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FIRST LECTURE :

Basic results on Hamiltonians, Lagrangians, Lipschitz submanifolds,
Hamilton-Jacobi equation and minimization properties.

1 Hamiltonian and Lagrangian formalism

1.1 Symplectic manifold

We assume that M is a d-dimensional manifold endowed with a Riemannian metric
and that m : T*"M — M is its cotangent bundle.

We will denote by Ay the Liouville 1-form of T*M ;if ¢ : U C M — R%is a
chart of M denoted by : ©(q) = (q1,- . ., qa), the dual chart of T*M is defined on
d

T*U by : (p*(z pidq;) = (q1, -+, qd, P1, - - -, pa)- In such a dual chart (named a
i=1
canonical chart), we have :

d
Ao = Z pidg;.
-1

The manifold T*M is then endowed with the symplectic form w = —dX. In a
canonical chart, we have :

d
w= qu,,; A dp;.

i=1



Remark : (1) If M is an open part of R?, we may identify 7% M with M x R? :
for example, for N-body problems, we have global coordinates.

(2) A theoretical result due to A. Weinstein implies that for any compact Lagrangian
submanifold! £ of a symplectic manifold S, there exists a neighbourhood N of £
in S and a neighbourhood U of the zero section of T*L such that N' and U are
diffeomorphic through a symplectic diffeomorphism fixing each point of £. In this
sense, T*M is a model of symplectic manifold.

"We will recall later what is a Lagrangian submanifold.
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1.2 Hamiltonian equations

A C? function H : T*M — R will be called a Hamiltonian. The associated
Hamiltonian vector field Xy is defined by :

Vo € T*"M,VX € T,(T*M),w(Xgy(x), X) = DH(z).X

and the Hamiltonian flow, denoted by (p!7) or (), is the flow of Xp.

Then, we have :

o Vi, pjw = w, i.e. the Hamiltonian flow is symplectic (i.e. preserves the sym-
plectic form);

o Vi, H o p; = H ; the flow preserves the level sets of H.

Moreover, in canonical coordinates, we have :

om, ool
q_(?p q,p); P= g q,D)-



1.3 Introduction to the Lagrangian action

In this section, we don’t give any precise proof; we only try to introduce the Lagrangian action in a natural way.

We consider the action of the Hamiltonian flow on a set I" of curves drawed on
T*M which are continuous and piecewise C! (for example, I' may be the set of
T-periodic loops for a fixed T' > 0) :

Vy €, Ve € R, D (7)(t) = p-0(t —€).
We notice that v € I' is a fixed point of(®,) iff v is an orbit of the flow (¢y).

Let us assume that we have a natural definition of the tangent space to I'; then we
define on T a family (©22) of 2-forms by :

Vv € I, Vo, v € T,I, (6, dv) = / bw(fy(t))(é'y(t), Su(t))dt

a

and a family of functionals :

Hi() = / "Hoy- / 2

Then we have : .
D(v),07) = dHH(V)FY + [Mo(7)d7].
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Remark : if T is the set of T-periodic loops, then [Ag()d7]d =0 .



Definition : The C? Hamiltonian H : T*M — R is monotone if L = H,
T*M — TM is a C'-diffeomorphism. Then £ is called the “Legendre map.”

The fixed points of the flow (), i.e. the orbits of (¢;) satisty :
dq-
o %

0g |e=0

_ op:
0t |e=0

= —q+ Hyq,p); 0 =—p— Hyq,p)

If H is monotone, the radially transformed subset of I is :

R={v=1(q,p):4=Hylq,p)} = {(a,p);ip = L "(¢.9)}-

If (¢,p) € R, we have : H’(q,p) = — fab L(q, q) where L is the Lagrangian asso-
ciated to H, defined on TM by : L(q,v) = L™ q,v).v — H(L Y(q,v)).

The quantity Ay (q) = fab L(q, q) is called the Lagrangian action of q (restricted to
[, b]). We have seen that : Af(q) = —H2(L (g, ¢)), hence the Lagrangian action
represents the restriction of the “Hamiltonian” H? to the radially transformed set.

Let us recall some classical properties of the Lagrangian function and action :

Property if H is monotone and (q,v) = L(q,p), then :

v=Hyq,p); Hylq,p) =—Ly(q,v); p= Lyq,v).

We deduce immediately from these properties that : L is C* iff H is C*.

The Euler-Lagrange flow (fL) is defined on TM by : ff = Lo o o L71. An
orbit of this flow is (g, ¢) where ¢ : I — M satisfies the so-called Euler-Lagrange
equations :

d
— (Ly(q,q)) = Ly(q,q).
77 (Lo(a,9)) = Lola,9)

Then (g, q) is an orbit of the Euler-Lagrange flow iff «y is a critical point of the
Lagrangian action among the C'* arcs which have the same ends. Such a solutions
is always O

10



1.4 More on the monotony property

We only state :

Proposition : (A. Fathi) Let H : T*M — R be a monotone Hamiltonian
and L be the corresponding Lagrangian. Let K C M be a compact subset of
M and C' > 0 be a constant.

Then there exists € > 0 such that, for every g € K and every t €] —e,e[\{0} :
mo fF(Br(0,20)) D B(q,Clt]) and 7o fffBTqM(U,ZC) is a C diffeomorphism.
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2 Lipschitz Lagrangian submanifolds, images of such manifolds and
minimization properties

2.1 Lagrangian submanifolds

Lagrangian submanifold : a C' submanifold N of T* M is a Lagrangian submanifold
of T"M if dim N = dim M = d and wjry = 0; it is equivalent to : for every C!
loop ~y drawed on N and homotopic in N to a point, fq/ Ap = 0; this last equality

being also true for Lipschitz arcs, we define :

Lipschitz Lagrangian submanifold : it is a d-dimensional Lipschitz submanifold N
such that, for every Lipschitz loop drawed on N and homotopic in N to a point :
fw Ao = 0. Such a manifold is exact Lagrangian if the same equality is true for every
Lipschitz loop (not necessarily homotopic to a point) drawed on N. We recall :

Lipschitz submanifold : N is a d-dimensional Lipschitz submanifold of 1M if for
every © € M, there exists a neighbourhood U of x in T* M, a neighbourhood V' of
0 in R?, a Lipschitz map ¢ : V — V and a C™ diffeomorphism F' : U — V x V
such that FI(N NU) = graph(¢).

Lipschitz graph : it is a Lipschitz section of m : T*M — M. Let us notice that

12



this notion is stronger than “Lipschitz submanifold which is a section.”
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Definition : Let n : M — T*M a continuous 1-form. This 1-form is closed (in
the distribution sense) if for every Lipschitz loop drawed on M which is homotopic
to a point, we have : L 1 = 0. In this definition, we may replace “Lipschitz loop”
by “C'-loop”.

The Lipschitz 1-form 1 is ezxact if for every Lipschitz loop drawed on M, we have :
f7 n = 0.

Proposition : Let p : M — R be a Lipschitz 1-form. We denote by G, the
graph of n. Then, G, is Lipschitz Lagrangian iff n is closed. Moreover, G, is
exact Lagrangian iff n is exact.

Remark : in a similar way, we may define the “C" Lagrangian graphs”, initially
introduced by M. Herman.

Definition : let G, be a Lipschitz Lagrangian graph. The cohomological class of
G, is the cohomological class of the 1-form 7.

14



2.2 Images of Lipschitz Lagrangian submanifolds

Proposition : (1) If N is a Lipschitz Lagrangian submanifold of T*M, then
for every t, ¢i(N) is a Lipschitz Lagrangian submanifold of T*M ;

(2) if N is the Lipschitz Lagrangian graph of n and if for a t € R Ny = ¢4(N)
is the Lipschitz Lagrangian graph of n:, then the cohomological classes are
equal : [n] = [n].

Proposition : Let G be a Lipschitz graph (of n) above a compact part K of
M. Then there exists € > 0 such that for every t €] — e, ¢, the set G, = ©4(G)
is a Lipschitz graph above a compact part of M.
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2.3 Hamilton-Jacobi equation and some properties of minimization

Situation : we assume that U C M is open and v : U — R is a C'"! function ;
then the graph G of du is an exact Lipschitz Lagrangian graph. We assume that J
is an interval of R containing 0 and that, for any ¢ € J, G = ¢4(G) is a Lipschitz
(and then exact Lagrangian) graph.

We denote by Uy the set w(G;) and we write : ¢ = 7 o p(du(q)).

Hamilton-Jacobi equation : if u; : U; — R is defined by :

urlar) = u(q) + /0 L{gs,d,)ds,

then :
e G, is the graph of duy ;
® (H—J) . ut + H(, dut()) =0.

Hence the Hamilton-Jacobi equation is a partial differential equation (PDE) des-
cribing the evolution of an exact Lagrangian graph under the Hamiltonian flow.

16



Remarks :

1. We may see in the proof that if U = U{t} x Uy and u; : U — R is defined

teJ
by (t, #) = us(z), then U is an open subset of J x M and @ is C1L.

2. If we are interested in Lipschitz Lagrangian graphs which are not exact, for
example in those which are in the cohomological class of v : M — T*M,
we obtain that G; is the graph of v 4+ du; where the definition of w; and
the Hamilton-Jacobi equation are valuable for the modified Hamiltonian :
H,(q,p) = H(q,p+v(q)) (in this case the modified Lagrangian is : L,(q,v) =
L(q,v) — v(q)(v)).

3. A. Fathi proved that every C'-solution of the H.-J. equation is in fact C'*!.

17

We will know assume some additional hypotheses :

Definition : Let H : T*M — R be C?. We say that H is a Tonelli Hamiltonian
if

1. H is superlinear in the fiber :

H
Vq € M, lim (. p)
lpl—oo [Pl

2. H is strictly convex in the fiber : V(¢,p) € T*M, H, (¢, p) is positive definite.

= 400

Proposition : If H is a Tonelli Hamiltonian, then it is monotone.

Proposition : Let H : T*"M — R be a Tonelli Hamiltonian. Let G be a
Lipschitz exact Lagrangian graph above an open subset U of M such that, for
every t € [0, A], the set Gy = vi(G) is a Lipschitz graph.
then, for every qy € U, if vo(s) = mops(q), for every continuousy : [0, A] — M
which is piecewise C' and such that :

® 7(0) = %(0) and y(A) = 1(A);

oVt € [0,Al,v(t) € Uy = (Gy) ;
we have : Ap(v) < Ap(y), with equality iff v = ~o.

18



Corollary 1: Let H : T*M — R be a Tonelli Hamiltonian , let G be an ezxact
Lagrangian Lipschitz graph above M and let I be an interval of R containing
0 such that for every t € J, ¢i(G) is a Lipschitz graph. Then every arc of orbit
(p(xo))ter with initial contition xy in G is strictly minimizing with fized ends.

Corollary 2 : (Weierstrass) Let H : T*M — R be a Tonelli Hamiltonian,
let K C M be a compact subset of M and let C > 0 be a constant.

There exists € > 0 such that, for every qy € K, every t €]0,¢[, every ¢ € M
such that d(qo, q) < Ct, there exists a strict minimizer of the Lagrangian action

joining (0, qo) to (t,q). Moreover, such a ~y is a solution of the Fuler-Lagrange
equations.

19

SECOND LECTURE :

Lagrangian subbundles.
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3 Links with the Lagrangian bundles

We fix a Lagrangian subbundle of T'(T*M), called the vertical bundle : Va €
T*M,V(x) = ker Dr*(z).

3.1 On the Lagrangian bundles which are transverse to the vertical

Notation : Ly is the bundle of the Lagrangian linear spaces wich are transverse
to the vertical.
Introduction of an order relation : if v € T*M and L, Ly € Ly(x), the
height of Ly above Ly (relatively to V(z)) is the quadratic form (L, Lo) defined
on B, = T,(T*M)/V (x) (which is isomorphic to Ty, M) by :

VX € By, Q(Ly, Ly)(X) = w((piz,) " (X), (pi,) (X))

where p : T(T*M) — E is the projection.
Then :

e we say : Lo is above Ly and write Ly < Ly when Q(Lq, L) is positive ;

e we say : Lo is strictly above Ly and write Ly < Lo when Q(Lq, Lo) is positive
definite.

21

Proposition : We have :
o VL, Ly € Ly(z),Q(L1, Ly) = —Q(La, L) ;
o VL, Ly, Ly € Ly(x),Q(L1, Lo) + Q(Lo, L3) = Q(Ly, L3).

We deduce frome this result that < is a preorder relation on Ly (z) (i.e. reflexive
and transitive).

Let us denote the set of quadratic forms of E by Q(F).

Proposition : Let us fix L € Ly(z). Then the map Q(L,.) : Ly(z) — Q(E,)
is a homeomorphism. Moreover :

VL' € Ly(z), LNL = (pp)~" (ker Q(L, L)) = (pyr) ™" (ker Q(L, L')).

Hence < is an order relation (antisymmetric).

22



We assume that K is a subset of T*M and that £y,Ly € Ly (K) are two
Lagrangian subbundles of T'(T*M ) above K, we write £1 < Ly (resp. £1 < Ly) if
for every x € K, we have : £y(z) < Lo(x) (resp. Lq(x) < Lo(x)).

First examples of Lagrangian bundles : If K is a C'' Lagrangian submanifold
of T*M, its tangent bundle is a Lagrangian subbundle of T'(T*M).

If K is the graph of a Lipschitz closed 1-form 7, the set D of differentiability points
of  is a dense subset of M ; let us define Kp = n(D). Then at every point of Kp
there exists a tangent space to Kp, which belongs to Ly (Kp).

Definition Let £ € Ly(K). We say thet £ is upper semi-continuous (u.s.c.)
(resp. lower semi-continuous (1.s.c.)) if for every £ € Ly (K') which is continuous,
then {x € K; L(x) < Ly(z)} (resp. {z € K;Ly(x) < L(x)}) is open in K.

23

Proposition Let £ € Ly(K). Then :
e the bundle L is continuous iff it is u.s.c. and l.s.c;

o if L is the (simple) limit of an increasing sequence of l.s.c. bundles of
Ly(K), then L is l.s.c.

Proposition Let L, L. € Ly(K) such that :
e the bundle L. is u.s.c.;
e the bundle L_ is l.s.c;
o L < L..

Then G = {z € K;L_(x) = Li(x)} is a G5 subset of K. Moreover, if L €
Ly(K) is such that L_ < L < Ly, then L is continuous at every point of G.

24



3.2 Images of the vertical in the convex case

Proposition Let K C T*M be compact and H : T*M — R be a Tonelli
Hamiltonian. Then there exists € > 0 such that, for every xo € K, for every
t €] —e,e[\{0}, the Lagrangian subspace Gi(x¢) = DV (p_sx0) is transverse
to the vertical V(o) and such that :

Voe<sd<s<O0<t<t <e Gs(xy) < Gylzg) < Gu(zg) < Gi(x0).

The proof use the following result :
Lemma Let H : T*"M — R be a Tonelli Hamiltonian. Let xg € T*M and
I =[=T,T'] be such that :

Vi,s € [,t #s and t.s > 0= Gyxg) NGs(x) = {0}.
Then :

V-T<s<s<0<t<t <T Gs(ry) < Gy(xp) < Gy(xg) < Gy(p).

25

3.3 The notion of conjugate points

Definition Let H : T*M — R be a Tonelli Hamiltonian. The points (z1; )
(wo;ty) € T*M X R are conjugate if :

Dy, 1,V (z1) NV (x2) # {0}.

In other words, (z1;t1) and (z; t2) are conjugate if ¢, (1) = 22 and there exists
an infinitesimal orbit 0z = (¢, dp) (“infinitesimal” means for the linearized flow)
along (¢(21))tef0,ty—,) Which is not the zero infinitesimal solution and such that
0q(0) = dq(ty —t1) = 0.

3

Proposition Let H : T*M — R be a Tonelli Hamiltonian. If (xg;t)) €
T*M x R and if I is an interval containing t,, the two following sentences are
equivalent :

1. there is no pair of conjugate points on (pi—, (o), t)ier ;

2. forall t # s in R* such that ty —t,ty — s € I, then Gy(xo) N Gs(xg) = {0}.

26



Theorem Let H : T*M — R be a Tonelli Hamiltonian. We consider x, €
T*M and an interval I C R. The three first following propositions are equiva-
lent; if I is open, the fourth proposition is equivalent to the others :

1. for every |a,b] C I, there exists a Lagrangian bundle along (¢:(0),t)iefa]
which is invariant under (Dyy) and transverse to the vertical ;

2. for every [a,b] C I, there exists a family of exact Lagrangian C' graphs
(Gt)tefap) above some open subsets Uy of M such that : Vt € [a, b], o) €
gt and VS, ta th—s(gg) - gt ;

3. there is no conjugate point along (i(0);t)ie(a) 5

4. for every [a,b] C I, the orbit (¢(x0))iefay s locally minimizing, i.e. if
Yo(t) = o pi(xg), there exists a neighbourhood Uy of vy in C° topology
such that, for every~y : |a,b] — M in Uy which is continuous and piecewise
C' and has the same ends as Yy :

b b
/ Livo(t), Ao(t))dt < / Liy(t), 3(t))dt

with equality if and only if vo = .

27

Proposition We assume that H satisfies the four equivalent assumptions of
the theorem. We assume that [a,b] C I and that (Lt)te[a’b] s an invariant La-
grangian bundle along (¢:(x0))iela)) which is transverse to the vertical. Then :

Ya S tl <t < tg S b, Gt_tQ(QDt(xo)) < Lt < Gt—tl (QDf(Z'U))

Hence in this case the images of the vertical allows us to bound L' from above and
below.

28



THIRD LECTURE :

Green bundles.

29

4 Green bundles

4.1 Construction of the Green bundles

Proposition Let H : T*M — R be a Tonelli Hamiltonian. Let xo € T*M.
Then :

o if (vi(0))i=0 has no conjugate point, then for every s > 0, (G_¢(¢s(x0)))i>0
1s a strictly increasing family of Lagrangian subspaces which are transverse
to the vertical ; moreover, we can define G_(p,(xg)) = tggrnoo G_i(ps(x0))
then G_ is a Lagrangian subbundle which is transverse to the vertical; on
its set of definition, G_ is l.s.c;

o if (¢1(x0))i<0 has no conjugate point, then for every s < 0, (Gi(¢s(xo)))i>0
1s a strictly decreasing family of Lagrangian subspaces which are transverse
to the wvertical ; moreover, we can define G (ps(xg)) = fl}g}x Gips(xo)) 5
then G is a Lagrangian subbundle which is transverse to the vertical ;on
its set of definition, G_ is u.s.c;

o if C = {z;(pi(x))ier has no conjugate point}, G_ and G are defined on
C, G_ <Gy and G_ and G4 are invariant by (D).
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Definition The bundles G_ and G_ are the Green bundles.

Proposition Let H : T*M — R be a Tonelli Hamiltonian. Then :

1. if there exists a Lagrangian subbundle L of T(T*M) along (¢(zo);t)t=0
which is transverse to the vertical and invariant under (Dyy), then :

Vt > 0,G(¢i(70)) < L(pr(w0); t);

2. if there exists a Lagrangian subbundle £ of T(T*M) along (¢¢(xo);t)i<0
which is transverse to the vertical and invariant under (D), then :

Vt <0, L{pi(x0); 1) < G (pr(wo)).

31

4.2 A dynamical criterion

Proposition Let H : T*M — R be a Tonelli Hamiltonian. We consider
x € T*M whose orbit is relatively compact, v € T,(T*M) and € > 0. Then :

e if (pi(x))t~—- has no conjugate point, if v ¢ G_(x), then :

i [|D(r o 0)a)ol] = +oc;

e if (¢(x))i<- has no conjugate point, if v ¢ G (z), then :

fliin |D(7 0 ¢_¢)(x)v] = +00.
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Consequences : 1) Let us assume that K C T*M is invariant under (¢;), has
no conjugate point and is such that (Dgy . (p+ar)) is partially hyperbolic with a
decomposition :
T.(T"M) = E*(xz) & E(z) & E"(x).

Then E*(z) C G_(x) and E"(z) C G4 (x).

2) If the orbit of x is relatively compact, with no conjugate point and non critical,
then :

RXpy(z) € G_(x) NG (x).

33

4.3 The reduced Green bundles
Let us introduce some notations/assumptions :

e we consider a level set £ = H™!(c) and a subset F C € which is invariant and
such that : Vo € F, Xp(z) ¢ V(z).
We define a bundle F' above F whose fiber is F(z) = T,€ /RXy(z). The corres-
ponding projection is denoted by p : F' — F.

e The symplectic product € is defined on F' by :

Vu,v € T,&,Qp(u), p(v)) = w(u,v).

The vertical is v(z) = p(V (z)NT,E) and is Lagrangian (because X g is not vertical).
Then we will be interested in the heights relatively to v(z).

e As we have : DpRXp(x) = RXpy(pix), we may define the reduced cocycle
M; on F.
We assume that x € F ; we have : Vi, Xg(x) ¢ Gy(z) (because X is not vertical) ;
hence, g:(z) = p(Gi(x) N T,E) is a Lagrangian subspace of F'(z). Moreover, we
have : gi(x) = M(p_x)v(p-¢x).
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Lemma Let x € F be such that its orbit has no conjugate point ; then, for
every t # 0, g(x) is transverse to v(x).

A direct consequence is that, with the same assumptions as in the lemma, for
every t # t', the two spaces ¢;(x) and gy(z) are transverse.
Proposition We assume that x € F has no conjugate point; Then :

1.Vt € R* g/(x) is transverse to wv(z);

2.V <s<0<t<t, gsx)<gylr)<gplx)<glx).

35

As in the non reduced case, we deduce that if z € F has no conjugate point :

e then ¢g_(z) = lim g/(z) and g.(z) = flim gi(x) are two Lagrangian sub-
[——+00

t——00

spaces of F'(x) such that g_ < g, and : Vt, My(g+(x)) = g+ ().

e if K C F is invariant under (¢;) and has no conjugate point, then g, is u.s.c,
g-islsc.and G = {z € K;g_(x) = g4(x)} is a Gy subset of K such that g_ and
g4 are continuous at every point of G. Moreover, if g is any Lagrangian subbundle
of F above K such that g < g < g4, then g is continuous at every point of G.

e Let g be a Lagrangian subbundle of F' above {¢,z;t € R} such that :

1. Vt € R, g(pix) is transverse to v(pyr) ;
2.Vt € R, g(piz) = My(g(z)).
Then : vt € R, g_(¢r) < g(prx) < g+(pr).
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We have a dynamical criterion too :

Proposition We assume that F C & is invariant by the Hamiltonian flow,
has no conjugate point, is compact and such that the angle between the Hamil-
tonian vectorfield Xy and the vertical is uniformly bounded from below when
it is defined (i.e. when Xy #0). Then, for every x € F and v € T,E :

o ifv ¢ G_(x),then : tligl Ip(Depy(z)v)]| = +00 ;
o if v ¢ Gy(x),then : tlir+n |p(Dp_(z)v)|| = +00.

37

4.4 A characterization of hyperbolicity

Proposition Let H : T°M — R be a Tonelli Hamiltonian and K be a
compact subset invariant by () which is contained in an energy level £, with

no conjugate point and such that : VYo € K, Xpy(x) ¢ V(x). Then the two
following properties are equivalent :

o (Dyy) restricted to TE |k is hyperbolic ;

e On K, g_ and g, are transverse.
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FOURTH LECTURE :

Regularity of Lipschitz Lagrangian invariant graphs.
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5 Regularity of the Lipschitz Lagrangian invariant graphs

5.1 Generalized tangent vectors and cones

Definition Let U € R? be open and h : U — R” be a topological embedding.
If z € U, w € R" is a generalized tangent vector to h at x if there exists some
sequences (z) € U, (t;) € RY such that lim x;, =z, /}im t, =0 and :

oo

k—o0

w= Tim —(h(zz) — h(z)).

k—oo Uf

The set of those vectors is denoted by Th, it is a cone named tangent cone at x.

Proposition If ¢ : (R" h(z)) — (R",¢(h(x))) is a diffeomorphism and ¢ :
(RY o~ 1(x)) — (RY x) is a homeomorphism, then :

TS, (0 hop) = D(h(x)TEh.
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Definition Let us assume that N is the graph of a Lipschitz 1-form A of M. We
define : TN = Tﬁx))\ is the generalized tangent space to N at x. An element of
TEN is called a “generalized tangent vector” to N at x.

Let us notice that in general, T¢ N is a cone, not a linear space.

Corollary If X\ is a Lipschitz 1-form of M, if ¢ is a diffeomorphism of T*M
such that ¢(N) = N, then :

Vg € M, TSN = Do(Aq) Ty, N.

Proposition Let N be the Lipschitz graph of A\ : M — T*M. Then :
1. Vx € N,DW(TTGN) = Tﬂ(I)M;

2.if g € M 1is such that TAG(q)N is contained in a d-plane P, then X\ is diffe-
rentiable at q and Ty,)N = P.

41

5.2 Generalized derivative and generalized tangent planes

Definition Let M, N be two Riemannian manifolds and A : M — N be a
Lipschitz map. Then the set D of points of M where A has a derivative is a dense
subset of M. If x € M, the generalized derivative of A at x is the convex hull of
the limits of the sequences (DA(z)) where x;, € D and lim xj, = . This set is

k—o0
denoted by DE\(x).
Then DE)\(x) is compact, convex and non empty.
Proposition Let A\ : M — N be bi-Lipschitz and let ¢ € M. Then :

TONC {Lv;v e T,M, L€ D°Ng)} = | L(T,M).
LeDC\(q)

Corollary Let A : M — T*M be a Lipschitz 1 form. The two following
assertions are equivalent :

(i) DX(q) has only one element ;
(11) X is differentiable at q and q is a point of continuity of \.
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Definition we assume that G C T*M is the graph of A : M — T*M which is
Lipschitz. A generalized tangent plane to G at A(q) is Im(L) = L(T,M) where
L € D)\(q).

Proposition Let H : T*M — R be a Tonelli Hamiltonian. Let A : M —
T*M be a Lipschitz closed 1-form of M whose graph is invariant by the Ha-
miltonian flow (@) of H. Then :

Vg € M,Vt € R*,VL € D°\(z), G_+(\(q)) < L(T,M) < G4(\(q)).
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5.3 Regularity of the invariant graphs for d =2

Definition if Xy (z) = 0, the singularity « is non degenerate if DXy (x) has no
double eigenvalue.

Theorem Let M be a compact surface and H : T*M — R be a Tonelli
Hamiltonian. Let G be the Lipschitz Lagrangian graph of A\ which is invariant
by the Hamiltonian flow of H.

We assume that every singularity of H belonging to G is non degenerate.
Then , there is a dense G5 subset D of M which has full Lebesgue measure
and is such that at every point of D, X is C*.

Remarks : we proved a similar result for the symplectic twists of T x R : every
invariant C* graph is C' on a set with full measure.
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5.4 More results on the regularity

Theorem Let H : T*M — R be a Tonelli Hamiltonian and let G be a
Lipschitz Lagrangian graph invariant by the Hamiltonian flow (@) of H.
We assume that there exists (ty)gez such that lim t, = +oco and

n—-+00

lim t_, = —o0 and (1, |g)rez is equi-Lipschitz. Then G is Cl.

n—-+00

Corollary Let H : T*T? — R be a Tonelli Hamiltonian and let G be a
Lipschitz Lagrangian graph invariant by the Hamiltonian flow () of H.

We assume that oy\g is bi-Lipschitz conjugate to a rotation of T¢. then G is
Ct.

Definition a Tonelli Hamiltonian H : T*M — R is C"-integrable if there exists
a partition P of T*M in C'-Lagrangian graphs invariant by the Hamiltonian flow
such that the map P — H'(M) is surjective.

Theorem Let H : T*M — R be a C'-integrable Tonelli Hamiltonian and let
A1 C A(M) be such that {Gy; A € A1} is a partition of T*M in C° Lagrangian
invariant graphs. Then there ezists a dense Gs subset G(H) of Ay such that
every A\ € G(H) is C".
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