according to Hanssmann [9], under appropriate transversality
conditions parabolic tori persist and furthermore whole saddle-node bi-
furcations persist, with all lower dimensional invariant tori parametrized
by pertinent transversally Cantor sets.

Additionally, non-degenerate secular singularities may be used to
prove the existence of short periodic orbits [7] which generalize Poincaré’s
periodic orbits of the second kind [14]. These orbits actually have two
frequencies and are periodic proper in some adequate rotating frame of
reference.
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5. J. Féjoz, Dynamique séculaire globale dans le problème plan des trois corps
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IMC-CNRS UMR8028
77, avenue Denfert-Rochereau
75014 Paris, France

Secular_dynamics.tex; 10/01/2003; 17:36; p.41



42 JACQUES FÉJOZ
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Université Pierre et Marie Curie
175, rue du Chevaleret
75013 Paris, France

Secular_dynamics.tex; 10/01/2003; 17:36; p.42


