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1. Introduction

e 1762: Leonhard Euler discovers 3 special configurations of the 3BP with the
3 bodies on the same line and maintaining the mutual distances unaltered: the
(unstable) collinear points Ly, Ly, L3

A. Celletti (Univ. Roma Tor Vergata) Bifurcations, halo orbits and space debris Paris, 28 April 2015 4/29



1. Introduction

e 1762: Leonhard Euler discovers 3 special configurations of the 3BP with the
3 bodies on the same line and maintaining the mutual distances unaltered: the
(unstable) collinear points Ly, Ly, L3

e 1772: Joseph-Louis Lagrange publishes "Essai sur les probleme des trois
corps" with the existence of the triangular equilibrium positions Ly, Ls:
“Cette recherche n’est a la vérité que de pure curiosité"

A. Celletti (Univ. Roma Tor Vergata) Bifurcations, halo orbits and space debris Paris, 28 April 2015 4/29



1. Introduction

e 1762: Leonhard Euler discovers 3 special configurations of the 3BP with the
3 bodies on the same line and maintaining the mutual distances unaltered: the
(unstable) collinear points Ly, Ly, L3

e 1772: Joseph-Louis Lagrange publishes "Essai sur les probleme des trois
corps" with the existence of the triangular equilibrium positions Ly, Ls:
“Cette recherche n’est a la vérité que de pure curiosité"

e 1906: the first (Trojan) asteroid in the triangular points is discovered by M.
Wolf: 588 Achilles

A. Celletti (Univ. Roma Tor Vergata) Bifurcations, halo orbits and space debris Paris, 28 April 2015 4/29



1. Introduction

e 1762: Leonhard Euler discovers 3 special configurations of the 3BP with the
3 bodies on the same line and maintaining the mutual distances unaltered: the
(unstable) collinear points Ly, Ly, L3

e 1772: Joseph-Louis Lagrange publishes "Essai sur les probleme des trois
corps" with the existence of the triangular equilibrium positions Ly, Ls:
“Cette recherche n’est a la vérité que de pure curiosité"

e 1906: the first (Trojan) asteroid in the triangular points is discovered by M.
Wolf: 588 Achilles

e 1968: C.C. Conley uses the unstable collinear points to construct low-cost
interplanetary routes. The method relies on Moser’s version of Lyapunov’s
theorem and the existence of transit orbits between the primaries: increasing
slightly the energy, the bottleneck between Hill’s surfaces opens.
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e It does not require much fuel, but it could take more time (e.g., 6 months to
reach the Moon, instead of Apollo’s 3 days).

“Unfortunately, orbits such as this require a long time to complete a cycle [...] One
cannot predict how knowledge will be applied - only that it often is".
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e It does not require much fuel, but it could take more time (e.g., 6 months to
reach the Moon, instead of Apollo’s 3 days).

“Unfortunately, orbits such as this require a long time to complete a cycle [...] One
cannot predict how knowledge will be applied - only that it often is".

e 1978: ISEE-3, NASA-ESA mission on a periodic orbit around L,-Earth-Sun.
Then, SOHO, WMAP, Genesis, Herschel-Planck, using libration point orbits:
Lissajous, Lyapunov, Halo; Simé, Gomez, Masdemont, Jorba, Marsden, Lo...
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e It does not require much fuel, but it could take more time (e.g., 6 months to
reach the Moon, instead of Apollo’s 3 days).

“Unfortunately, orbits such as this require a long time to complete a cycle [...] One
cannot predict how knowledge will be applied - only that it often is".

e 1978: ISEE-3, NASA-ESA mission on a periodic orbit around L,-Earth-Sun.
Then, SOHO, WMAP, Genesis, Herschel-Planck, using libration point orbits:
Lissajous, Lyapunov, Halo; Simé, Gomez, Masdemont, Jorba, Marsden, Lo...

e Aim of the talk: study of halo orbits arising from bifurcations of Lyapunov
orbits. The method makes use of the reduction to the center manifold and a
resonant normal form. The technique can also be used to study the generation
of equilibria for some lunisolar resonances in space debris dynamics.
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2. Around the collinear points

e SCR3BP: small A influenced by P(x) and S(1 — ). In a synodic reference
frame A = (X, Y, Z) € R? defined on the collisionless manifold

Py = {(Px,Py,Pz),(X,Y,Z) e R* xR*: r|(X,Y,Z) #0, rn(X,Y,Z) # 0}

with

r = \/(X—u)2+Y2+Z2, r = \/(X—u+1)2+Y2+Z2,
endowed with the standard symplectic form
w=dPx NdX +dPy \NdY + dPz N\ dZ .

Hamiltonian in the synodic frame centered at the barycenter of the primaries:

1 1—
HO(PXaPY7PZ>X>Y>Z):E(P)2(+P2Y+P%)+YPX_XPY— A
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e Translate the origin from the barycenter of the primaries to the collinear
point: (Px,Py,Pz,X,Y,Z) — (px, Py, Pz, X, Y, 2). Expand the potential using
Legendre polynomials P,:

1 X
Hy (P, y pes%,3,2) = 5 (P2 13 +92) +30x =0y = D calp)" P (p)
n>2

for suitable coefficients ¢, (u; L;) and p = \/x* + y2 + z2.

e Linearize H; around the equilibrium and, through a symplectic change of
variables, reduce the quadratic part to the form

“y
2

Wz

S@+p) M

d)j~ ~ ~ ~ ~ ~ ~~ ~ ~
HED (b, Py es % 3,2) = A + = (57 + p2) +

with A, wy, w; real = saddle x center x center.
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3. Center manifold reduction

e Eliminate the hyperbolic component through a canonical transformation using Lie
series. From (p, ) to complex coordinates (p, ¢), (1)+h.o.t, becomes:

H (p,q) = Mqip1 + iwyqops + iw.qsps + > Hip.q) . 2
n>3

There exists a canonical transformation (p,q) — (P, Q), s.t. (2) becomes

HY(P,Q) = MOIPi + iwy,0sP) + iw,03P;

N
+ ZI:In(lel)P27P37Q2)Q3) +RN+1(£7Q) )

n=3

where Ry = remainder of degree N + 1, polynomials H, depend on Q; P;.

e Neglecting Ry 1, then I, = QP = constant = HC(%) has 2 d.o.f. and,
setting /. = 0, it describes the dynamics in the center manifold up to Ry 1.
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4. Lyapunov and Halo orbits

e Lyapunov center theorem. Each equilibrium gives rise to two 1-parameter
families of periodic orbits: planar and vertical Lyapunov periodic orbits.

e When the energy increases, the linear stability changes and there appear
bifurcating periodic orbits. Halo orbits: the family of periodic orbits
bifurcating from the family of planar Lyapunov orbits (when wy = w;).

e Due to the hyperbolic character of the L;, for energy close to equilibria, the periodic and
quasi-periodic orbits in the center manifold inherit hyperbolicity and have stable/unstable
manifolds, allowing to construct transfer trajectories and complex interplanetary orbits.
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5. Resonant normal form

e Action-angle coordinates for the quadratic part:

0, = —l'\/IEyeia-‘" Py =/Le”
0y = —iy/Le" Py = \/Le

so that the CM-Hamiltonian becomes:

i0,

N
HO (1, 1., 0,,0.) = wyl, + w,I, + > Hy(Iy, I, 0y,0;) + Ry

n=3

where H,, is a homogeneous polynomial of degree n/2 in the actions.
e Resonant normal form for the synchronous resonance wy = w;:

H (1, 1,60,,0) = wyly + wl, + ol? + BI + L1,
+ 2LL7cos(26, — 20,) + R®)

where, by construction up to h.o.t., iy +L.=0=¢&= I, + I, = const.
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6. First order estimate

e Change of coordinates:
E=1+1, R =1 v=20, Y =60,—0,
and let 6 = (wy, — w;)/w, be the detuning. Then, up to h.o.t.:
Huow(E, Ry v,0) = € + R + aR* + bE* + cER + d(R* — ER) cos(21)) .

Proposition (C-Pucacco-Stella, JNS 2015)

To first order in 6, the energy level at which a bifurcation to halo orbits occurs
is given by

Proof. Given that £ = 0, we have a 1 d.o.f. system in (R, ), whose fixed points give
periodic orbits in the original system:

R =25R(R — &) sin(2¢)) Y =042aR +c€+d2R — E)cos(2y) .

For R = £ we have a normal mode along the y-axis, i.e. a planar Lyapunov orbit; for R = 0
we have a normal mode along the z-axis, i.e. a vertical Lyapunov orbit.
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e Halo orbits arise from bifurcations of the normal modes when entering the
synchronous resonance. We have R = 0 for ¢» = 0, , +7, while w = 0 for

0+ (c—d)&
R|(0,7r):_(7)

S+ (c+d)E
. Rleg=-22 D0
2(a+d) 2 2(a—d)
FromI,,I, > 0and £ = I, + I, wehave 0 < I;, I, < &, namely 0 <R < &,
which gives the constraints
o o
> y=——-— > &, =
E > & Yatcrd or E>¢&; et d
) 0
> = > =
£ €y 2a+c—d o £2 & —c—d’

where &y, is the threshold for the bifurcation of the halo family from the
planar Lyapunov orbit. From E| = w,;&| one obtains the proof
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7. Second order estimate

e Central manifold & normal form up to 6 order:

4
HO(I,,1,,0,,0,) = H) + assoly + 0033l + iy Iz + aniill
+ 20013017 cos(2(0y — 0,)) + 20310051 cos(2(6y — 0z))

Proposition (C-Pucacco-Stella, JNS 2015)

To second order in d, the energy level at which a bifurcation to halo orbits
occurs is given by

) -
wZd v—a—2y ani1 — 3a3300 — 203102

S I () e e ),

(®) _
Proof. Let R, be s.t. W = 0. Expand R = Ay + A, + A,6? for some
real A;; from R < £ we get

11 — 33300 — 203102 82
(v —2(a+9))
which expressed in terms of the energy E of the normal mode gives the proof.

E>E =& —

)
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8. Floquet theory

e Small variations around the planar Lyapunov orbit I, = 0 (or R = &).
e Introduce complex coordinates (v, w) in place of (I, 6.):

21, i e 10 , w= —\/27Z ie
e Compute the transformed Hamiltonian and write the variational dynamics
on the energy shell & = I, + I, = I, + %5
e Up to 2" order in v, w, one gets the Hamiltonian parametrized by &:

K(Z)(V’W’ 9)) — (wz+5)5+a(€-2_(5+ (20& _ ’Y)g) v;/ 75 ( 2 2i9y +W2e—2i9y:
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8. Floquet theory

e Small variations around the planar Lyapunov orbit I, = 0 (or R = &).
e Introduce complex coordinates (v, w) in place of (I, 6.):

21, i e 10 , w= —\/27Z ie

e Compute the transformed Hamiltonian and write the variational dynamics
on the energy shell & = I, + I, = I, + %5
e Up to 2" order in v, w, one gets the Hamiltonian parametrized by &:

K(Z)(V’W’ 9)) — (wz+5)5—|—a(€2—(5 + (20& _ ’Y)g) v;/ 75 ( 2 2i9y + W2e—2i9,v\
/
e Compute the evolution through the Floquet matrix:

()< (20 )= () 5 e (1)) e

Fe_; 0+ a—o0)€ 27E
- —27& —6— (2a—o0)&
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8. Floquet theory

e Small variations around the planar Lyapunov orbit I, = 0 (or R = &).
e Introduce complex coordinates (v, w) in place of (I, 6.):

21, i e 10 , w= —\/27Z ie

e Compute the transformed Hamiltonian and write the variational dynamics
on the energy shell & = I, + I, = I, + %5
e Up to 2" order in v, w, one gets the Hamiltonian parametrized by &:

K(Z)(V’W’ 9)) — (wz+5)g+a(€-2_(5+ (20& _ ’}’)5) V;V 75 ( 2 2i9y +W2e—2i9y:

e Compute the evolution through the Floquet matrix:

vt) ) _ v(0) N _ (™ 0\ g ( v(0)
( w(?) > = M(t) ( w(0) > = ( 0 ot >e ( w(0) >where
F__<5+(2a70)5 27E
—27€ —0— Ra—0)E
e Denoting by 7, the period of the planar Lyapunov orbit, transition
stability/instability occurs when Trace(M(Ty)) = 2 = &py.
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9. Solar radiation pressure

)

1 1— 1—
Ho(Px,Py,P2,X,Y,Z) = 2(P§+P%+P%)+YPX—XPY—W—f
1 2
B = (LsQ/ (47 c GMs)) A/m,
Lg =Sun luminosity, Q = 1-+reflectivity, ¢ =speed of light, Ms =Sun mass,
A/m =area-to-mass ratio.

[Bucciarelli-Ceccaroni-C-Pucacco, Ann. Mat. Pura Applicata 2015]

e Location of the collinear points + CM reduction + 1* order estimate.
e Poincaré maps + frequency analysis + FLI.

e Sun-Vesta: ;v = 1.35741071°, 3 = 1072,

e A different sequence of bifurcations, due to the complicated interplay
between the small mass of Vesta and SRP.
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e £ = 0.05: first bifurcation (£y,) to Halo orbits
e E = 0.1: second bifurcation (&;,) of anti-halo orbits; the planar Lyapunov orbit
(outermost curve) regains stability

e £ = 0.4: third bifurcation (&;;) with instability of the vertical Lyapunov orbit.
e Analytical vs. numerical results: agreement to 2"/ — 3 digit.
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10. Space debris lunisolar resonances

e Secular resonances induced by Sun and Moon on space debris.

e Hamiltonian H = Hgep + Rgeo + Ryoon + Rsun, Where H,), is the Keplerian
part, Ry, is the J>-contribution of the geopotential, Ryoon, Rsun are the
modified Lane/Giacaglia/Hughes, averaged over the mean anomalies of
debris, Moon, Sun.

e Secular resonance induced by the body b:

kiw + sz + k3Mb ~+ kywp, + kSQb =0.
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10. Space debris lunisolar resonances

e Secular resonances induced by Sun and Moon on space debris.

e Hamiltonian H = Hgep + Rgeo + Ryoon + Rsun, Where H,), is the Keplerian
part, Ry, is the J>-contribution of the geopotential, Ryoon, Rsun are the
modified Lane/Giacaglia/Hughes, averaged over the mean anomalies of
debris, Moon, Sun.

e Secular resonance induced by the body b:

kiw + sz + k3Mb ~+ kywp, + kSQb =0.

e Special types which depend just on inclination ([Hughes]):
° w =0ati.; = 63.47
o ) = 0 at polar orbits;
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10. Space debris lunisolar resonances

e Secular resonances induced by Sun and Moon on space debris.

e Hamiltonian H = Hgep + Rgeo + Ryoon + Rsun, Where H,), is the Keplerian
part, Ry, is the J>-contribution of the geopotential, Ryoon, Rsun are the
modified Lane/Giacaglia/Hughes, averaged over the mean anomalies of
debris, Moon, Sun.

e Secular resonance induced by the body b:

kiw + sz + k3Mb ~+ kywp, + kSQb =0.

e Special types which depend just on inclination ([Hughes]):
o w=0ati.,; = 63.4%
e N =0at polar orbits;
o aw + Q) = 0 for some a, 3 € Z, precisely
> W+ Q=0ati=46.4°ori=106.9%
>+ Q=0ati="732°0ri=133.6%
> 20+ Q=0ati=69.0°0ri=123.9%
> 20+ Q=0ati=>56.1%0ri = 111.0°.
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10. Space debris lunisolar resonances

e Secular resonances induced by Sun and Moon on space debris.

e Hamiltonian H = Hgep + Rgeo + Ryoon + Rsun, Where H,), is the Keplerian
part, Ry, is the J>-contribution of the geopotential, Ryoon, Rsun are the
modified Lane/Giacaglia/Hughes, averaged over the mean anomalies of
debris, Moon, Sun.

e Secular resonance induced by the body b:

kiw + sz + k3Mb ~+ kywp, + kSQb =0.

e Special types which depend just on inclination ([Hughes]):
o w=0ati.,; = 63.4%
e N=0at polar orbits;
e aw + B = 0 for some «, 8 € Z, precisely
> W+ Q=0ati=46.4°ori=106.9%
>+ Q=0ati="73.2°0ri=133.6%
> 20+ Q=0ati=69.0°0ri=123.9%
> 20+ Q=0ati=>56.1%0ri = 111.0°.
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e SAMPLE CASE: — 4+ Q = 0.
e Resonant variables: 1) = —w + Q, R = -G, v =, £ = H + G with v fast
variable = average over v = 1 d.o.f. (R, ) with £ constant.
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e SAMPLE CASE: — 4+ Q = 0.
e Resonant variables: 1) = —w + Q, R = -G, v =, £ = H + G with v fast
variable = average over v = 1 d.o.f. (R, ) with £ constant.

e Constraints on R = —G, based on the physical motivation that the distance
at perigee > Rpande = /1 — %2 >0:
2a — RE E
Gpax =L, Ghin = (a)u .
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e SAMPLE CASE: — 4+ Q = 0.
e Resonant variables: 1) = —w + Q, R = -G, v =, £ = H + G with v fast
variable = average over v = 1 d.o.f. (R, ) with £ constant.

e Constraints on R = —G, based on the physical motivation that the distance
at perigee > Rpande = /1 — %2 >0:
2a — RE E
Gpax =L, Ghin = (a)ﬂ .

» Generation of 1 or 2 equilibria are given by the bifurcation curves &, &, for
Moon+Sun case, a = 1 ([C-Gales-Pucacco, Preprint 2015]).

Moon+Sun

A. Celletti (Univ. Roma Tor Vergata) Bifurcations, halo orbits and space debris Paris, 28 April 2015



e References:

» C. A., Pucacco G, Stella D., "Lissajous and Halo orbits in the restricted
three-body problem", J. Nonlinear Science, vol. 25 (2015)

» Bucciarelli S., Ceccaroni M., C. A., Pucacco G., "Qualitative and analytical
results of the bifurcation thresholds to halo orbits", Annali di Matematica
Pura e Applicata (2015)

» Ceccaroni M., C. A., Pucacco G., "Halo orbits around the collinear points
of the restricted three-body problem", Preprint 2015

» C. A., Gales C., Pucacco G., "Bifurcation of lunisolar secular resonances
for space debris orbits", Preprint 2015

A. Celletti (Univ. Roma Tor Vergata) Bifurcations, halo orbits and space debris Paris, 28 April 2015 29/29



	Introduction
	Around the collinear points
	Center manifold reduction
	Lyapunov and Halo orbits
	Resonant normal form
	First order estimate
	Second order estimate
	Floquet theory
	Solar radiation pressure
	Space debris lunisolar resonances

