The Geological Orrery:
Using Earth's Geological Record to
Map the Chaotic Evolution of the

Solar System

Paul E. Olsen & Dennis V. Kent April, 29, 2015 in honor of Jacques Laskar

The g_4 - g_3 : s_4 - s_3 (Mars – Earth) Resonance

One could even dream that if the succession of the transitions from the 1:2 to the 1:1 resonance were found and dated over an interval of 200 Ma that this could be the ultimate test for the gravitational model.

J. Laskar, 1999

- 1) What is the Geological Orrery?
- 2) Astronomical solutions chaotic. Geological record allows tests of astronomical solutions (NBCP CPCP)
- 3) Need obliquity from high latitudes
- 4) The Geological Orrery Program

- 1) What is the Geological Orrery?
- 2) Astronomical solutions chaotic.

 Geological record allows tests of astronomical solutions (NBCP CPCP)
- 3) Need obliquity from high latitudes
- 4) The Geological Orrery Program

The late 20th century *Digital Orrery*

Applegate et al. (1985); Sussman & Wisdom (1988, 1992)

- 1) What is the Geological Orrery?
- 2) Astronomical solutions chaotic.

 Geological record allows tests of astronomical solutions (NBCP CPCP)
- 3) Need obliquity from high latitudes
- 4) The Geological Orrery Program

What we would like

- Continuous record through deep time over hundreds of millions of years
- Resolvable orbital parameters at appropriate time scales, including precession and obliquity modulators (g_4 - g_3 and s_4 - s_3) from low *and* high latitudes.
- So that both the drift in secular frequencies and the major transitions in resonances can be recognized

Example:

From the Newark Basin Coring Project (NBCP)

to the Colorado Plateau Coring Project (CPCP)

Newark Basin Coring Project (NBCP)

5° N: Lacustrine Cycles, Newark Basin

Late Triassic, Lockatong Formation, Eureka, PA

Newark Basin Coring Project (NBCP)

1989 - 1994

"Depth Rank" Proxy of Lake Depth

0 0.5

1

1.5

2

2.5

3

4

5

Dry Lake

Deep Lake

Examples of Facies in Cores

MTM Power Spectrum of Depth Ranks

Wavelet Spectrum Late Triassic (Time) Wavelet Spectrum Neogene (Time) $g_{4} - g_{3}$ $g_{4} g_{3}$ Period (time) Period (time) 2.35 m.y. 202 203 204 205 206 207 208 209 dg Millions of Years BP Z10 Zears O12 212 Jo Suo IIII W 13 215 216 15 217 218 16 219 17 18 220 19 221 1024-2048-1024

Period (ky)

Period (ky)

How reproducable

Signal in different proxies

Completeness

Astrochronology

Mars-Earth, g₄-g₃ signal

Down hole Logs and Core Properties

NEWARK BASIN COMPOSITE SONIC LOGS

Tuned to 405 ky Cycle

How reproducable

Signal in different proxies

Completeness

Astrochronology

Mars-Earth, g₄-g₃ signal

How reproducable

Signal in different proxies

Completeness

Astrochronology

Mars-Earth, g₄-g₃ signal

21° Paleolatitude, Hartford Basin

East Berlin Formation

20°-21° N: Newark and Hartford Basins, Eastern US

NBCP, Bristol Channel, & Junggar

31° N: Late Triassic-Early Jurassic Marine Blue Lias Fm., Bristol Channel, St. Audrie's Bay, Somerset, England

60° N: Triassic-Jurassic Badaowan and Haojiagou Formations, Junggar Basin, Ürümqui, Western China

Match of Independent Astrochronologies

How reproducable

Signal in different proxies

Completeness

Astrochronology

Mars-Earth, g₄-g₃

NBCP, Bristol Channel, Junggar, & Panthalassa

Equatorial Pelagic Radiolarian Ribbon Chert, Inuyama, Japan

Testing Eccentricity Modulators

How accurate?

Time on small scale

On large Scale (the CPCP)

Cycles vs. Ages

Cycles vs. Ages

NBCP & CPCP (Colorado Plateau Coring Project)

CPCP: Phase I, Petrified Forest Core

Chinde Point, Petrified Forest National Park

CPCP: Phase I, Petrified Forest Core

November 2013

- 1) Problem: Astronomical solutions chaotic.
 Geological record allows tests of astronomical solutions
- 2) Showing that it is possible to get meaningful results from deep time (NBCP CPCP)
- 3) Recovering obliquity from high latitudes
- 4) The Geological Orrery Program

Junggar Basin, Triassic- Jurassic: 60° N

Badaowan Formation, Haojiagou Valley

- 1) Problem: Astronomical solutions chaotic.

 Geological record allows tests of astronomical solutions
- 2) Showing that it is possible to get meaningful results from deep time (NBCP CPCP)
- 3) Recovering obliquity from high latitudes
- 4) The Geological Orrery Program

Newark & Hartford basins 1/(g4-g3) = 1.7 Ma

Jurassic Triassic

Recovering Triassic-Jurassic Eccentricity (g4-g3) and Obliquity (s4-s3) With Paired Triassic-Jurassic Low- and High-Latitude Sites

5°- 25° N: Phase II CPCP Chinle – Kayenta Fms

40°- 60° N: Jamesonland, East Greenland

State of the High-Resolution Astrogeochronological Time Scale

$$(s_4 - s_3) - 2(g_4 - g_3) = 0$$

astronomical calibration

seafloor spreading-

201.6

Newark Data (tuned and filtered)

$$(s_4 - s_3) - 2(g_4 - g_3) = 0$$
?

????????

astronomical calibration

Geological Orrery

$$1/(g4 - g3) = 1.7 \text{ m.y.}$$

1/(g2 - g5) = 405 ky

The Geological Orrery will give us

- Continuous record through deep time over hundreds of millions of years
- Resolvable orbital parameters at appropriate time scales, including precession and obliquity modulators (g_4 - g_3 and s_4 - s_3) from low *and* high latitudes.
- So that both the drift in secular frequencies and the major transitions in resonances can be recognized

