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Consider 1+n point bodies with massesm0, ǫm1, ..., ǫmn > 0 (ǫ > 0) and position
vectors x0, x1, ..., xn ∈ R

3. According to Newton’s equations we have

ẍj = m0

x0 − xj

||x0 − xj ||3
+ ǫ

∑

k 6=j

mk

xk − xj

||xk − xj ||3
(j = 1, ..., n).

These equations have a limit when ǫ → 0, for which each planet (masses ǫmj)
undergoes the only attraction of the sun (mass m0). If their energies are negative,
planets describe Keplerian ellipses with some given semi major axes and excen-
tricities. As a whole, the system is quasiperiodic with n frequencies. In 1963, V.
Arnold [A] published the following remarkable result.

Theorem 1. For every m0,m1, ...,mn > 0 and for every a1 > ... > an > 0 there
exists ǫ0 > 0 such that for every 0 < ǫ < ǫ0, in the phase space in the neighborhood
of circular and coplanar Keplerian motions with semi major axes a1, ..., an, there is
a subset of positive Lebesgue measure of initial conditions leading to quasiperiodic
motions with 3n− 1 frequencies.

The proof of this theorem is rendered difficult by the multitudinous degeneracies
of the planetary problem. Arnold’s initial proof does not fully describe these de-
generacies and actually misses one of them. Hence it is wrong in the case of n ≥ 3
planets in space. In 1998, in a series of lectures M. Herman sketched a complete and
more conceptual proof of this theorem [F]. I will now review a couple of ideas which
make this proof so powerful and, I believe, elegant. These ideas mainly pertain to
some normal forms of Hamiltonians, which might not surprise the specialists but
which epitomize the structure of KAM theory as understood by M. Herman.

Let X = T
p×B̄

p, T
p = R

p/Zp and B̄
p be the closed p-dimensional unit Euclidean

ball. Endow X with the natural coordinates (θ, r) and the standard symplectic
form ω =

∑p

j=1 dθj ∧drj . If H ∈ C∞(X) is a smooth Hamiltonian, its Hamiltonian

vector field is θ̇ = ∂rH, ṙ = −∂θH . Denote by Rα, α ∈ R, the Hamiltonian
defined by Rα = α ·r. Let Nα = {Rα +O(r2)} be the space of Hamiltonians for the
flow of whom the torus T

p
0 = T

p×{0} is invariant and quasiperiodic with frequency
vector α. Let also G be some space of Hamiltonian diffeomorphisms, which we will
not fully describe here, but which is diffeomorphic to a neighborhood of (0, id) in
the product B

∞
1 (Tp)×Diff∞

o (Tp), where B
∞
1 (Tp) is the space (acting by translation

in the r direction) of closed one-forms on T
p and Diff∞

o (Tp) is the space (acting
contragrediently) of diffeomorphisms of the torus which fix the origin. Let φα be
the map

φα : Nα × G × R
p → C∞

+ (X)
(N,G, α̂) 7→ H = N ◦G+Rα̂,
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where C∞
+ (X) is the quotient of the space of Hamiltonians by the real constants.

The Hamiltonian N ◦G is symplectically conjugate to N by G; hence for the flow
of N ◦G the torus G−1(Tp

0) is invariant and α-quasiperiodic. The term Rα̂, which
tunes the frequency, unfortunately breaks down the dynamical conjugacy; hence I
call (N,G, α̂) a twisted conjugacy of H , and in general H does not have an invariant
torus. Eventually, define

HDγ,τ = {α ∈ R
p, ∀k ∈ Z

p \ 0 |k · α| ≥ γ||k||−τ} (γ, τ > 0).

Theorem 2 (Twisted conjugacy, M. Herman). For every α ∈ HDγ,τ and for
every No ∈ Nα, the map φα is a local (tame in the sense of Hamilton) C∞-
diffeomorphism in a neighborhood of (No, id, 0) 7→ No; in particular, the G -orbit
of Nα defines a germ of submanifold of codimension p of C∞

+ (X). Moreover, the
germ of map (H,α) 7→ φ−1

α (H) is C∞-smooth in the sense of Whitney.

Sketch of proof. We want to solve the equation φα(N,G, α̂) = H for H close
enough to No in the C∞-topology, by using some inverse function theorem. Lin-
earizing the equation reduces the problem to inverting the linear operator dφα(N,G, α̂).
In this setting, small denominators manifest themselves in the loss of differentia-
bility of φα and its differential, which prevents from choosing Banach norms at the
source and target spaces for which these operators are both bounded and coercive.
This is easy to see, using Fourier series, for instance on the Lie derivative (which
occurs as one of the components of dφα)

Lα : C∞
0 (Tp) → C∞

∗ (Tp), f 7→ g = df · α,

where the index 0 in the source space means f(0) = 0 and the index ∗ in the target
space means

∫

Tp g = 0. A way out is to use scaled Fréchet structures and the
Nash-Moser inverse function theorem. For the sake of simplicity, the version due
to Sergeraert and Hamilton in the C∞-category can be used. In order to apply this
theorem, one needs to invert the linear operator dφα(N,G, α̂) for (N,G, α̂) close,
but not necessarily equal, to (No, id, 0). This inversion is equivalent to one step in
the induction of Kolmogorov’s original proof of the invariant torus theorem.

In order to get rid of the twist of the conjugacy, a natural idea could be to
tune the frequency before conjugating by G i.e., to consider ψα : (N,G, α̂) 7→
(N + Rα̂) ◦ G instead of φα. But ψα is glaringly not a local diffeomorphism –
if it were, the property of having an invariant torus would be open in the space
of Hamiltonians! We will actually use this idea of relaxing the frequency of the
unperturbed Hamiltonian, but in a more sophisticated manner. Let

N = ∪α∈RpNα = {α · r +O(r2)}α∈Rp .

Corollary 3 (Conditional conjugacy). For every No ∈ N there is a (non unique)
germ of C∞-diffeomorphism

Θ : C∞
+ (X) → N × G

H 7→ (NH , GH), NH = αH · r +O(r2),

at No 7→ (No, id) such that for every H the following implication holds :

αH ∈ HDγ,τ =⇒ H = NH ◦GH .

I call (NH , GH) a hypothetical conjugacy ofH because the propertyH = NH◦GH

depends on arithmetical conditions involving the unknown frequency αH .
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The idea of the proof is to apply theorem 2 to all possible values of α and to see
whether the corresponding α̂ vanishes for some adequate choice of α.

Proof. According to theorem 2, the equality Θ̃(H,α) = φα
−1(H) defines a germ

of map
Θ̃ : C∞

+ (X) ×HDγ,τ → N × G × R
p

at No = αo ·r+O(r2) which is Whitney-smooth. According to Whitney’s extension
theorem, this germ extends to a smooth germ

Θ̃ : C∞
+ (X) × R

p → N × G × R
p.

Now, the equality No = (No + Rα−αo) ◦ id+Rαo−α shows that

∂α̂

∂α

∣

∣

∣

∣

{G=id}

= −idRp .

Hence, the usual implicit function theorem entails that there is a unique germ of
function α = ᾱ(H) such that α̂(ᾱ) = 0. There only remains to set (Θ(H), 0) =

Θ̃(H, ᾱ(H)).

Now assume that the perturbed Hamiltonian H depends on some parameter
s ∈ B

t; if H is close to some completely integrable Hamiltonian, s may be the action
coordinate and, in the case of Arnold’s theorem, s represents the semi-major axes,
excentricities and inclinations. By composition with Θ, H determines a frequency
map s 7→ αs, which is C∞-close to the frequency map s 7→ αo

s of the unperturbed
Hamiltonian No.

Theorem 4 (Arnold, Margulis, Pyartli). If some real-analytic map s ∈ B
t 7→ αo

s ∈
R

p is non-planar in the sense that its image is nowhere locally contained in some
proper vector subspace of R

p, the Lebesgue measure of {s ∈ B
t, αo

s ∈ HDγ,τ} is
positive provided that γ is small enough and τ large enough.

There exists a similar statement in the smooth setting, involving finitely many
derivatives of the frequency map. By combining the two latter statements and using
the fact that being non planar is an open property in the C∞-topology, we get an
invariant tori theorem. Unfortunately, the following holds.

Theorem 5 (M. Herman). The frequency map αo of the first order secular system
–that is, the Birkhoff normal form of the planetary problem along circular and
coplanar Keplerian n-tori–, as a function of the semi major axes, has its image
lying entirely in a plane P of codimension 2. Moreover, its image lies in no plane
of higher codimension.

The theorem can be proved by induction on the number of planets and by com-
plexifying the semi-major axes. The first resonance consists in that one of the
frequencies is zero. It comes from the Galilean symmetry and disappears when fix-
ing the direction of the angular momentum, e.g. vertically. The second resonance is
that the sum of all the secular frequencies is zero. For two planets revolving around
the sun, it is consistent with fact, well known of astronomers, that the plane of each
ellipse slowly rotates around the vertical axis in the negative direction, whereas the
ellipses rotate in their own plane in the positive direction. But for n planets the
resonnance is mysterious and seems not to have been noticed before. According
to numerical evidence, for small values of n it vanishes in the second order secular
system; but one preciely wants to avoid to check this (quoting M. Herman, ‘BLC’
for ‘Bonjour Les Calculs’ !).
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It turns out that Herman’s resonance too disappears, namely in the system fully
reduced by the symmetry of rotations. The difficulty is that symplectic coordi-
nates are not known explicitely on the symplectic submanifold of vertical angular
momentum. A key remark is that the fully reduced system (i.e. the system with
fixed angular momentum, quotiented by rotations around the angular momentum)
is non planar if and only if there is a rotating frame in which the partially reduced
system (i.e. the system with vertical angular momentum) is non planar. But there
is one, and actually infinitely many, such rotating frames, because the trace of the
quadratic part of the angular momentum is non zero, as it can easily be seen, again
by an argument of analytic continuation.

The 2n − 1 slow frequencies vanish when ǫ = 0. Hence, when ǫ is small, there
is a competition between choosing diophantine conditions (1) good enough so that
(as a quantitative version of the twisted conjugacy theorem shows) the local image
of the operator Θ at the secular system of some high enough order contains the full
Hamiltonian of the planetary problem; (2) bad enough so that (as a quantitative
version of the Arnold-Margulis-Pyartli theorem shows) the frequency map passes
through such diophantine vectors in positive measure in the space of semi major
axes. It happens that fixing τ large enough and choosing γ as some power of ǫ
fits the bill. The above abstract theory applies to the reduced systems and yields
a positive measure of invariant quasiperiodic diophantine (3n − 2)-tori (or, as a
refinement shows, invariant normally elliptic tori of any dimensions between n and
3n − 2), which lift to a positive measure of invariant quasiperiodic (3n − 1)-tori
of the full system (respectively, to invariant normally elliptic tori of dimensions
between n+ 1 and 3n− 1).

I warmly thank A. Chenciner for many useful discussions.
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