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FIRST LECTURE :

Basic results on Hamiltonians, Lagrangians, Lipschitz submanifolds,
Hamilton-Jacobi equation and minimization properties.
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1 Hamiltonian and Lagrangian formalism

1.1 Symplectic manifold

We assume that M is a d-dimensional manifold endowed with a Riemannian metric
and that π : T ∗M → M is its cotangent bundle.

We will denote by λ0 the Liouville 1-form of T ∗M ; if ϕ : U ⊂ M → Rd is a
chart of M denoted by : ϕ(q) = (q1, . . . , qd), the dual chart of T ∗M is defined on

T ∗U by : ϕ∗(
d∑

i=1

pidqi) = (q1, . . . , qd, p1, . . . , pd). In such a dual chart (named a

canonical chart), we have :

λ0 =
d∑

i=1

pidqi.

The manifold T ∗M is then endowed with the symplectic form ω = −dλ0. In a
canonical chart, we have :

ω =
d∑

i=1

dqi ∧ dpi.
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Remark : (1) If M is an open part of Rd, we may identify T ∗M with M ×Rd :
for example, for N -body problems, we have global coordinates.

(2) A theoretical result due to A. Weinstein implies that for any compact Lagrangian
submanifold1 L of a symplectic manifold S, there exists a neighbourhood N of L
in S and a neighbourhood U of the zero section of T ∗L such that N and U are
diffeomorphic through a symplectic diffeomorphism fixing each point of L. In this
sense, T ∗M is a model of symplectic manifold.

1We will recall later what is a Lagrangian submanifold.
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1.2 Hamiltonian equations

A C2 function H : T ∗M → R will be called a Hamiltonian. The associated
Hamiltonian vector field XH is defined by :

∀x ∈ T ∗M,∀X ∈ Tx(T
∗M), ω(XH(x), X) = DH(x).X

and the Hamiltonian flow, denoted by (ϕH
t ) or (ϕt), is the flow of XH .

Then, we have :

• ∀t, ϕ∗tω = ω, i.e. the Hamiltonian flow is symplectic (i.e. preserves the sym-
plectic form) ;

• ∀t, H ◦ ϕt = H ; the flow preserves the level sets of H .

Moreover, in canonical coordinates, we have :

q̇ =
∂H

∂p
(q, p); ṗ = −∂H

∂q
(q, p).
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1.3 Introduction to the Lagrangian action

In this section, we don’t give any precise proof ; we only try to introduce the Lagrangian action in a natural way.

We consider the action of the Hamiltonian flow on a set Γ of curves drawed on
T ∗M which are continuous and piecewise C1 (for example, Γ may be the set of
T -periodic loops for a fixed T > 0) :

∀γ ∈ Γ,∀ε ∈ R, Φε(γ)(t) = ϕε ◦ γ(t− ε).

We notice that γ ∈ Γ is a fixed point of(Φε) iff γ is an orbit of the flow (ϕt).

Let us assume that we have a natural definition of the tangent space to Γ ; then we
define on Γ a family (Ωb

a) of 2-forms by :

∀γ ∈ Γ,∀δγ, δν ∈ TγΓ, Ωb
a(δγ, δν) =

∫ b

a
ω(γ(t))(δγ(t), δν(t))dt

and a family of functionals :

Hb
a(γ) =

∫ b

a
H ◦ γ −

∫ b

a
λ0(γ)(γ̇)

Then we have :
Ω(Φ̇(γ), δγ) = dHb

a(γ)δγ + [λ0(γ)δγ]ba.
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Remark : if Γ is the set of T -periodic loops, then [λ0(γ)δγ]T0 = 0 .
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Definition : The C2 Hamiltonian H : T ∗M → R is monotone if L = Hp :
T ∗M → TM is a C1-diffeomorphism. Then L is called the “Legendre map.”

The fixed points of the flow (Φε), i.e. the orbits of (ϕt) satisfy :

0 =
∂qε

∂ε |ε=0
= −q̇ + Hp(q, p); 0 =

∂pε

∂ε |ε=0
= −ṗ−Hq(q, p).

If H is monotone, the radially transformed subset of Γ is :

R = {γ = (q, p); q̇ = Hp(q, p)} = {(q, p); p = L−1(q, q̇)}.

If (q, p) ∈ R, we have : Hb
a(q, p) = −

∫ b
a L(q, q̇) where L is the Lagrangian asso-

ciated to H , defined on TM by : L(q, v) = L−1(q, v).v −H(L−1(q, v)).

The quantity AL(q) =
∫ b

a L(q, q̇) is called the Lagrangian action of q (restricted to
[a, b]). We have seen that : AL(q) = −Hb

a(L−1(q, q̇)), hence the Lagrangian action
represents the restriction of the “Hamiltonian” Hb

a to the radially transformed set.
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Let us recall some classical properties of the Lagrangian function and action :

Property if H is monotone and (q, v) = L(q, p), then :

v = Hp(q, p); Hq(q, p) = −Lq(q, v); p = Lv(q, v).

We deduce immediately from these properties that : L is Ck iff H is Ck.

The Euler-Lagrange flow (fL
t ) is defined on TM by : fL

t = L ◦ ϕH
t ◦ L−1. An

orbit of this flow is (q, q̇) where q : I → M satisfies the so-called Euler-Lagrange
equations :

d

dt
(Lv(q, q̇)) = Lq(q, q̇).

Then (q, q̇) is an orbit of the Euler-Lagrange flow iff γ is a critical point of the
Lagrangian action among the C1 arcs which have the same ends. Such a solutions
is always C2.
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1.4 More on the monotony property

We only state :

Proposition : (A. Fathi) Let H : T ∗M → R be a monotone Hamiltonian
and L be the corresponding Lagrangian. Let K ⊂ M be a compact subset of
M and C > 0 be a constant.
Then there exists ε > 0 such that, for every q ∈ K and every t ∈]− ε, ε[\{0} :
π ◦ fL

t (BTqM(0, 2C)) ⊃ B(q, C|t|) and π ◦ fL
t|BTqM (0,2C) is a C1 diffeomorphism.
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2 Lipschitz Lagrangian submanifolds, images of such manifolds and
minimization properties

2.1 Lagrangian submanifolds

Lagrangian submanifold : a C1 submanifold N of T ∗M is a Lagrangian submanifold
of T ∗M if dim N = dim M = d and ω|TN = 0 ; it is equivalent to : for every C1

loop γ drawed on N and homotopic in N to a point,
∫

γ λ0 = 0 ; this last equality
being also true for Lipschitz arcs, we define :

Lipschitz Lagrangian submanifold : it is a d-dimensional Lipschitz submanifold N
such that, for every Lipschitz loop drawed on N and homotopic in N to a point :∫

γ λ0 = 0. Such a manifold is exact Lagrangian if the same equality is true for every
Lipschitz loop (not necessarily homotopic to a point) drawed on N . We recall :

Lipschitz submanifold : N is a d-dimensional Lipschitz submanifold of T ∗M if for
every x ∈ M , there exists a neighbourhood U of x in T ∗M , a neighbourhood V of
0 in Rd, a Lipschitz map ψ : V → V and a C∞ diffeomorphism F : U → V × V
such that F (N ∩ U) = graph(ψ).

Lipschitz graph : it is a Lipschitz section of π : T ∗M → M . Let us notice that
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this notion is stronger than “Lipschitz submanifold which is a section.”
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Definition : Let η : M → T ∗M a continuous 1-form. This 1-form is closed (in
the distribution sense) if for every Lipschitz loop drawed on M which is homotopic
to a point, we have :

∫
γ η = 0. In this definition, we may replace “Lipschitz loop”

by “C1-loop”.
The Lipschitz 1-form η is exact if for every Lipschitz loop drawed on M , we have :∫

γ η = 0.

Proposition : Let η : M → R be a Lipschitz 1-form. We denote by Gη the
graph of η. Then, Gη is Lipschitz Lagrangian iff η is closed. Moreover, Gη is
exact Lagrangian iff η is exact.

Remark : in a similar way, we may define the “C0 Lagrangian graphs”, initially
introduced by M. Herman.

Definition : let Gη be a Lipschitz Lagrangian graph. The cohomological class of
Gη is the cohomological class of the 1-form η.
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2.2 Images of Lipschitz Lagrangian submanifolds

Proposition : (1) If N is a Lipschitz Lagrangian submanifold of T ∗M , then
for every t, ϕt(N) is a Lipschitz Lagrangian submanifold of T ∗M ;
(2) if N is the Lipschitz Lagrangian graph of η and if for a t ∈ R Nt = ϕt(N)
is the Lipschitz Lagrangian graph of ηt, then the cohomological classes are
equal : [η] = [ηt].

Proposition : Let G be a Lipschitz graph (of η) above a compact part K of
M . Then there exists ε > 0 such that for every t ∈]− ε, ε[, the set Gt = ϕt(G)
is a Lipschitz graph above a compact part of M .
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2.3 Hamilton-Jacobi equation and some properties of minimization

Situation : we assume that U ⊂ M is open and u : U → R is a C1,1 function ;
then the graph G of du is an exact Lipschitz Lagrangian graph. We assume that J
is an interval of R containing 0 and that, for any t ∈ J , Gt = ϕt(G) is a Lipschitz
(and then exact Lagrangian) graph.
We denote by Ut the set π(Gt) and we write : qt = π ◦ ϕt(du(q)).

Hamilton-Jacobi equation : if ut : Ut → R is defined by :

ut(qt) = u(q) +

∫ t

0
L(qs, q̇s)ds,

then :

• Gt is the graph of dut ;

• (H-J) : u̇t + H(., dut(.)) = 0.

Hence the Hamilton-Jacobi equation is a partial differential equation (PDE) des-
cribing the evolution of an exact Lagrangian graph under the Hamiltonian flow.
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Remarks :

1. We may see in the proof that if U =
⋃

t∈J

{t}× Ut and ũt : U → R is defined

by ũ(t, x) = ut(x), then U is an open subset of J ×M and ũ is C1,1.

2. If we are interested in Lipschitz Lagrangian graphs which are not exact, for
example in those which are in the cohomological class of ν : M → T ∗M ,
we obtain that Gt is the graph of ν + dut where the definition of ut and
the Hamilton-Jacobi equation are valuable for the modified Hamiltonian :
Hν(q, p) = H(q, p+ ν(q)) (in this case the modified Lagrangian is : Lν(q, v) =
L(q, v)− ν(q)(v)).

3. A. Fathi proved that every C1-solution of the H.-J. equation is in fact C1,1.
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We will know assume some additional hypotheses :

Definition : Let H : T ∗M → R be C2. We say that H is a Tonelli Hamiltonian
if :

1. H is superlinear in the fiber :

∀q ∈ M, lim
‖p‖→∞

H(q, p)

‖p‖ = +∞;

2. H is strictly convex in the fiber : ∀(q, p) ∈ T ∗M, Hp,p(q, p) is positive definite.

Proposition : If H is a Tonelli Hamiltonian, then it is monotone.

Proposition : Let H : T ∗M → R be a Tonelli Hamiltonian. Let G be a
Lipschitz exact Lagrangian graph above an open subset U of M such that, for
every t ∈ [0, ∆], the set Gt = ϕt(G) is a Lipschitz graph.
then, for every q0 ∈ U , if γ0(s) = π◦ϕs(q), for every continuous γ : [0, ∆] → M
which is piecewise C1 and such that :

• γ(0) = γ0(0) and γ(∆) = γ0(∆) ;

• ∀t ∈ [0, ∆], γ(t) ∈ Ut = π(Gt) ;

we have : AL(γ0) ≤ AL(γ), with equality iff γ = γ0.
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Corollary 1 : Let H : T ∗M → R be a Tonelli Hamiltonian , let G be an exact
Lagrangian Lipschitz graph above M and let I be an interval of R containing
0 such that for every t ∈ J , ϕt(G) is a Lipschitz graph. Then every arc of orbit
(ϕt(x0))t∈I with initial contition x0 in G is strictly minimizing with fixed ends.

Corollary 2 : (Weierstrass) Let H : T ∗M → R be a Tonelli Hamiltonian,
let K ⊂ M be a compact subset of M and let C > 0 be a constant.
There exists ε > 0 such that, for every q0 ∈ K, every t ∈]0, ε[, every q ∈ M
such that d(q0, q) ≤ Ct, there exists a strict minimizer of the Lagrangian action
joining (0, q0) to (t, q). Moreover, such a γ is a solution of the Euler-Lagrange
equations.
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SECOND LECTURE :

Lagrangian subbundles.
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3 Links with the Lagrangian bundles

We fix a Lagrangian subbundle of T (T ∗M), called the vertical bundle : ∀x ∈
T ∗M, V (x) = ker Dπ∗(x).

3.1 On the Lagrangian bundles which are transverse to the vertical

Notation : LV is the bundle of the Lagrangian linear spaces wich are transverse
to the vertical.
Introduction of an order relation : if x ∈ T ∗M and L1, L2 ∈ LV (x), the
height of L2 above L1 (relatively to V (x)) is the quadratic form Q(L1, L2) defined
on Ex = Tx(T ∗M)/V (x) (which is isomorphic to Tπ(x)M) by :

∀X ∈ Ex, Q(L1, L2)(X) = ω((p|L1)
−1(X), (p|L2)

−1(X))

where p : T (T ∗M) → E is the projection.
Then :

• we say : L2 is above L1 and write L1 ≤ L2 when Q(L1, L2) is positive ;

• we say : L2 is strictly above L1 and write L1 < L2 when Q(L1, L2) is positive
definite.
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Proposition : We have :

• ∀L1, L2 ∈ LV (x), Q(L1, L2) = −Q(L2, L1) ;

• ∀L1, L2, L3 ∈ LV (x), Q(L1, L2) + Q(L2, L3) = Q(L1, L3).

We deduce frome this result that ≤ is a preorder relation on LV (x) (i.e. reflexive
and transitive).

Let us denote the set of quadratic forms of E by Q(E).

Proposition : Let us fix L ∈ LV (x). Then the map Q(L, .) : LV (x) → Q(Ex)
is a homeomorphism. Moreover :

∀L′ ∈ LV (x), L ∩ L′ = (p|L)−1(ker Q(L, L′)) = (p|L′)
−1(ker Q(L, L′)).

Hence ≤ is an order relation (antisymmetric).
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We assume that K is a subset of T ∗M and that L1,L2 ∈ LV (K) are two
Lagrangian subbundles of T (T ∗M) above K, we write L1 < L2 (resp. L1 ≤ L2) if
for every x ∈ K, we have : L1(x) < L2(x) (resp. L1(x) ≤ L2(x)).

First examples of Lagrangian bundles : If K is a C1 Lagrangian submanifold
of T ∗M , its tangent bundle is a Lagrangian subbundle of T (T ∗M).
If K is the graph of a Lipschitz closed 1-form η, the set D of differentiability points
of η is a dense subset of M ; let us define KD = η(D). Then at every point of KD

there exists a tangent space to KD, which belongs to LV (KD).

Definition Let L ∈ LV (K). We say thet L is upper semi-continuous (u.s.c.)
(resp. lower semi-continuous (l.s.c.)) if for every L1 ∈ LV (K) which is continuous,
then {x ∈ K;L(x) < L1(x)} (resp. {x ∈ K;L1(x) < L(x)}) is open in K.

23

Proposition Let L ∈ LV (K). Then :

• the bundle L is continuous iff it is u.s.c. and l.s.c ;

• if L is the (simple) limit of an increasing sequence of l.s.c. bundles of
LV (K), then L is l.s.c.

Proposition Let L−,L+ ∈ LV (K) such that :

• the bundle L+ is u.s.c. ;

• the bundle L− is l.s.c ;

• L− ≤ L+.

Then G = {x ∈ K;L−(x) = L+(x)} is a Gδ subset of K. Moreover, if L ∈
LV (K) is such that L− ≤ L ≤ L+, then L is continuous at every point of G.
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3.2 Images of the vertical in the convex case

Proposition Let K ⊂ T ∗M be compact and H : T ∗M → R be a Tonelli
Hamiltonian. Then there exists ε > 0 such that, for every x0 ∈ K, for every
t ∈]− ε, ε[\{0}, the Lagrangian subspace Gt(x0) = Dϕt.V (ϕ−tx0) is transverse
to the vertical V (x0) and such that :

∀ − ε ≤ s′ < s < 0 < t < t′ ≤ ε, Gs(x0) < Gs′(x0) < Gt′(x0) < Gt(x0).

The proof use the following result :
Lemma Let H : T ∗M → R be a Tonelli Hamiltonian. Let x0 ∈ T ∗M and
I = [−T, T ′] be such that :

∀t, s ∈ I, t 0= s and t.s ≥ 0 ⇒ Gt(x0) ∩Gs(x0) = {0}.

Then :

∀ − T ≤ s′ < s < 0 < t < t′ ≤ T ′, Gs(x0) < Gs′(x0) < Gt′(x0) < Gt(x0).
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3.3 The notion of conjugate points

Definition Let H : T ∗M → R be a Tonelli Hamiltonian. The points (x1; t1),
(x2; t2) ∈ T ∗M × R are conjugate if :

Dϕt2−t1V (x1) ∩ V (x2) 0= {0}.

In other words, (x1; t1) and (x2; t2) are conjugate if ϕt2−t1(x1) = x2 and there exists
an infinitesimal orbit δx = (δq, δp) (“infinitesimal” means for the linearized flow)
along (ϕt(x1))t∈[0,t2−t1] which is not the zero infinitesimal solution and such that
δq(0) = δq(t2 − t1) = 0.

Proposition Let H : T ∗M → R be a Tonelli Hamiltonian. If (x0; t0) ∈
T ∗M ×R and if I is an interval containing t0, the two following sentences are
equivalent :

1. there is no pair of conjugate points on (ϕt−t0(x0), t)t∈I ;

2. forall t 0= s in R∗ such that t0 − t, t0 − s ∈ I, then Gt(x0) ∩Gs(x0) = {0}.
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Theorem Let H : T ∗M → R be a Tonelli Hamiltonian. We consider x0 ∈
T ∗M and an interval I ⊂ R. The three first following propositions are equiva-
lent ; if I is open, the fourth proposition is equivalent to the others :

1. for every [a, b] ⊂ I, there exists a Lagrangian bundle along (ϕt(x0), t)t∈[a,b]

which is invariant under (Dϕt) and transverse to the vertical ;

2. for every [a, b] ⊂ I, there exists a family of exact Lagrangian C1 graphs
(Gt)t∈[a,b] above some open subsets Ut of M such that : ∀t ∈ [a, b], ϕt(x0) ∈
Gt and ∀s, t,ϕt−s(Gs) = Gt ;

3. there is no conjugate point along (ϕt(x0); t)t∈[a,b] ;

4. for every [a, b] ⊂ I, the orbit (ϕt(x0))t∈[a,b] is locally minimizing, i.e. if
γ0(t) = π ◦ ϕt(x0), there exists a neighbourhood U0 of γ0 in C0 topology
such that, for every γ : [a, b] → M in U0 which is continuous and piecewise
C1 and has the same ends as γ0 :

∫ b

a
L(γ0(t), γ̇0(t))dt ≤

∫ b

a
L(γ(t), γ̇(t))dt

with equality if and only if γ0 = γ.
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Proposition We assume that H satisfies the four equivalent assumptions of
the theorem. We assume that [a, b] ⊂ I and that (Lt)t∈[a,b] is an invariant La-
grangian bundle along (ϕt(x0))t∈[a,b]) which is transverse to the vertical. Then :

∀a ≤ t1 < t < t2 ≤ b, Gt−t2(ϕt(x0)) < Lt < Gt−t1(ϕt(x0)).

Hence in this case the images of the vertical allows us to bound Lt from above and
below.
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THIRD LECTURE :

Green bundles.

29

4 Green bundles

4.1 Construction of the Green bundles

Proposition Let H : T ∗M → R be a Tonelli Hamiltonian. Let x0 ∈ T ∗M .
Then :

• if (ϕt(x0))t>0 has no conjugate point, then for every s > 0, (G−t(ϕs(x0)))t>0

is a strictly increasing family of Lagrangian subspaces which are transverse
to the vertical ; moreover, we can define G−(ϕs(x0)) = lim

t→+∞
G−t(ϕs(x0)) ;

then G− is a Lagrangian subbundle which is transverse to the vertical ; on
its set of definition, G− is l.s.c ;

• if (ϕt(x0))t<0 has no conjugate point, then for every s < 0, (Gt(ϕs(x0)))t>0

is a strictly decreasing family of Lagrangian subspaces which are transverse
to the vertical ; moreover, we can define G+(ϕs(x0)) = lim

t→+∞
Gt(ϕs(x0)) ;

then G+ is a Lagrangian subbundle which is transverse to the vertical ; on
its set of definition, G− is u.s.c ;

• if C = {x; (ϕt(x))t∈R has no conjugate point}, G− and G+ are defined on
C, G− ≤ G+ and G− and G+ are invariant by (Dϕt).
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Definition The bundles G− and G+ are the Green bundles.

Proposition Let H : T ∗M → R be a Tonelli Hamiltonian. Then :

1. if there exists a Lagrangian subbundle L of T (T ∗M) along (ϕt(x0); t)t>0

which is transverse to the vertical and invariant under (Dϕt), then :

∀t > 0, G−(ϕt(x0)) ≤ L(ϕt(x0); t);

2. if there exists a Lagrangian subbundle L of T (T ∗M) along (ϕt(x0); t)t<0

which is transverse to the vertical and invariant under (Dϕt), then :

∀t < 0,L(ϕt(x0); t) ≤ G+(ϕt(x0)).
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4.2 A dynamical criterion

Proposition Let H : T ∗M → R be a Tonelli Hamiltonian. We consider
x ∈ T ∗M whose orbit is relatively compact, v ∈ Tx(T ∗M) and ε > 0. Then :

• if (ϕt(x))t>−ε has no conjugate point, if v /∈ G−(x), then :

lim
t→+∞

‖D(π ◦ ϕt)(x)v‖ = +∞;

• if (ϕt(x))t<ε has no conjugate point, if v /∈ G+(x), then :

lim
t→+∞

‖D(π ◦ ϕ−t)(x)v‖ = +∞.
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Consequences : 1) Let us assume that K ⊂ T ∗M is invariant under (ϕt), has
no conjugate point and is such that (Dϕt|TK(T ∗M)) is partially hyperbolic with a
decomposition :

Tx(T
∗M) = Es(x)⊕ Ec(x)⊕ Eu(x).

Then Es(x) ⊂ G−(x) and Eu(x) ⊂ G+(x).
2) If the orbit of x is relatively compact, with no conjugate point and non critical,

then :
RXH(x) ⊂ G−(x) ∩G+(x).

33

4.3 The reduced Green bundles

Let us introduce some notations/assumptions :

• we consider a level set E = H−1(c) and a subset F ⊂ E which is invariant and
such that : ∀x ∈ F , XH(x) /∈ V (x).
We define a bundle F above F whose fiber is F (x) = TxE/RXH(x). The corres-
ponding projection is denoted by p : F → F .
• The symplectic product Ω is defined on F by :

∀u, v ∈ TxE , Ω(p(u), p(v)) = ω(u, v).

The vertical is v(x) = p(V (x)∩TxE) and is Lagrangian (because XH is not vertical).
Then we will be interested in the heights relatively to v(x).
• As we have : DϕtRXH(x) = RXH(ϕtx), we may define the reduced cocycle

Mt on F .
We assume that x ∈ F ; we have : ∀t, XH(x) /∈ Gt(x) (because XH is not vertical) ;
hence, gt(x) = p(Gt(x) ∩ TxE) is a Lagrangian subspace of F (x). Moreover, we
have : gt(x) = M(ϕ−tx)v(ϕ−tx).
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Lemma Let x ∈ F be such that its orbit has no conjugate point ; then, for
every t 0= 0, gt(x) is transverse to v(x).

A direct consequence is that, with the same assumptions as in the lemma, for
every t 0= t′, the two spaces gt(x) and gt′(x) are transverse.

Proposition We assume that x ∈ F has no conjugate point ; Then :

1. ∀t ∈ R∗, gt(x) is transverse to v(x) ;

2. ∀s′ < s < 0 < t < t′, gs(x) < gs′(x) < gt′(x) < gt(x).
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As in the non reduced case, we deduce that if x ∈ F has no conjugate point :

• then g−(x) = lim
t→−∞

gt(x) and g+(x) = lim
t→+∞

gt(x) are two Lagrangian sub-

spaces of F (x) such that g− ≤ g+ and : ∀t, Mt(g±(x)) = g±(ϕtx).

• if K ⊂ F is invariant under (ϕt) and has no conjugate point, then g+ is u.s.c,
g− is l.s.c. and G = {x ∈ K; g−(x) = g+(x)} is a Gδ subset of K such that g− and
g+ are continuous at every point of G. Moreover, if g is any Lagrangian subbundle
of F above K such that g− ≤ g ≤ g+, then g is continuous at every point of G.

• Let g be a Lagrangian subbundle of F above {ϕtx; t ∈ R} such that :

1. ∀t ∈ R, g(ϕtx) is transverse to v(ϕtx) ;

2. ∀t ∈ R, g(ϕtx) = Mt(g(x)).

Then : ∀t ∈ R, g−(ϕtx) ≤ g(ϕtx) ≤ g+(ϕtx).
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We have a dynamical criterion too :

Proposition We assume that F ⊂ E is invariant by the Hamiltonian flow,
has no conjugate point, is compact and such that the angle between the Hamil-
tonian vectorfield XH and the vertical is uniformly bounded from below when
it is defined (i.e. when XH 0= 0). Then, for every x ∈ F and v ∈ TxE :

• if v /∈ G−(x),then : lim
t→+∞

‖p(Dϕt(x)v)‖ = +∞ ;

• if v /∈ G+(x),then : lim
t→+∞

‖p(Dϕ−t(x)v)‖ = +∞.
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4.4 A characterization of hyperbolicity

Proposition Let H : T ∗M → R be a Tonelli Hamiltonian and K be a
compact subset invariant by (ϕt) which is contained in an energy level E, with
no conjugate point and such that : ∀x ∈ K, XH(x) /∈ V (x). Then the two
following properties are equivalent :

• (Dϕt) restricted to TE|K is hyperbolic ;

• On K, g− and g+ are transverse.
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FOURTH LECTURE :

Regularity of Lipschitz Lagrangian invariant graphs.
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5 Regularity of the Lipschitz Lagrangian invariant graphs

5.1 Generalized tangent vectors and cones

Definition Let U ⊂ Rd be open and h : U → Rn be a topological embedding.
If x ∈ U , w ∈ Rn is a generalized tangent vector to h at x if there exists some
sequences (xk) ∈ U , (tk) ∈ R∗

+ such that lim
k→∞

xk = x, lim
k→∞

tk = 0 and :

w = lim
k→∞

1

tk
(h(xk)− h(x)).

The set of those vectors is denoted by TG
x h, it is a cone named tangent cone at x.

Proposition If ψ : (Rn, h(x)) → (Rn, ψ(h(x))) is a diffeomorphism and ϕ :
(Rd, ϕ−1(x)) → (Rd, x) is a homeomorphism, then :

TG
ϕ−1(x)(ψ ◦ h ◦ ϕ) = Dψ(h(x))TG

x h.
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Definition Let us assume that N is the graph of a Lipschitz 1-form λ of M . We
define : TG

x N = TG
π(x)λ is the generalized tangent space to N at x. An element of

TG
x N is called a “generalized tangent vector” to N at x.

Let us notice that in general, TG
x N is a cone, not a linear space.

Corollary If λ is a Lipschitz 1-form of M , if φ is a diffeomorphism of T ∗M
such that φ(N) = N , then :

∀q ∈ M, TG
φ(λ(q))N = Dφ(λ(q))TG

λ(q)N.

Proposition Let N be the Lipschitz graph of λ : M → T ∗M . Then :

1. ∀x ∈ N, Dπ(TG
x N) = Tπ(x)M ;

2. if q ∈ M is such that TG
λ(q)N is contained in a d-plane P , then λ is diffe-

rentiable at q and Tλ(q)N = P .
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5.2 Generalized derivative and generalized tangent planes

Definition Let M , N be two Riemannian manifolds and λ : M → N be a
Lipschitz map. Then the set D of points of M where λ has a derivative is a dense
subset of M . If x ∈ M , the generalized derivative of λ at x is the convex hull of
the limits of the sequences (Dλ(xk)) where xk ∈ D and lim

k→∞
xk = x. This set is

denoted by DGλ(x).

Then DGλ(x) is compact, convex and non empty.

Proposition Let λ : M → N be bi-Lipschitz and let q ∈ M . Then :

TG
q λ ⊂ {Lv; v ∈ TqM, L ∈ DGλ(q)} =

⋃

L∈DGλ(q)

L(TqM).

Corollary Let λ : M → T ∗M be a Lipschitz 1 form. The two following
assertions are equivalent :

(i) DGλ(q) has only one element ;

(ii) λ is differentiable at q and q is a point of continuity of λ.
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Definition we assume that G ⊂ T ∗M is the graph of λ : M → T ∗M which is
Lipschitz. A generalized tangent plane to G at λ(q) is Im(L) = L(TqM) where
L ∈ DGλ(q).

Proposition Let H : T ∗M → R be a Tonelli Hamiltonian. Let λ : M →
T ∗M be a Lipschitz closed 1-form of M whose graph is invariant by the Ha-
miltonian flow (ϕt) of H. Then :

∀q ∈ M,∀t ∈ R∗
+,∀L ∈ DGλ(x), G−t(λ(q)) < L(TqM) < Gt(λ(q)).
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5.3 Regularity of the invariant graphs for d = 2

Definition if XH(x) = 0, the singularity x is non degenerate if DXH(x) has no
double eigenvalue.

Theorem Let M be a compact surface and H : T ∗M → R be a Tonelli
Hamiltonian. Let G be the Lipschitz Lagrangian graph of λ which is invariant
by the Hamiltonian flow of H.
We assume that every singularity of H belonging to G is non degenerate.
Then , there is a dense Gδ subset D of M which has full Lebesgue measure
and is such that at every point of D, λ is C1.

Remarks : we proved a similar result for the symplectic twists of T × R : every
invariant C0 graph is C1 on a set with full measure.
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5.4 More results on the regularity

Theorem Let H : T ∗M → R be a Tonelli Hamiltonian and let G be a
Lipschitz Lagrangian graph invariant by the Hamiltonian flow (ϕt) of H.
We assume that there exists (tk)k∈Z such that lim

n→+∞
tn = +∞ and

lim
n→+∞

t−n = −∞ and (ϕtk|G)k∈Z is equi-Lipschitz. Then G is C1.

Corollary Let H : T ∗Td → R be a Tonelli Hamiltonian and let G be a
Lipschitz Lagrangian graph invariant by the Hamiltonian flow (ϕt) of H.
We assume that ϕ1|G is bi-Lipschitz conjugate to a rotation of Td. then G is
C1.

Definition a Tonelli Hamiltonian H : T ∗M → R is C0-integrable if there exists
a partition P of T ∗M in C0-Lagrangian graphs invariant by the Hamiltonian flow
such that the map P → H1(M) is surjective.

Theorem Let H : T ∗M → R be a C0-integrable Tonelli Hamiltonian and let
Λ1 ⊂ Λ1(M) be such that {Gλ; λ ∈ Λ1} is a partition of T ∗M in C0 Lagrangian
invariant graphs. Then there exists a dense Gδ subset G(H) of Λ1 such that
every λ ∈ G(H) is C1.
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