Questions of autonomy

Marc Chaperon Institut de Mathématiques de Jussieu-Paris Rive Gauche Université Paris 7

Geometry and Dynamics in interaction Observatoire de Paris, January 15, 2018

Everything will be in the book Generating maps, invariant manifolds and related topics

Beginning of the story (1993), suggested by Albert Fathi

Sternberg's theorem for contractions. If two invertible germs $f, g: (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ with $\rho(Df(0)) < 1$ are formally conjugate to a high enough order k > 0, i.e., g and $\psi \circ f \circ \psi^{-1}$ have k^{th} order contact at 0 for some diffeomorphism germ $\psi: (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$, then there is a unique conjugacy of f to g having k^{th} order contact with ψ at 0

(Alexander Shoshitaishvili) A map $h: X \to Y$ semi-conjugates $f: X \to X$ to $g: Y \to Y$ (*i.e.*, $g \circ h = h \circ f$) iff graph(h) is invariant (stable) under $f \times g: (x, y) \mapsto (f(x), g(y))$.

Sternberg revisited: If the image under $f \times g$ of the submanifold germ $V := \operatorname{graph} \psi$ has k^{th} order contact with V at 0, then there exists a unique truly $f \times g$ -invariant submanifold germ W having k^{th} order contact with V at 0. The spectra of the automorphisms of T_0V and \mathbb{R}^{2n}/T_0V induced by $D(f \times g)(0)$ both equal the spectrum of Df(0).

The virtue of boredom (1993)

Board of the French Mathematical Society

Let M be C^r manifold, $h: (M, a) \to (M, a) a C^r$ map germ, $r \ge 1$, and $E = T_a M$. Assume that $L = Dh(a): E \to E$ preserves a vector subspace S, that the induced endomorphism A of S satisfies $\rho(A) < 1$, that the induced endomorphism Bof E/S is invertible and $r > \ell := \frac{\ln \rho(B^{-1})}{-\ln \rho(A)}$. Set $k := \max\{1, [\ell]\}$ and $m := \begin{cases} 1 & \text{for } \ell < 1 \\ \min\{k+1, r\} & \text{otherwise} \end{cases}$ (hence $\ell < m \le r$).

Then, for each C^r submanifold germ V of M at a such that $T_aV = S$, formally *h*-invariant to order k, there is a unique *h*-invariant C^m submanifold germ W at a having k^{th} order contact with V at a such that $T_aW = S$, and W is C^r .

References, first examples and sketch of the proof

Variétés stables et formes normales, *C. R. Acad. Sc. Paris* 317, *Série 1* (1993), 87–92 (Invariant manifolds revisited, *Proceedings of the Steklov Institute* 236 (2002), 415–433)

Sternberg: up to linear conjugacy, A = B = Df(0), hence $\ell = \frac{\ln \rho(A^{-1})}{-\ln \rho(A)} \ge k = [\ell] \ge 1$. For r > 1, the C^r contraction germ $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ is C^r -conjugate to its k^{th} order Taylor polynomial $j_0^k f$ via a unique φ such that $j_0^k \varphi = j_0^k \mathrm{Id}$. Hence, for r > 1, the C^r contraction germ $f : (\mathbb{R}, 0) \to (\mathbb{R}, 0)$ is C^r -linearisable. False if r = 1 (Sternberg).

The proof. Local chart $(M, a) \rightarrow (S \times U, 0)$ in which $V = S \times \{0\}$. Implicit equation $z_{n+1} = h(z_n)$ at 0 in a space of sequences $(z_n) = (x_n, y_n)$ such that x_n and y_n tend to 0 as the components of an orbit in W should. The graph of the y_0 component of the implicit function germ $(x_{n+1}, y_n)_{n\geq 0} = \Phi(x_0)$ thus obtained is W. How I failed to escape poverty (1993) but survived (1995)

Oberwolfach, Summer '93 Jean-Pierre Eckmann

Geneva colloquium, Fall '93 Vaughan Jones

(with F. Coudray): Invariant manifolds, conjugacies and blow-up. *Ergodic Theory and Dynamical Systems* **17** (1997), 783–791.

"Preparation Lemma": put a diffeomorphism or vector field germ into normal form all along the stable and/or unstable subspaces of its linear part.

"Blow-up" $y = zx^k$: losing uniqueness and requiring too much differentiability, my '93 theorem follows from the stable manifold theorem in (x, z)-space

and the C^m Sternberg-Chen theorem, $1 \leq m < \infty,$ from the pseudo-stable manifold theorem.

Sternberg-Chen. Let $h_0: (M_0, a_0) \to (M_0, a_0)$ be a hyperbolic smooth diffeomorphism germ. Then, for each integer $m \ge 1$, there is an integer $m_1 \ge m$ with the following property: whenever h_0 and a smooth $h_1: (M_1, a_1) \to (M_1, a_1)$ are formally conjugate to order m_1 , they are C^m conjugate.

One can assume (Preparation Lemma) that h_0 and h_1 have ℓ^{th} order contact along the unstable manifold W^u of h_0 : the germ $V := \Delta M_0$ is invariant to order ℓ under $h := h_0 \times h_1$ along $W_0 := \Delta W^u$.

Let the C^{∞} germ $h: (M, a) \to (M, a)$ preserve a C^{∞} submanifold germ W_0 ; assume L := Dh(a) preserves a vector subspace S of $E := T_a M$ containing $S_0 := T_a W_0$ and induces endomorphisms A, A₁, B of S, $S_1 := S/S_0$, E/S with $\rho(A_1) < 1$, $\rho(A) > 1$ and B invertible. Then, for each integer k > 1, there is an integer $k_1 > k$ with the following property: for every C^{∞} submanifold germ V with $T_p V = S$, formally *h*-invariant along W_0 to order k_1 , there exists an *h*-invariant C^k submanifold germ W having k^{th} order contact with V along W_0 .

Extension du domaine de la lutte (2000-2002)

Proof. In a chart $(M, V, W_0, a) = (S_0 \times S_1 \times E/S, S_0 \times S_1, S_0, 0)$, blow-up $(\theta, x, z) \mapsto (\theta, x, zx^{k_1})$.

True: For each C^{∞} submanifold germ V with $T_pV = S$, formally *h*-invariant along W_0 , there is an *h*-invariant C^{∞} submanifold germ W having infinite contact with V along W_0 (hence the C^{∞} Sternberg-Chen theorem). But non-uniqueness, so one cannot just let $k \to \infty$.

Invariant manifolds revisited, *Proceedings of the Steklov Institute* **236** (2002), 415–433 (second half)

Stable manifolds and the Perron-Irwin method. *Ergodic Theory and Dynamical Systems* **24** (2004), 1359–1394 Reprinted in A. Fathi, J.-C.Yoccoz (ed): *Dynamical Systems: Michael Herman Memorial Volume*, Cambridge University Press, 2006. Given h = (f, g), find (in a suitable space) the sequences $(z_n) = (x_n, y_n)$ such that $z_{n+1} = h(z_n)$ (orbits of h) as solutions of $x_{n+1} = f(z_n)$ and $y_n = G(x_n, y_{n+1})$.

México (UNAM) colloquium, September '05

Write the previous equations under the more symmetric form $x_{n+1} = F(x_n, y_{n+1}) := f(x_n, G(x_n, y_{n+1})), y_n = G(x_n, y_{n+1}).$ I call (*F*, *G*) a generating map of *h*.

The Lipschitzian core of some invariant manifold theorems. *Ergodic Theory and Dynamical Systems* **28** (2008), 1419–1441.

R. McGehee, E. A. Sander: A new proof of the stable manifold theorem, *Z. Angew. Math. Phys.* **47**, no. 4 (1996), 497–513.

Generating maps

$$\begin{split} & E = E_s \times E_u \text{ (Banach spaces), } H = (f,g) : (E,0) \to (E,0) \text{ local } C^r \\ & \text{map, } r \geq 1, \ DH(0) = A_s \times A_u, \ A_u \text{ invertible, } |A_s| < 1 < |A_u^{-1}|^{-1}. \\ & (x,y) \mapsto (x,g(x,y)) \text{ local diffeo, inverse } (x,y') \mapsto (x,G(x,y')). \\ & \text{If } F(x,y') := f(x,G(x,y')) \text{ then, near } 0, \\ & \text{graph } H = \{(x,y,x',y') : x' = F(x,y'), y = G(x,y')\}. \end{split}$$

Shut yourself in a small box $Z: \rho > 0$ small, $Z = X \times Y = \{(x, y) \in E_s \times E_u : \max\{|x|, |y|\} \le \rho\}.$ $\operatorname{Lip} F|_Z(\simeq |A_s|) \le \lambda < 1$, $\operatorname{Lip} G|_Z(\simeq |A_u^{-1}|) < \mu < 1$ for small enough ρ , hence $(F, G)(Z) \subset Z.$

 $(F, G): Z \to Z$ generating map of $H|_{Z \cap h^{-1}(Z)}$ viewed as the correspondence h of Z into itself (map $Z \to \mathcal{P}(Z)$) given by $h(z) = \{H(z)\}$ if $H(z) \in Z$, $h(z) = \emptyset$ otherwise, i.e.:

graph
$$h := \bigcup_{z \in Z} \{z\} \times h(z)$$

= $\{(x, y, x', y') \in Z^2 : x' = F(x, y'), y = G(x, y')\}.$

Generating maps

For all $\ell \in \mathbb{N}$, the ℓ^{th} iterate h^{ℓ} of h has a C^{r} generating map $(F_{\ell}, G_{\ell}): Z \to Z$.

For all sequences (y_{ℓ}) in Y, the sequence of maps $x \mapsto G_{\ell}(x, y_{\ell})$ converges to the same C^r function $\varphi : X \to Y$.

Its graph is the local stable manifold of $H|_{Z \cap H^{-1}(Z)}$ at 0.

Geometrically, the projection of the graph of h^{ℓ} onto the first factor of Z^2 (i.e., the set dom h^{ℓ} of those $z \in Z$ such that $H^j(z)$ remains in Z for $0 \le j \le \ell$) becomes thinner and thinner when ℓ increases, and tends to the stable manifold.

No functional analysis involved.

ICMAT Madrid, November 2013

Generating maps, invariant manifolds, conjugacy. *Journal of Geometry and Physics* **87** (2015), 76–85.

My '93 theorem follows from a non-autonomous version of the stable manifold theorem (yielding Pesin's, etc.).

(Lipschitzian part) I intersection of Z with an interval, unbounded from above. For all $i \in I$, $Z_i = X_i \times Y_i$ product of two complete metric spaces, h_{i+1} correspondence of Z_i into Z_{i+1} admitting a generating map (F_{i+1}, G_i) .

Assume there are positive numbers λ, μ such that, for all $i \in I$, Lip $F_{i+1} \leq \lambda$, Lip $G_i \leq \mu$, $\lambda \mu < 1$ and $\lim_{\ell \to \infty} \mu^{\ell} \operatorname{diam} Y_{\ell} = 0$.

Then, for each $j \in I$, the set W_j^s of those $z \in Z_j$ such that there exists an orbit $(z_i)_{i \ge j}$ of $(h_{i+1})_{i \ge j}$ with $z_j = z$ is the graph of a function $\varphi_j : X_j \to Y_j$ with $\operatorname{Lip} \varphi_j \le \mu$.

One has $h_{j+1}^{-1}(W_{j+1}^s) = W_j^s$ and the correspondences $W_j^s \ni z \mapsto h_{j+1}(z) \cap W_{j+1}^s$ are maps $h_{j+1}^s : (x, \varphi_j(x)) \mapsto (f_{j+1}(x), \varphi_{j+1} \circ f_{j+1}(x))$ with $\operatorname{Lip} f_{j+1} \le \lambda$. Every orbit $(z_i)_{i \le j}$ of $(h_i)_{i \le j}$ satisfies $d(z_i, W_i^s) \le \mu^{j-i} \operatorname{diam} Y_j$. Vaughan Jones was not so wrong after all.