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Celestial mechanics and KAM theory

The results on the stability of quasiperiodic motions, collectively
known as KAM theory, play a central role in Celestial Mechanics.

A nice illustration is the theorem of Arnold(1963) on the stability
of planetary systems, where the missing elements in the original
proof were provided more recently by Herman and Fejoz(2004).

Only quasiperiodic motions whose frequencies satisfy certain
”diophantine” arithmetic conditions are expected (under
appropriate non-degeneracy conditions) to be stable.

The simplest setting for this kind of results is the linearization
problem for circle diffeomorphisms.
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Linearization of circle diffeomorphisms

The circle is T := R/Z. For α ∈ R, we denote Rα(x) = x + α,
x ∈ T.

Diophantine condition For τ > 0, γ > 0, define

DC (γ, τ) = {α ∈ R \Q | ∀q ∈ Z>0, ∀p ∈ Z, |qα− p| > γq−1−τ}.
DC :=

⋃
γ>0,τ>0 DC (γ, τ).

Theorem: (Arnold,Moser,Herman,Y.) Let α ∈ DC . Any C∞

orientation-preserving diffeomorphism f of T can be written in a
unique way as
(?) f = Rt ◦ h ◦ Rα ◦ h−1

with t ∈ R and a C∞ orientation-preserving diffeomorphism h of T
satisfying h(0) = 0.

In other terms, in the group of C∞ orientation-preserving

diffeomorphisms of the circle, the conjugacy class of a diophantine

rotation is a codimension-one submanifold.
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The linear equation

Linearizing (?) at f = Rα, h = idT, t = 0 gives

(??) ∆f = ∆t + ∆h ◦ Rα −∆h.

This linear equation, and its higher-dimensional and/or
continuous-time analogues, appears everywhere in KAM-theory.

For α ∈ DC , any ∆f ∈ C∞(T), (??) has a unique solution
∆t ∈ R,∆h ∈ C∞(T) with ∆h(0) = 0.

In a finite smoothness setting, it is natural to introduce the Roth
type condition

RT :=
⋂
τ>0 (∪γ>0DC (γ, τ)).

This is a full measure set which contain any irrational algebraic
number (Roth 1955).
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Roth type rotations

Assume that α ∈ RT .

I Let r > 1. For any ∆f ∈ C r (T), (??) has a unique solution
(∆t,∆h) with ∆h(0) = 0 and ∆h ∈ C s(T) for all s < r − 1.

I Let r > 2. For any f ∈ Diffr
+(T), (?) has a unique solution

(t, h) with h(0) = 0 and h ∈ Diffs
+(T) for all s < r − 1.
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Circle rotations
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Standard interval exchange maps
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Circle homeomorphisms and diffeomorphisms
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Generalized interval exchange maps
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Keane’s theorem

What is the natural notion of ”irrationality” for standard interval
exchange maps?

Let T be a standard i.e.m. on d intervals. Let u1 < . . . < ud−1 be
the singularities of T and v1 < . . . < vd−1 be the singularities of
T−1.

A connection is a relation of the form Tm(vi ) = uj , with
1 6 i , j 6 d − 1, m > 0. This corresponds to an orbit of T which
cannot be extended neither in the past nor in the future.

Theorem (Keane) A standard i.e.m with no connection is
minimal: every orbit is dense.
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The linearized conjugacy equation

Let T be a standard i.e.m., acting on an interval [u0, ud ], with
singularities u1 < . . . < ud−1.

Under which conditions a function
ϕ ∈ C r (td1 [ui−1, ui ]) can be written as

(??) ϕ = ψ ◦ T − ψ,
for a function ψ ∈ C s([u0, ud ]).

The breakthrough on this problem is due to Forni (1998) who
shows (in the continuous time setting) that, for almost all i.e.m.
T , there is a finite-codimensional subspace of C r (td1 [ui−1, ui ]) in
which one is able to solve (??), provided s 6 r − 3.

The set of i.e.m with given combinatorics is parametrized by the lengths

(ui − ui−1)16i6d , i.e a (d − 1)-dimensional simplex.
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[Marmi-Moussa-Y.] give a somewhat more precise version of
Forni’s theorem.

We define explicitly a set of full measure of i.e.m T with no
connection, called restricted Roth type i.e.m.’s.

Given such a T , and α ∈ (0, 1), there exists β ∈ (0, α) such that,
for any m ∈ Z>0, there is a finite-codimensional subspace Em of
Cm+α(td1 [ui−1, ui ]) in which one is able to solve (??) with
ψ ∈ Cm−1+β([u0, ud ]).

The combinatorics of T determine an integer g > 1 (the genus of
the surface obtained by suspension of T ). When g > 1, the
codimension of Em grows linearly with m.

The restricted Roth type condition is defined from the Rauzy-Veech
algorithm, a generalization for i.e.m.’s with no connection of the
continued fraction algorithm for irrational numbers.
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connection, called restricted Roth type i.e.m.’s.

Given such a T , and α ∈ (0, 1), there exists β ∈ (0, α) such that,
for any m ∈ Z>0, there is a finite-codimensional subspace Em of
Cm+α(td1 [ui−1, ui ]) in which one is able to solve (??) with
ψ ∈ Cm−1+β([u0, ud ]).

The combinatorics of T determine an integer g > 1 (the genus of
the surface obtained by suspension of T ). When g > 1, the
codimension of Em grows linearly with m.
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Linearization of generalized i.e.m

Theorem (Marmi-Moussa-Y.) Let T be a standard i.e.m of
restricted Roth type. Let s be an integer > 2.

In the space of generalized i.e.m.’s of class C s+3 with the same
combinatorics as T , those which are conjugated to T by a
C s -diffeomorphism of [u0, ud ] close to the identity form, in the
neighborhood of T , a submanifold of finite codimension
D = D(d , g , s).
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Thanks for your attention
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