Asymptotic density of collision orbits in the Restricted Planar Circular 3 Body Problem

Marcel Guàrdia, Vadim Kaloshin, Jianlu Zhang

Universitat Politècnica de Catalunya

January 17, 2018

January 17, 2018

1 / 24

Marcel Guàrdia (UPC)

The 3 body problem

• Consider three bodies q_1 , q_2 and q_3 with masses m_1 , m_2 , $m_3 > 0$,

$$rac{d^2 q_i}{dt^2} = \sum_{j=1, j
eq i}^3 m_j rac{q_j - q_i}{\|q_j - q_i\|^3}, \qquad q_i \in \mathbb{R}^3$$

- Long term behavior?
- Chazy (1922): Final motions Behavior of the bodies $q_k(t)$ as $t \to \pm \infty$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Chazy classification

- Types of final motions:
 - \mathcal{H}^+ : $|r_k| o \infty, \ |\dot{r}_k| o c_k
 eq 0$ as $t o +\infty;$
 - \mathcal{HP}_k^+ : $|r_k| \to \infty$, $|\dot{r}_k| \to 0$, $|\dot{r}_i| \to c_i > 0$ $(i \neq k)$;
 - \mathcal{HE}_k^+ : $|r_k| \to \infty$, $|\dot{r}_i| \to c_i > 0$ $(i \neq k)$, $\sup_{t \ge 0} |r_k| < \infty$;
 - \mathcal{PE}_k^+ : $|r_k| \to \infty$, $|\dot{r}_i| \to 0$ $(i \neq k)$, $\sup_{t \ge 0} |r_k| < \infty$;
 - \mathcal{P}_+ : $|r_k| \to \infty, |\dot{r}_k| \to 0;$
 - \mathcal{B}^+ : $\sup_{t\geq 0} |r_k| < \infty$;
 - \mathcal{OS}^+ : $\limsup_{t\to\infty} \max_k |r_k| = \infty$, $\liminf_{t\to\infty} \max_k |r_k| < \infty$.
- Classification for trajectories defined for all time.
- Some orbits are not defined for all time: orbits hitting collisions.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Collision orbits

$$rac{d^2 q_i}{dt^2} = \sum_{j=1, j
eq i}^3 m_j rac{q_j - q_i}{\|q_j - q_i\|^3}, \qquad q_i \in \mathbb{R}^2$$

• Collision set:
$$C = \{q_1 = q_2\} \cup \{q_1 = q_3\} \cup \{q_2 = q_3\}$$

• Collision orbit: orbit which hits a collision at some time $t = t^*$.

(日)

Herman conjecture

- Fix the center of mass at the origin.
- Reparameterize the flow so that it takes infinite time to get to collision.
- Non-wandering set: Consider a dynamical system φ : X → X, x ∈ X is non-wandering if for every open neighborhood U of x and any N satisfies φⁿ(U) ∩ U ≠ Ø for some n > N.
- Herman question: Is the non-wandering set nowhere dense in all energy levels?
- In particular: Is the set of bounded orbits nowhere dense?

イロト 不得 とうせい かほとう ほ

How abundant/rare are collision orbits?

- Saari: The set of collision orbits has measure zero.
- Alexeev conjecture (1981): Is there an open set U in phase space posessing a dense subset D ⊂ U whose points lead to collision?
- This conjecture goes back to Siegel.
- If Alexeev conjecture is true, would imply a dense set of bounded orbits.
- Could Alexeev conjecture lead to a negative answer to Herman conjecture?
- To understand Alexeev conjecture: consider the case $m_2 = m_3 = 0$.

The case: $m_2 = m_3 = 0$

- Body 1 does not move.
- Body 2 and 3

$$\frac{d^2 q_i}{dt^2} = m_1 \frac{q_1 - q_i}{\|q_1 - q_i\|^3}$$

form a 2 body problem.

Place them on ellipses.

- Take ellipses that intersect transversally.
- They form an open set in phase space foliated by 2-tori.
- All solutions are either periodic or quasi-periodic

The case: $m_2 = m_3 = 0$

- If periods of q₂ and q₃ are inconmensurable, collision orbits are dense in this T².
- Periods is $2\pi a^{3/2}$ where *a* is the semimajor axis of the ellipse.
- For a dense set of *a*'s the periods are inconmensurable.

Tori with dense collision orbits are dense in an open set.

General case: $m_2, m_3 > 0$

- Alexeev: Does density still hold?
- For $m_2, m_3 > 0$ small, this is not a regular perturbation problem.
- The system blows up in a small neighborhood of collisions.
- We consider a simpler model: The Restricted Planar Circular 3 Body problem.

< 日 > < 同 > < 三 > < 三 >

The Restricted Planar Circular 3 Body problem

- Three bodies of masses 1μ , μ and 0 under the effects of the Newtonian gravitational force.
- Primaries q_1 and q_2 orbiting on circles.
- Rotating coordinates:
 - Primaries at $q = (-\mu, 0)$ and $q = (1 \mu, 0)$
 - Dynamics of the third body q is given by the 2 dof Hamiltonian

$$H(q,p,t) = rac{\|p\|^2}{2} - (p_2q_1 - p_1q_2) - rac{1-\mu}{\|q+\mu\|} - rac{\mu}{\|q-(1-\mu)\|}$$

• Phase space: $\mathbb{R}^4 \setminus \{\text{collisions}\}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 うの()

Main Result: Collisions are asymptotically dense

Theorem (M. G. – V. Kaloshin – J. Zhang)

Consider the RPC3BP. There exists an open set $\mathcal{U} \subset \mathbb{R}^4$ and $\tau > 0$, independent of μ , such that, for μ small enough, there is a μ^{τ} -dense set $\mathcal{D} \subset \mathcal{U}$ whose points lead to collision.

• μ^{τ} dense $\equiv \mu^{\tau}$ neighborhoods of all points in \mathcal{D} cover \mathcal{U} .

• So far
$$au$$
 can be taken $au=rac{1}{17+\sigma}$ for any $\sigma>0.$

• \mathcal{U} gives open sets in the energy level H = h for energies

$$h\in\left(-rac{3}{2},\sqrt{2}
ight).$$

- ・ 同 ト ・ ヨ ト - - ヨ

The set \mathcal{U}

- The set $\ensuremath{\mathcal{U}}$ can be easily caracterized in terms of Delaunay coordinates:
 - L square root of the semimajor axis of the ellipse.
 - G is the angular momentum.
 - ℓ is the mean anomaly.
 - g is the argument of the perihelion with respect the primaries line.
- Then $\mathcal U$ is the interior of any compact set contained in

$$\mathcal{V} = \left\{ (\ell, g, L, G) \in \mathbb{T}^2 \times (0, +\infty) \times (-L, 0) \cup (0, L) : \\ \frac{G^2}{1+e} < 1 < \frac{G^2}{1-e}, \quad H(\ell, g, L, G) \in \left(-\frac{3}{2}, \sqrt{2}\right) \right\}.$$

where
$$e = \sqrt{1 - \frac{G^2}{L^2}}$$
.

< 日 > < 同 > < 三 > < 三 >

The set \mathcal{U}

- \mathcal{U} corresponds to where in the unperturbed case ($\mu = 0$) the ellipses of the two bodies intersect transversally.
- In particular we only consider collisions with the small primary at $(1 \mu, 0)$.
- The same set were the existence of second species periodic solutions are looked for (Niederman, Marco, Bolotin, McKay,...)
- Collisions with the massive primary Punctured tori: Chenciner, Llibre, Féjoz, Zhao.

Some ideas of the proof

- Take any point P ∈ U: we want to find Q μ^τ-close to it hitting a collision.
- Case $\mu = 0$:
 - \mathcal{U} foliated by 2 dimensional tori.
 - Choose Q in an orbit in a non-resonant torus hitting collision (they are dense).
- Q may need a very long time to hit collision.
- Case $\mu > 0$: Choose a $\mu^{3\tau}$ -long curve μ^{τ} -close to P and show that a point in this curve hits a collision.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Some ideas of the proof: three regimes

- Far from collision (points $\mu^{3\tau}$ away from collision) the zero mass body q (basically) only notices the main primary: nearly integrable setting.
- Transition zone: q notices the two primaries but orbits spend there very short time.
- Small neighborhood of the collision (points ρμ^{1/2} away from collision with ρ ≫ 1): q (basically) only notices the small primary A different nearly integrable setting.

▲日▼▲□▼▲□▼▲□▼ □ ○○○

Regime 1: far from collision

- We are in a nearly integrable regime.
- Problem: the point may need a very long time to reach Regime 2.
- We apply KAM.
- KAM is global: it cannot be applied directly due to the collisions
- Remove the collision by multiplying H by a bump function supported at $\mu^{3\tau}$ -ball centered at the collision.
- The modified Hamiltonian is close to a 2 body problem (in low regularity).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Regime 1: far from collision

- We want to apply KAM with lowest possible regularity: the more regularity, the worse estimate on the Hamiltonian with bump functions.
- Constant type frequencies are $\gamma\text{-dense}$

$$|\boldsymbol{q}\omega-\boldsymbol{p}|\geq rac{\gamma}{|\boldsymbol{q}|}.$$

- We apply Herman version of KAM (for C^{3+σ} maps and constant type frequencies): tori are γ-dense.
- Each torus has two (removed) collisions.
- Orbits on the tori are true orbits of the RPC3BP as long as do not intersect a $\mu^{3\tau}$ neighborhood of the collisions.

Regime 1: How to reach well Regime 2

- We wanted: any point P has a $\mu^{3\tau}$ -long curve μ^{τ} -close to it and a point in this curve hits collision.
- Take a KAM torus μ^{τ} close to P and $\mu^{3\tau}$ -long curve in this torus

Regime 1: How to reach well Regime 2

 The forward orbit of the small curve has to hits "well" the puncture around one of the collision so that it can be sent forward to Regimes 2 and 3.

January 17, 2018

19 / 24

• Well:

- The image of the segment hits the half of the boundary of the neighborhood where the velocity is pointing inwards.
- The orbit cannot have intersected before the punctures around collisions (we want a true orbit of RPC3BP!).
- Moreover: the tangent vectors at the hitting points are close to parallel and velocity is of order ~ 1 .

Marcel Guàrdia (UPC)

Regime 1: far from collision

- We want to optimize the density coefficient
- Small γ : gives better density of tori.
- To have the segment hitting well we need to avoid close encounters with collisions before a good hitting.
- We need a strong Diophantine condition $\rightarrow \gamma$ big.
- KAM + Non-homogeneous Dirichlet Theorem leads to

$$\gamma = \mu^{ au} \quad ext{with} \quad au = rac{1}{17 + \sigma}, \quad \sigma > 0.$$

イロト 不得 トイヨト イヨト 二日

Regime 2

- Regime 2: $\mu^{3\tau}$ -close to collision and $\rho\mu^{1/2}$ -far to collision with $\rho \gg 1$.
- It is a small annulus of width $\mu^{3\tau}$ where the two bodies are "not too close".
- We use the true RPC3BP.
- Velocity of order ~ 1 (collisions are "far enough" to control it).
- Thus: the flow is almost tubular.
- Conclusion: the propagated segment goes from the outer to the inner boundary with almost constant velocity.

▲日▼▲□▼▲□▼▲□▼ □ ○○○

• The influence of the small primary is dominant.

• Flow far from tubular and close to a new 2 body problem (close to collision).

• Apply Levi-Civita regularization

Analyze backward orbits departing from collisions

< 日 > < 同 > < 三 > < 三 >

Levi Civita coordinates

• In (scaled) Levi-Civita coordinates, the RPC3BP becomes

$$\mathcal{K}(z,w) = rac{1}{2}(|w|^2 - |z|^2) + \mu^{1/2}\mathcal{O}_4(z,w)$$

where z = 0 is the collision set.

- Run backwards the collision orbits to the boundary between Regimes 2 and 3.
- Restricting to the level of energy, they give a curve at the boundary.
- Consider the incoming curve from Regime 2 in these coordinates.
- Plot these two curves in the plane $(\arg(z), \arg(w))$.

▲日▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー 今久の

The collision orbit

They are both C^0 curves: they must intersect.

Marcel Guàrdia (UPC)

January 17, 2018 24 / 24

э