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Generalized complex geometry

M?" smooth manifold
H e Q‘E,(M)

Generalized Geometry (Hitchin, Gualtieri, 2000's):
T™M ~ TM:=TM&® T*M

Generalized complex structures

A GC structure on M is J € End(TM & T*M) s.t.
e J?=-—1.
o J orthogonal w.rt (X +&, Y +n) =n(X)+£(Y).
o +i-eigenbundle L C T« M is integrable w.r.t.

[[X—l—f,Y—Fn]] = [X, Y]+Lx?7—iyd€+iyfx/‘/
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Generalized complex geometry (2)

Examples
e | complex structure

-1 0 ™ ™\ .
:>j,:(0 /*)'(T*M)_)<T*I\/l> is GC.

: 0 —w .
e w symplectic form = J, = w 0 is GC.

In general:

J = (: Q) , Q Poisson.
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@ Introduction: Generalized complex geometry
@ Stable GC structures

© Logarithmic and elliptic symplectic geometry

@ Real-oriented blow-up: Relation between log and elliptic symplectic
geometry

© Local neighbourhoods of Lagrangian submanifolds

@ Outlook
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Stable GC structures

e Cavalcanti, Gualtieri 2006/2015

e Examples: GC, neither complex nor
symplectic

e (Up to gauge equivalence) determined by
Poisson structure Q.

Q@ non-denerate except on D = codim-2
submanifold. (On D: rank dim M — 4)

Write: w = Q!
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Logarithmic and elliptic symplectic geometry

Logarithmic Elliptic

Z = codim. 1 D = codim. 2

(X7Y2,---;}’2n)7ZZ{XZO} (r’07y37"')’D:{r:O}

TM(—log 2) TM(—log|D|)

— (x9 9 9 —(p2 0 08 0
Xox2 By By - rar’ae’ays""7ay2n>

T*M(log Z) T*M(log|DJ)

= devdyQa s >dy2n>

= <d_rrad9ad_y3a S 7dy2n>

w € T(AN’T*M(log2))
non-degenerate and dw = 0

w € T(A’T*M(log|D|))
non-degenerate and dw = 0
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Stable GC structures

o Cavalcanti, Gualtieri 2006/2015
e Examples: GC, neither complex nor
symplectic
e (Up to gauge equivalence) determined by
Poisson structure Q.
Write: w = Q!

D co-oriented, w elliptic symplectic with
r€Se) W = 0.

w:g/\Q/+d9/\QR+O’, Q/,Q/%O'GQ.(D)
r

do
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Lagrangian branes

L™ C M*" Lagrangian <L N D smooth,
T(Lﬂ D) =TLN TD‘LmD and

tjw = 0.
e Case 1: L D, dim(LND)=n-—2.

elliptic structure,
“Generalized complex brane”

e Case 2:
LND=9Ldm(LND)=n-—1.
logarithmic structure,

“Lagrangian brane with boundary”
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Examples: Lefschetz thimbles in stable GC Lefschetz
fibrations

Boundary Lefschetz fibration (Cavalcanti, Klaasse '17):
D fibres over boundary 0.

Well-defined notion for stable GC Lefschetz fibration:
w compatible with f.

Can extend Lefschetz thimbles into D.
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Real oriented blow-up

Blp:D— D ND oriented < ND com-
is U(1)-principal bundle plex.
{log vector fields & forms} <+ {elliptic vector fields & forms}
@ = p*(w) log symplectic w stable GC
with:

@ioresw=20

o0
] dl'a%wb =0
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Branes under real oriented blow-up

D
L ¢ M Lagrangian, Lh D,LND =8
o Case 1: 2 ¢ T(LN D) = L:= B(L) M D, smooth brane
without boundary.

r~

o Case 2: g—e not tangent to L N E,Bh injective.

= L := [(L) brane with boundary.
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Local neighbourhoods and small deformations

Lagrangian neighbourhood theorems:

o log symplectic geometry: (L,dL) C (M, D, &) compact,
L D. = (U,UND) = (T*L(logdL),cy).

e elliptic symplectic geometry: L C M compact, L h D.
= (U,UND) = (T*L(log|L N DJ),wo).

e wedge neighbourhood for Lag. branes with boundary:
(L,0L) C (M, D,w) compact.
= B(U),(U,UND) = T*L(logAL) “wedge
neighbourhood".
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Small deformations of Lagrangians

“Small” = Inside Lagrangian neighbourhood, graph of one-form

Small deformations (up to Ham. isotopy) = First cohomology

o log Lagrangians: H'(Q°*(L,logdL))
o elliptic Lagrangian, L D : H'(Q°*(L, log|L N DJ))
o Lagrangian brane with boundary: H*(Q*(L, logdL))

Natural differential complex associated to brane.
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Fukaya category for stable GC manifolds?

Stable Hamiltonian system in neighbourdhood of D
Neighbourhood of puncture in M\ D:

w:g/\a—i-ﬁ, aﬂEQ'( Y, a AT A0
SY(ND)
N\
@ ] (a

=-Well-defined wrapped Fukaya category?
How to take D and full GC structure into account?
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