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The (planar) ER3BP The problem

The (planar) elliptic restricted three body problem (RPETB) describes
the motion q of a massless particle (a comet) under the gravitational
field of two massive bodies (the primaries, say the Sun and Jupiter)
with mass ratio µ revolving around their center of mass on elliptic orbits
with eccentricity εJ.

Typical models:
Sun–Jupiter–asteroid or comet: εJ = 0.048
Sun–Earth–Moon systems: εJ = 0.016

We search for trajectories of motion which show a large variation of the
angular momentum G = q × q̇.

So we search for global instability (“diffusion” is the term usually used)
in the angular momentum of this problem.
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The (planar) ER3BP The Main Result

Theorem (The Main Result)

There exist two constants C > 0, c > 0 and µ∗ = µ∗(C, c) > 0 such
that for any 0 < εJ < c/C and 0 < µ < µ∗, and for any two values of
the angular momentum in the region C ≤ G∗1 < G∗2 ≤ c/εJ, there exists
a trajectory of the RPETB such that G(0) < G∗1, G(T ) > G∗2 for some
T > 0.

If εJ = 0, the primaries revolve along circular orbits, and such
diffusion is not possible, since the (planar) restricted circular three
body problem (R3BP) is governed by an autonomous Hamiltonian
with 2 degrees-of-freedom.
This is not the case for the RPETB, which is a 2+1/2
degrees-of-freedom Hamiltonian system with time-periodic
Hamiltonian.
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Previous results Restricted 3 BP

Related results about oscillatory motions and diffusion for several
Restricted Three Body Problems:

Euler libration points: Llibre-Martı́nez-Simó85,
Capinski-Zgliczynski11, D-Gidea-Roldán13-16
Collisions: Bolotin06
The (parabolic) infinity: Llibre-Simó80, Xia92-93, Moser01,
Moeckel07, Martı́nez-Pinyol94, Gorodetski-Kaloshin11,
Guàrdia-Martı́n-Seara12, Martı́nez-Simó14
Mean motion resonances: Fejoz-Guàrdia-Kaloshin-Roldán14
Aubry-Mather theory: Galante-Kaloshin13
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Setting of the problem The equations

The motion of the massless particle q (comet) is described by

d2q
dt2 = (1− µ)

qS − q
|qS − q|3

+ µ
qJ − q
|qJ − q|3

where 1− µ is the mass of the primary (Sun) at qS and µ the mass of
the primary (Jupiter) at qJ.
Introducing p = dq/dt , this is a 2+1/2 degree-of-freedom Hamiltonian
system with time-periodic Hamiltonian

Hµ(q,p, t ; εJ) =
p2

2
− Uµ(q, t ; εJ)

with self-potential

Uµ(q, t ; εJ) =
1− µ

|q − qS(t , εJ)|
+

µ

|q − qJ(t , εJ)|

Parameters: 0 < µ, εJ < 1 small.
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Setting of the problem Two body problem: Sun-comet

When µ = 0, there is no Jupiter in the equation of motion and the Sun
is fixed at the origin: qS = 0

The Sun qS and the comet q form a two-body problem with the

Hamiltonian H0(q,p, t ; εJ) = H0(q,p) =
p2

2
− 1
|q|

=
p2

2
− U0(q).

The two–body problem is integrable, and there is no dependence on
the eccentricity εJ or the time t .
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Setting of the problem Equations of the primaries

qS = qS(t , εJ) = µr(cos f , sin f )

qJ = qJ(t , εJ) = −(1− µ)r(cos f , sin f )

with

r = r(t ; εJ) =
1− ε2J

1 + εJ cos f
,

df
dt

=
(1 + εJ cos f )2

(1− ε2J)3/2
,

where f = f (t ; εJ) is the true anomaly. If q = ρ(cosα, sinα),

|q − qS|2 = ρ2 − 2µrρ cos(α− f ) + µ2r2,

|q − qJ |2 = ρ2 + 2(1− µ)rρ cos(α− f ) + (1− µ)2r2.

Remark Also

r = r(t ; εJ) = 1− εJ cos E , t = E − εJ sin E ,

where E is the eccentric anomaly.
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Setting of the problem Polar coordinates

Performing a standard polar-canonical change of variables
(q,p) 7−→ (ρ, α,Pρ,Pα)

q = (ρ cosα, ρ sinα), p =

(
Pρ cosα− Pα

ρ
sinα,Pρ sinα +

Pα
ρ

cosα

)
the Hamiltonian becomes

H∗µ(ρ, α,Pρ,Pα, t ; εJ) =
P2
ρ

2
+

P2
α

2ρ2 − U∗µ(ρ, α, t ; εJ)

with a self-potential U∗µ

U∗µ(ρ, α, t ; εJ) = Uµ(ρ cosα, ρ sinα, t ; εJ) =
1
ρ

+ O(µ).
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Setting of the problem Polar coordinates

From now on we will write

G = Pα, y = Pρ,

so that Hamiltonian (8) becomes

H∗µ(ρ, α, y ,G, t ; εJ) =
y2

2
+

G2

2ρ2 − U∗µ(ρ, α, t ; εJ).

Remark

In the (planar) circular case εJ = 0 (RTBP), r = 1 and f = t , and
|q − qS|, |q − qJ| depend on the time t and the angle α just through
their difference α− t . As a consequence, U∗µ(ρ, α, t ; 0) as well as
H∗µ(ρ, α, y ,G, t ; 0) depend also on t and α just through the same
difference α− t , the sinodic angle. This implies that the Jacobi
constant H∗ + G is a first integral of the system.
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Setting of the problem McGehee coordinates

Through McGehee non-canonical change of variables, for x > 0,

ρ =
2
x2

the infinity ρ =∞ is sent to the origin x = 0 and the equations become

dx
dt

= −1
4

x3y
dy
dt

=
1
8

G2x6 − x3

4
∂Uµ
∂x

dα
dt

=
1
4

x4G
dG
dt

=
∂Uµ
∂α

,

where the self-potential Uµ is given now by

Uµ(x , α, t ; εJ) = U∗µ(2/x2, α, t ; εJ) =
x2

2

(
1− µ
σS

+
µ

σJ

)
with

|q − qS|2 = σ2
S = 1− µrx2 cos(α− f ) +

1
4
µ2r2x4,

|q − qJ|2 = σ2
J = 1 + (1− µ)rx2 cos(α− f ) +

1
4

(1− µ)2r2x4.
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Setting of the problem The b3-symplectic structure

Under McGehee change of variables ρ = 2/x2 for x > 0,

dρ ∧ dy + dα ∧ dG is transformed to ω = − 4
x3 dx ∧ dy + dα ∧ dG

which is a b3-symplectic form, the new Hamiltonian reads as

Hµ(x , α, y ,G, t ; εJ) =
y2

2
+

x4G2

8
− Uµ(x , α, t ; εJ),

and the the Hamiltonian equations become

dx
dt

= −x3

4

(
∂Hµ
∂y

)
dy
dt

= −x3

4

(
−∂Hµ
∂x

)
dα
dt

=
∂Hµ
∂G

dG
dt

= −∂Hµ
∂α

.

which can be written as dz/dt = {z,Hµ} in terms of the Poisson
bracket

{f ,g} = −x3

4

(
∂f
∂x

∂g
∂y
− ∂f
∂y

∂g
∂x

)
+
∂f
∂α

∂g
∂G
− ∂f
∂G

∂g
∂α

.
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Setting of the problem The b3-symplectic structure

Some sources of bm-symplectic structures can be found in
[Scott13], [Kiesenhofer-Miranda-Scott15],
[Guillemin-Miranda-Weitsman17-18].
Other examples can be found in [Guardia-Martı́n-Seara16],
[D-Kiesenhofer-Miranda17], [Braddell-D-Miranda-Oms-Planas17].
New examples in [Baldomá-Fontich-Martı́n18].
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The Kepler problem (µ = 0) The (parabolic) infinity manifold

For µ = 0 and G > 0, Hamiltonian H0 becomes Duffing Hamiltonian:

H0(x , y ,G) =
y2

2
+

x4G2

8
− U0(x) =

y2

2
+

x4G2

8
− x2

2

H0 is autonomous and independent of εJ and α. Its associated
equations are

dx
dt

= −1
4

x3y
dy
dt

=
1
8

G2x6 − 1
4

x4

dα
dt

=
1
4

x4G
dG
dt

= 0

The angular momentum G is a conserved quantity, G > 0 from now
on. The phase space (x , α, y ,G) ∈ R≥0 × T× R× R+ includes the set
of equilibrium points

E∞ = {z = (x = 0, α, y ,G) ∈ R≥0 × T× R× R+}.
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The Kepler problem (µ = 0) The (parabolic) infinity manifold

x

y

h = 0

h > 0

h < 0

Figure: Level curves of H0 in the (x ≥ 0, y) plane, for fixed G > 0

A. Delshams (UPC) Global instability in the ERTBP GDI Paris 2018, January 15th 14 / 36



The Kepler problem (µ = 0) The (parabolic) infinity manifold

For any fixed α ∈ T,G ∈ R,

Λα,G = {(0, α, 0,G)}
is a parabolic equilibrium point, which is topologically equivalent to a
saddle point, since it possesses stable and unstable 1D-invariant
manifolds. The union of such points is the 2D-(symplectic) manifold of
equilibrium points

Λ∞ =
⋃
α,G

Λα,G.

which is the (parabolic) infinity manifold for the Kepler problem.
As we will deal with a time-periodic Hamiltonian, it is natural to work in
the extended phase space

z̃ = (z, s) = (x , α, y ,G, s) ∈ R≥0 × T× R× R+ × T

just by writing s instead of t in the Hamiltonian and adding the equation
ds
dt

= 1
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The Kepler problem (µ = 0) The (parabolic) infinity manifold

The extended versions of the invariant sets Λα,G, Λ∞ for the Kepler
problem are the 2π-periodic orbits with motion ds/dt = 1

Λ̃α,G = {z̃ = (0, α, 0,G, s), s ∈ T},
and the 3D-invariant manifold (the “parabolic” infinity manifold)

Λ̃∞ =
⋃
α,G

Λ̃α,G = {(0, α, 0,G, s), (α,G, s) ∈ T×R+×T},' T×R+×T,

which is topologically equivalent to a normally hyperbolic invariant
manifold (TNHIM).
Parameterizing the points in Λ̃∞ by

x̃0 = x̃0(α,G, s) = (x0(α,G), s) = (0, α, 0,G, s) ∈ Λ̃∞ ' T× R+ × T

the inner dynamics on Λ̃∞ is trivial, since it is given by the dynamics on
each periodic orbit Λ̃α,G:

φ̃t ,0(x̃0) = (0, α, 0,G, s + t) = (x0(α,G), s + t) = x̃0(α,G, s + t),

where we denote by φ̃t ,µ the flow of our system in the extended phase
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The Kepler problem (µ = 0) The separatrix

The equilibrium points Λα,G have stable and unstable 1D-invariant
manifolds which coincide:

γα,G = W u(Λα,G) = W s(Λα,G)

=

{
z = (x , α̂, y ,G), H0(x , y ,G) = 0, α̂ = α−G

∫
H0=0

x
y

dx
}
,

whereas the 2D-manifold of equilibrium points Λ∞ has stable and
unstable 3D-invariant manifolds which coincide and are given by

γ = W u(Λ∞) = W s(Λ∞) = {z = (x , α, y ,G), H0(x , y ,G) = 0}.
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The Kepler problem (µ = 0) The separatrix

In the extended phase space, the surface

γ̃α,G = W u(Λ̃α,G) = W s(Λ̃α,G)

=

{
z̃ = (x , α̂, y ,G, s), s ∈ T, H0(x , y ,G) = 0, α̂ = α−G

∫
H0=0

x
y

dx
}

is a 2D-homoclinic manifold to the periodic orbit Λ̃α,G. The 4D-stable
and unstable manifolds of the infinity manifold Λ̃∞ coincide along the
4D-homoclinic invariant manifold (the separatrix), which is just the
union of the homoclinic surfaces γ̃α,G:

γ̃ = W u(Λ̃∞) = W s(Λ̃∞) =
⋃
α,G

γ̃α,G

= {z̃ = (x , α, y ,G, s), (α,G, s) ∈ T× R+ × T, H0(x , α, y ,G) = 0}
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The Kepler problem (µ = 0) Separatrix parameterization

The homoclinic solutions to the periodic orbit Λ̃α,G are given by

xh(t ; G) =
2

G(1 + τ2)1/2 yh(t ; G) =
2τ

G(1 + τ2)

αh(t ;α,G) = α + π + 2 arctan τ Gh(t ; G) = G
sh(t ; s) = s + t ,

where α and G are the 2 free parameters and the relation between t
and τ is

t =
G3

2

(
τ +

τ3

3

)
which is equivalent to

dt
dτ

=
2G
x2 ,

Due to the factor −x3/4 in front of the equations, the convergence
along the separatrix to the infinity manifold is power-like in τ and t :

xh, yh,
α− αh + π

G
∼ 2

Gτ
∼ 2

3
√
±6t

, τ, t → ±∞.
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The Kepler problem (µ = 0) Separatrix parameterization

Introducing the notation

z̃0 = z̃0(σ, α,G, s) = (z0(σ, α,G), s)=(xh(σ; G), αh(σ;α,G), yh(σ; G),G, s)

we can parameterize any homoclinic surface γ̃α,G as

γ̃α,G = {z̃0 = z̃0(σ, α,G, s) = (z0(σ, α,G), s), σ ∈ R, s ∈ T}.

and the 4-dimensional separatrix γ̃ = W (Λ̃∞) as

γ̃ = {z̃0 = z̃0(σ, α,G, s) = (z0(σ, α,G), s), σ ∈ R,G ∈ R+, (α, s) ∈ T2}.

The motion on γ̃ and Λ̃∞ is given by

φ̃t ,0(z̃0) = z̃0(σ + t , α,G, s + t) = (z0(σ + t , α,G), s + t)

φ̃t ,0(x̃0) = (0, α, 0,G, s + t) = (x0(α,G), s + t) = x̃0(α,G, s + t),

and the following asymptotic formula follows:

φ̃t ,0(z̃0)− φ̃t ,0(x̃0) = (z0(σ + t , α,G), s + t)− (x0(α,G), s + t) −−−−→
t→±∞

0.
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The Kepler problem (µ = 0) The scattering map

The scattering map S̃ describes the homoclinic orbits to the infinity
manifold Λ̃∞ (defined in (16)) to itself. Given x̃−, x̃+ ∈ Λ̃∞, we define

S̃µ(x̃−) := x̃+

if there exists z̃∗ ∈W u
µ(Λ̃∞) ∩W s

µ(Λ̃∞) such that

φ̃t ,µ(z̃∗)− φ̃t ,µ(x̃±) −→ 0 for t → ±∞.

In the case µ = 0 the previous asymptotic relation

φ̃t ,0(z̃0)− φ̃t ,0(x̃0) = (z0(σ + t , α,G), s + t)− (x0(α,G), s + t) −−−−→
t→±∞

0.

implies S̃0(x̃0) = x̃0 so that that the scattering map S̃0 : Λ̃∞ −→ Λ̃∞ is
the identity.
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The ERTBP (µ > 0) Λ̃∞, W s
µ(Λ̃∞) and W u

µ (Λ̃∞)

For µ > 0, the set E∞ remains invariant as well as infinity manifold Λ̃∞,
which is again a TNHIM, as well as all the periodic orbits Λ̃α,G.

The inner dynamics on Λ̃∞ is the same as in the case µ = 0, so that
the parametrization x̃0 as well as its trivial dynamics remain the same.

From [McGehee73, Guardia-Martı́n-Seara-Sabbagh17] we know that
W s
µ(Λ̃∞) and W u

µ(Λ̃∞) exist for µ small enough and are 4-dimensional
in the extended phase space.

The existence of scattering maps will depend on the transversal
intersections between these two manifolds.
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The ERTBP (µ > 0) The Melnikov potential

Introduce now the Melnikov potential L : Λ̃∞ −→ R [D-Gutiérrez00],
[D-Llave-Seara06]

L(α,G, s; εJ) =

∫ ∞
−∞

∆U0(xh(t ; G), αh(t ;α,G), s + t ; εJ) dt ,

where ∆U0 is defined by

∆U0(x , α, s; εJ) :=
∂Uµ
∂µ

∣∣∣∣∣
µ=0

(x , α, s; εJ) = O(x4) as x → 0.

The asymptotics above follows from the asymptotic behavior of the
solutions along the separatrix and of the self potential close to the
parabolic infinity manifold, and guarantees that this integral is
absolutely convergent.
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The ERTBP (µ > 0) W s
µ(Λ̃∞) t W u

µ (Λ̃∞)

Proposition (Transverse homoclinic points to the infinite manifold Λ̃∞)

Given (α,G, s) ∈ T× R+ × T, assume that the function

σ ∈ R 7−→ L(α,G, s − σ; εJ) ∈ R
has a non-degenerate critical point σ∗ = σ∗(α,G, s; εJ). Then, there
exists µ∗ = µ∗(G, εJ), such that for 0 < µ < µ∗, close to the point
z̃∗0 = (z0(σ∗, α,G), s) ∈ γ̃ there exists a locally unique point

z̃∗ = z̃∗(σ∗, α,G, s; εJ, µ) ∈W s
µ(Λ̃∞) t W u

µ(Λ̃∞)

of the form z̃∗ = z̃∗0 + O(µ), and there exist unique points
x̃± = (0, α±,0,G±, s) = (0, α, 0,G, s) + O(µ) ∈ Λ̃∞ such that

φ̃t ,µ(z̃∗)− φ̃t ,µ(x̃±) −→ 0 for t → ±∞.
Moreover, we have

G+ −G− = µ
∂L
∂α

(α,G, s − σ∗(α,G, s; εJ)) + O(µ2).
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The ERTBP (µ > 0) Reduced Poincaré function

Once we have found a critical point σ∗ = σ∗(α,G, s; εJ) of

σ ∈ R 7−→ L(α,G, s − σ; εJ) ∈ R

on a domain of (α,G, s), we can define the reduced Poincaré function
[D-Llave-Seara06]

L∗(α,G; εJ) := L(α,G, s − σ∗; εJ) = L(α,G, s∗; εJ)

with s∗ = s − σ∗. Note that the reduced Poincaré function does not
depend on the s chosen, since by the previous Proposition

∂

∂s
(L (α,G, s − σ∗(α,G, s; εJ); εJ)) ≡ 0.

Note also that if the function σ ∈ R 7−→ L(α,G, s − σ; εJ) ∈ R has
different non degenerate critical points there will exist different
scattering maps.
The next Proposition gives an approximation of the scattering map in
the general case µ > 0.
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The ERTBP (µ > 0) Scattering map

Proposition (Expression of the scattering map)

The associated scattering map (α+,G+, s+) = S̃µ(α,G, s) for any non
degenerate critical point σ∗ = σ∗(α,G, s; εJ) of the function
σ ∈ R 7−→ L(α,G, s − σ; εJ) ∈ R is an exact symplectic map given by

(α,G, s) 7−→
(
α−µ∂L

∗

∂G
(α,G; εJ)+O(µ2),G+µ

∂L∗

∂α
(α,G; εJ)+O(µ2), s

)
where L∗ is the Poincaré reduced function.

Remark: the scattering map S̃µ follows closely the level curves of the
Hamiltonians L∗. More precisely, up to O(µ2) terms, S̃µ is given by the
time −µ map of the Hamiltonian flow of Hamiltonian L∗. The O(µ2)
remainder will be negligible as long as

|µ| �
∣∣∣∣∂L∗∂G

∣∣∣∣ , ∣∣∣∣∂L∗∂α

∣∣∣∣ .
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The ERTBP (µ > 0) Computation of L(α,G, s; εJ)

L(α,G, s; εJ) =

∫ ∞
−∞

[
x2

h[
4 + x4

h r2 + 4x2
h r cos(αh − f )

]1/2

+
(x2

h
2

)2
r cos(αh − f )−

x2
h
2

]
dt

where xh and αh, solutions on the separatrix, are evaluated at t ,
whereas r and f , concerning the primaries, are evaluated at s + t .
Fourier expanding with respect to angular variables α, s, L is an even
function α, s: L(−α,G,−s; εJ) = L(α,G, s; εJ), and therefore L has a
Fourier Cosine series with real coefficients Lq,k :

L = L0,0 + 2
∑
k≥1

L0,k cos kα + 2
∑
q≥1

∑
k∈Z

Lq,k cos(qs + kα).

Using the method of steepest descent along adequate complex paths,
and playing both with the eccentric and the true anomaly, it is possible
to compute these Fourier coefficients.
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The ERTBP (µ > 0) Computation of L(α,G, s; εJ)

Theorem (Computation of the Melnikov potential)

For G ≥ 32, εJG ≤ 1/8, the Melnikov potential is given by

L(α,G, s; εJ) = L0(α,G; εJ) + L1(α,G, s; εJ) + L≥2(α,G, s; εJ)

with
L0(α,G; εJ) = L0,0 + L0,1 cosα + E0(α,G; εJ)

L1(α,G, s; εJ) = 2L1,−1 cos(s − α) + 2L1,−2 cos(s − 2α)

+ 2L1,−3 cos(s − 3α) + E1(α,G, s; εJ),

where Li,j = Li,j(G; εJ) with L0,0 = π
2G3 (1 + E0,0) and

L0,1 = −15πεJ
8G5 (1 + E0,1), 2 L1,−1 =

√
π

8G
e−G3/3(1 + E1,−1)

2 L1,−2 = −3
√

2πεJG3/2e−G3/3(1 + E1,−2)

2 L1,−3 =
19
8

√
2πε2JG5/2e−G3/3(1 + E1,−3).
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The ERTBP (µ > 0) Computation of L(α,G, s; εJ)

Theorem (Continuation of the computation of the Melnikov potential)
The error functions satisfy

|E0,0| ≤ 212G−4 + 22 49 ε2J
|E0,1| ≤ 213G−4 + ε2J

|E1−1| ≤ 221G−1 + 2 49 ε2J

|E1,−2| ≤ 217G−1 +
49
3
εJ

|E1,−3| ≤ 217G−1 + 15εJ
|E0| ≤ 214 ε2JG−7

|E1| ≤ 218εJe−G3/3
[
ε2JG7/2 + G−3/2

]
|L≥2| ≤ 228G3/2e−2G3/3
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The ERTBP (µ > 0) Critical points of L(α,G, ·; εJ)

s 7→ L(α,G, s; εJ) is indeed a cosine-like function, that is, with a
non-degenerate maximum (minimum) and no other critical points, so
we can find easily its critical points.

Proposition

There exists C > 32 and c < 1/8 such that, for G ≥ C and εJG < c,
s 7→ L(α,G, s; εJ) is a cosine-like function, and its two critical points
are given by

s∗+ = s∗+(α,G; εJ) = α + θ + ϕ∗, s∗− = s∗− + π = α + θ + π + ϕ∗

where θ = θ(α,G; εJ) and ϕ∗ = O
(

G3/2e−G3/3
)

.

By the previous Theorem, for G > C big enough and GεJ < c small
enough, the two critical points of L in the variable s are well
approximated by the two critical points of the function L0 + L1 (in fact
of L1 because L0 does not depend on s).
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The ERTBP (µ > 0) Two different scattering maps

We can define two different reduced Poincaré functions

L∗±(α,G; εJ) = L(α,G, s∗±; εJ)

= L0(α,G; εJ)± L∗1(α,G; εJ) + E±(α,G; εJ).

and two different scattering maps S̃±(α,G, s) = (S±(α,G, s), s), where

S±(α,G, s)=

(
α− µ

∂L∗±
∂G

(α,G; εJ) + O(µ2),G + µ
∂L∗±
∂α

(α,G; εJ) + O(µ2)

)
.

which follow closely the level curves of the Hamiltonians L∗±. More
precisely, up to O(µ2) terms, S± is given by the time −µ map of the
Hamiltonian flow of Hamiltonian L∗±. The O(µ2) remainder will be
negligible as long as

|µ| �
∣∣∣∣∂L∗±∂G

∣∣∣∣ , ∣∣∣∣∂L∗±∂α
∣∣∣∣ ,

which is true as long as 0 < µ� µ∗ = e−(c/εJ)
3/3.

A. Delshams (UPC) Global instability in the ERTBP GDI Paris 2018, January 15th 31 / 36



The ERTBP (µ > 0) Two different scattering maps

One has to check that the foliations of L∗± = constant are different,
since this will imply that the scattering maps S± are different. From

{L∗+,L∗−} = {L0 + L∗1 + · · · ,L0 − L∗1 + · · · }
= −2{L0,L∗1}+ E3

one computes

{L0,L∗1} = −
15πεJL∗1d sinα

8G3B2 .

The level curves of L∗+ and L∗− are transversal in the region
G ≥ C > 32 and εJG ≤ c < 1/8, except for the three curves α = 0,
α = π and d = 0, which are transversal to any of these level curves of
L∗+ and L∗−, see next slide.
Indeed, this is clear for the lines α = 0 and α = π, and the same
happens for the curve d = 0 using its complete expression.
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The ERTBP (µ > 0) Two different scattering maps

Figure: Illustration of the level Sets of L∗
+ (L∗

−) in Blue (Red) and d = 0 in
Green
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The ERTBP (µ > 0) Strategy for diffusion

Apart from these three curves α = 0, π and d = 0, at any point in
the plane (α,G) the slopes dG/dα of the level curves of L∗+ and
L∗− are different.
We can choose which level curve increases more the value of G
(see next slide).
In the same way, we can find trajectories along which the angular
momentum performs arbitrary excursions.
Strictly speaking, this mechanism only produces pseudo-orbits,
that is, heteroclinic connections between different periodic orbits
in the infinity manifold which are commonly known as transition
chains after Arnold.
The existence of true orbits relies on shadowing methods
[Moeckel02-07,Gidea-Llave06,Gidea-Llave-Seara14,
Guardia-Martı́n-Seara-Sabbagh17].
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The ERTBP (µ > 0) Strategy for diffusion

Figure: Zone of diffusion: Level curves of L∗
+ (L∗

−) in blue (red) and diffusion
trajectories in green.
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The ERTBP (µ > 0) Strategy for diffusion

Theorem (Main Result again)

Let G∗1 < G∗2 large enough and εJ > 0, µ > 0 small enough. More
precisely C ≤ G∗1 < G∗2 ≤ c/εJ and 0 < µ < µ∗ = c

C e−(8εJ)
−3/3, for

C < 32 large enough and c < 1/8 small enough. Then, for any finite
sequence of values Gi ∈ (G∗1,G

∗
2), i = 1, . . . ,n, there exists a trajectory

of the RPETB such that G(Ti) = Gi , i = 1, . . . ,n for some
0 < Ti < Ti+1. In particular, for any two values G1 < G2 ∈ (G∗1,G

∗
2),

there exists a trajectory such that G(0) < G1, and G(T ) > G2 for some
time T > 0.
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