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Interplay of disorder and nonlinearity

Waves in nonlinear disordered media – localization or 
delocalization?
Theoretical and/or numerical studies [Shepelyansky, PRL 
(1993) – Molina, Phys. Rev. B (1998) – Pikovsky & 
Shepelyansky, PRL (2008) – Kopidakis et al., PRL (2008) –
Flach et al., PRL (2009) – S. et al., PRE (2009) – Mulansky & 
Pikovsky, EPL (2010) – S. &Flach, PRE (2010) – Laptyeva et 
al., EPL (2010) – Mulansky et al., PRE & J.Stat.Phys.(2011) –
Bodyfelt et al., PRE (2011) – Bodyfelt et al., IJBC (2011)]
Experiments: propagation of light in disordered 1d waveguide 
lattices [Lahini et al., PRL (2008)]

Waves in disordered media – Anderson localization [Anderson, 
Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)] 



The Klein – Gordon (KG) model
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with fixed boundary conditions u0=p0=uN+1=pN+1=0. Typically N=1000.

Parameters: W and the total energy E.

The discrete nonlinear Schrödinger (DNLS) equation
We also consider the system:
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Conserved quantities: The energy and the norm              of the wave packet.
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Linear case(neglecting the term ul
4/4) 

Ansatz: ul=Al exp(iωt). Normal modes (NMs) Aν,l - Eigenvalue problem: 
λAl = εlAl - (Al+1 + Al-1) with ɶ
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Distribution characterization

We consider normalizedenergy distributions in normal mode (NM) space

of the νth NM (KG) or norm distributions (DNLS).
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measures the number of stronger excited modes in zν. 
Single mode P=1. Equipartition of energy P=N.



SymplecticIntegrators (SIs)
Formally the solution of the Hamilton equations of motion can be written 
as:

where     is the full coordinate vector and LH the Poisson operator:
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If the Hamiltonian H can be split into two integrable parts as H=A+B, a 
symplectic scheme for integrating the equations of motion from time t to 
time t+τ consists of approximating the operator           byHτLe

for appropriate values of constants ci, di. This is an integrator of order n.

So the dynamics over an integration time step τ is described by 
a series of successive acts of Hamiltonians A and B. 
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SymplecticIntegrator SABA 2C
The operator        can be approximated by the symplectic integrator 
[Laskar & Robutel, Cel. Mech. Dyn. Astr. (2001)]:
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The integrator has onlysmall positive steps and its error is of order 2.

In the case where A is quadratic in the momenta and B depends only on 
the positionsthe method can be improved by introducing a corrector C, 
having a small negative step:
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Thus the full integrator scheme becomes: SABAC2 = C (SABA2) C and its
error is of order 4.

2 - 3
c = .

24



The KG model
We apply the SABAC2 integrator scheme to the KG Hamiltonian by using 
the splitting:

with a corrector term which corresponds to the Hamiltonian function:
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The DNLS model
A 2nd order SABA Symplectic Integrator with 5 steps, combined with 

approximate solution for the B part (Fourier Transform): SIFT2
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The DNLS model
Symplectic Integrators produced by Successive Splits (SS) 
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Different Dynamical Regimes
Three expected evolution regimes [Flach, Chem. Phys (2010) - S. & Flach, 
PRE (2010) - Laptyeva et al., EPL (2010) - Bodyfelt et al., PRE (2011)] 
Δ: width of the frequency spectrum, d: average spacing of interacting modes, 
δ: nonlinear frequency shift. 

Weak Chaos Regime: δ<d,     m2~t1/3

Frequency shift is less than the average spacing of interacting modes. NMs are 
weakly interacting with each other. [Molina, PRB (1998) – Pikovsky, & 
Shepelyansky, PRL (2008)].

Intermediate Strong Chaos Regime: d<δ<Δ,     m2~t1/2 ô m2~t1/3

Almost all NMs in the packet are resonantly interacting. Wave packets initially 
spread faster and eventually enter the weak chaos regime.

Selftrapping Regime: δ>Δ
Frequency shift exceeds the spectrum width. Frequencies of excited NMs are 
tuned out of resonances with the nonexcited ones, leading to selftrapping, while a 
small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)].



Single site excitations

No strong chaos regime

In weak chaos regime we 
averaged the measured 
exponent α (m2~tα) over 
20 realizations:

α=0.33±0.05 (KG)
α=0.33±0.02 (DLNS)

Flach et al., PRL (2009) 
S. et al., PRE (2009)

DNLS W=4, β= 0.1, 1, 4.5 KG W = 4, E = 0.05,0.4,1.5

slope 1/3 slope 1/3

slope 1/6 slope 1/6



KG: Different spreading regimes



Crossover from strong to weak chaos
(block excitations)

W=4

Average over 1000 realizations!
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DNLS β= 0.04,0.72,3.6 KG E= 0.01,0.2,0.75

Laptyeva et al., EPL (2010) 
Bodyfelt et al., PRE (2011)



Lyapunov Exponents (LEs)
Roughly speaking, the Lyapunov exponents of a given
orbit characterize the mean exponential rate of divergence
of trajectories surrounding it.

Consider an orbit in the 2N-dimensional phase space with
initial condition x(0) and an initial deviation vector from it
v(0). Then the mean exponential rate of divergence is:

→∞1 t

v(t)1
mLCE = λ = lim ln

t v(0)

�

�

λ1=0 Æ Regular motion µ (t-1)
λ1π0 Æ Chaotic motion



Tangent Map (TM) Method

The Hénon-Heiles system can be split as:

Any symplectic integration scheme used for solving the Hamilton equations of motion,
which involves the act of Hamiltonians A and B, can be extended in order to integrate
simultaneously the variational equations[S. & Gerlach, PRE (2010) – Gerlach & S.,
Discr. Cont. Dyn. Sys. (2011) – Gerlach et al., IJBC (2012)].



KG: Weak Chaos (E=0.4)



KG: Weak Chaos

Individual runs
Linear case
E=0.4, W=4

Average over 50 realizations

Single site excitation E=0.4, 
W=4

Block excitation (21 sites) 
E=0.21, W=4

Block excitation (37 sites) 
E=0.37, W=3

S. et al. PRL (2013)
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Deviation Vector Distributions (DVDs)

Deviation vector: 
v(t)=(δu1(t), δu2(t),…, δuN(t), δp1(t), δp2(t),…, δpN(t)) ( )
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Deviation Vector Distributions (DVDs)

Individual run
E=0.4, W=4

Chaotic hot spots  
meander through the 
system, supporting a 
homogeneity of chaos 
inside the wave packet.



Three part split symplectic integrators 
for the DNLS model

Three part split symplectic integrator of order 2, with 5 
steps: ABC2
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This low order integrator has already been used by e.g. Chambers, MNRAS 
(1999) – Goździewski et al., MNRAS (2008).
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Composition Methods: 4th order SIs

In this way, starting with the 2nd order integrators SS2, SIFT2 and ABC2

we construct the 4th order integrators:
SS4 with 37 steps              SIFT4 with 13 steps ABC4

[Y]with 13 steps

Starting from any 2nd order symplectic integrator S2nd, we can construct a 
4th order integrator S4th using the composition methodproposed by 
Yoshida [Phys. Lett. A (1990)]:

1/3
4th 2nd 2nd 2nd

1 0 1 0 11/3 1/3

2 1
S (τ) = S (x τ)×S (x τ)×S (x τ),      x = - ,       x =

2 - 2 2 - 2

Composition methodproposed by Suzuki [Phys. Lett. A (1990)]:
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2 21/3 1/3

S (τ) = S (p τ)×S (p τ)×S ((1- 4p )τ)×S (p τ)×S (p τ)

1 4
                            p = ,       1- 4p = -

4 - 4 4 - 4
Starting with the 2nd order integrators ABC2 we construct the 4th order 
integrator: ABC4

[S] with 21 steps.



More 4th order SIs

Approximating the solution of the B part by a Fourier 
Transform we construct the 4th order integrators:

SIFT4
864 with 43 steps SIFT4

1064with 49 steps

We construct few more integration schemes by considering 
the 4th order symplectic integrators ABA864, ABA1064, 
ABAH864 and ABAH1064introduced by Blanes et al., Appl. 
Num. Math. (2013) and Farrés et al.,  Cel. Mech. Dyn. Astr. 
(2013).

Using successive splits for the B part and implementing the
SABA2 integrator for its integration, we construct the 4th

order integrators (based on ABAH864 and ABAH1064 ):
SS4

864 with 49 steps SS41064with 55 steps



4th order integrators: Numerical results (I)
SIFT4 τ=0.125
SIFT2 τ=0.05
ABC4

[S] τ=0.1
SS4 τ=0.1

ABC4
[Y] τ=0.05

Er: relative energy 
error
Sr: relative norm 
error
Tc: CPU time (sec)

S. et al., Phys. Lett. A 
(2014)



4th order integrators: Numerical results (II)
SIFT4

1064τ=0.25
ABC4

[Y] τ=0.05
SIFT4

864τ=0.25
SS4

1064τ=0.25
SS4

864τ=0.25

Er: relative energy 
error
Sr: relative norm 
error
Tc: CPU time (sec)

S. et al., Phys. Lett. A 
(2014)



Summary (I)
• We presented three different dynamical behaviors for wave packet 

spreading in 1d nonlinear disordered lattices:
� Weak Chaos Regime: δ<d,     m2~t1/3

� Intermediate Strong Chaos Regime: d<δ<Δ,     m2~t1/2 ô m2~t1/3

� Selftrapping Regime: δ>Δ

• Generality of results:
� Two different models: KD and DNLS, 

� Predictions made for DNLS are verified for both models.

• Lyapunov exponent computations show that: 
� Chaos not only exists, but also persists.

� Slowing down of chaos does not cross over to regular dynamics.

� Chaotic hot spots  meander through the system, supporting a homogeneity of 
chaos inside the wave packet.

• Our results suggest that Anderson localization is eventually destroyed by 
nonlinearity, since spreading does not show any sign of slowing down.



• We presented severalefficient integration methods suitable for the
integration of the DNLS model, which are based on symplectic
integration techniques.

• The construction of symplectic schemes based on3 part split of the
Hamiltonian was emphasized(ABC methods).

• Algorithms based on the integration of the B part of Hamiltonian 
via Fourier transforms, i.e. methods SIFT2, SIFT4, SIFT4

864 and 
SIFT4

1064succeeded in keeping the relative norm error Sr very low. 
Drawback: they require the number of lattice sites to be 2k, kŒ�∗.

• We hope that our results will initiate future research both for the
theoretical development of new, improved 3 part split integrators, as
well as for their applications to different dynamical systems.

Summary (II)
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