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INTRODUCTION



Restricted circular 3 body problem

G+ VVu(q)-2iq = w Jluff <1 M

in the rotating frame (RC3BP), u being the control and

—_ 11412 1-p y
Vila) = 3lal"+ g + =

@

Figure: Hill’s region and Lagrange points for the RC3BP, figure from [1].
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Control affine system

— Optimization problem :

X(t) = Fo(x(t)) + 1w (t)F1 (x(t)) + wp(t)Fa(x(t)), uf +uj < 1
0) =
x(0) = %o )
x(te) = x¢
tf = min.
Fi are smooth, i = 0,1,2, xo,xf € M a 4 dimensional manifold (can be generalized
to 2n with n controls).
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Control affine system

— Optimization problem :

X(t) = Fo(x(t)) + 1w (t)F1 (x(t)) + wp(t)Fa(x(t)), uf +uj < 1

x(0) = x¢

~ )
x(te) = x¢
tf = min.

Fi are smooth, i = 0,1,2, xo,xf € M a 4 dimensional manifold (can be generalized

to 2n with n controls).

Remark

(1) can be written that way with x = (q,v).

Notation : FU = [Fi,Fj], HU = {Hi,Hj}, 1,] = 0, 1, 2.
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Hypothesis

Assumption :

(A) : rank(F;(x), Fo(x), Fo1(x), Foa(x)) = 4, for all x € M.

Check for the RC3BP.

- Link with controllability when Fy is recurrent (1L = 0 or certain energy levels of
the RC3BP.)
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Hypothesis

Assumption :
(A) = rank(Fq(x), Fa(x), Fo1(x), Fo2(x)) = 4, for all x € M.

Check for the RC3BP.
- Link with controllability when Fy is recurrent (1L = 0 or certain energy levels of
the RC3BP.)

Proposition

Any system of the form § + g(q, q) = u verifies (A).

We will use later the following hypothesis : (B) : [F{,F,] = 0.
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Hamiltonian formulation

Consider an optimal control problem

x = f(x,u)
x(0) = xg, x(tf) = x¢
JE o (x(t), u(t))dt - min

f: MxU - TM a family of smooth vector fields, U C R™.

Définition (Pseudo-Hamiltonian)

V(X’ p) € T;:Ma H(Xa p’u) = <P, f(X’ LL)) - (P(X, LL)

Here H(X: 'P’u) = HO(X’ P) + ‘LL1H1(X, P) + uZHZ(X’ p)’ with Hi(x’ P) = <'P’ FI(X»
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Necessary condition : the PMP

~
’

Théoréeme (P.M.P.)

(x,w) minimum time trajectory then there exists a Lipschitz curve p(t) € T yM" \ {0}
s.t.
- (x,p) is solution of :
p= H(X P u)
p(t), u(t)) = maxgeu H(x(t), p(t), ).
- H(x(t), p(t), u(t)) = 0.
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Necessary condition : the PMP

Théoréeme (P.M.P.)

(x,u) minimum time trajectory then there exists a Lipschitz curve p(t) € T, (y)yM" \ {0}
s.t.
- (x,p) is solution of :

~
’
|

p= H(XP u).

- H(x(t), p(t), u(t)) = maxgeu H(x(t), p(t), 0).
- H(x(t), p(t), u(t)) = 0.

Pros : Autonomous Hamiltonian system.

Cons: Dimension doubled, only necessary condition — existence of optimal control,
singularities.

Solutions of (3) maximizing the Hamiltonian are called extremals. Their projection
on M are extremal trajectories.
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Singularities

Pseudo-Hamiltonian : H(x,p,u) = Hy(x, p) + wiHy(x, p) + quz(x P)

Maximized Hamiltonian : H*(x, p) = Ho(x, p) + \/H (x,p)? + Hy(x, p)?

u= H; — (H;, H,) : discontinuities of the control u are called switchs.
1+ 2
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Singularities

Pseudo-Hamiltonian : H(x,p,u) = Hy(x, p) + wiHy(x, p) + quz(x P)

Maximized Hamiltonian : H*(x,p) = Ho(x, p) + \/H (x,p)? + Hy(x, p)?

u= H; — (H;, H,) : discontinuities of the control u are called switchs.
1+ 2

Définition (Singular locus.)

|

A switch is a discontinuity of the reference control.
The singular locus, or switching surface is defined by
z = {Z = (X’P) € T*M’ H1(X,P) = HZ(Xap) = 0}

|

Définition
Y=YyuX_ uZX, with:
r = {Hu(l)z < Hoz(Z)2 + Hm(Z)2

2 2 2} %, = {Hp(2)* > Hop(2)* + Hoa(2)°),
Lo = {H2(2)” = Hoa(2)" + Hoa(2)"}-
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STRUCTURE OF THE EXTREMAL FLOW



Stratification

Théoréme (J.-B. Caillau, M. O.)

There exists unique solution for system (1) in a neighborhood O of Z, and there is at
most one switch on Os.

- Ifz € £_: The local extremal flow z : (t,zy) € [0,t] X Oz & z(t,z9) € M is
piecewise smooth, and smooth on each strata :

02=50US]UZ

- where Sy is the codimension one submanifold of initial conditions leading to the
switching surface,
-So=0;:\(S;u ).

- Ifz € L, no extremal intersects the singular locus, and therefore, the flow is
smooth on O;.
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Figure 1 - Stratification of the flow into regular submanifolds.
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Regular-singular transition

Théoréme (J.-B. Caillau, M. O., R. Roussarie)

The singular-regular transition is continuous, with singularities in "zInz".

(x,p) » (x,Hy, Hy, Hoq, Hoz) then, in polar coordinates : (Hy, Hy) = (pcoss, psins),
with a time rescaled :

p'=pcoss
Y:is' = g(p, S, E,) —sins = G(p, S, Ev) (4)
E.I = ph(p,s, a)

(i) g, h are smooth functions on an open subset of R xR x D, D C R® compact, h
has values in R®; Semi-hyperbolic equilibria when p =0, G = 0.
(ii) g is smooth in (p cos, psin) and |g| < 1on O.
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Normal form theorem

Proposition (C*-normal form, Caillau, O., Roussarie)

Let u = ps, then there exist A, B, C smooth functions on a neighborhood of D X 0,,
such thatY is C* equivalent to

1

p =—p(1+uA(y,&))
Y? :4s" = s(1+uB(u,&)) (5)
£ =uC(u,§)

The global stable manifold has become S_ = {s = 0}.
For pg, s¢ = 0 consider the two sections X, C {p = po}, parameterized by (s, &) and
L C {s = s¢} parameterized by (p, £).
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Regular-singular transition

A /

Figure 2 - Poincaré map between the two sections.
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Regular-singular transition

Théoréme (J.-B. Caillau, M. O., R. Roussarie)

LetT: Xy - Z; be the Poincaré mapping between the two sections,
T(s0, &0) = (P(S0 £0)s E(S0» &0))- Then, T is a smooth function in (sq In sg, so, &) as there
exist smooth functions R and X defined on a neighborhood of {0} x {0} x D such that

T(s0, &0) = (R(sq In s, 59, £9), X(s0 In 50, 50, &9))-

Proof of the Lemma. Step 1: Make the Jacobian diagonal. Y is equivalent to :

p'=—-p(1+0(p))
X:{s'=s+0((p+]s])?) (6)
&' =pO(p +5s)
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Proof of the Lemma.

Step 2 : Generalization of the Poincaré-Dulac theorem.
X a vector field, we say g is resonant with X if [X,g] =0

Lemme

Let X(x, &) be a smooth vector field in R™ x R*, X(0, &) = 0. Note X, its linear part.
Then, if X1 does not depend on &, it can be formally develop along its resonant
monomials up to a flat term.

The proof of the initial theorem can be adapted since the bracket [X,.] doest not
see & : we reason by induction on the space of homogeneous monomials.
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Proof of the Lemma.

Step 2 : Generalization of the Poincaré-Dulac theorem.
X a vector field, we say g is resonant with X if [X,g] =0

Lemme

Let X(x, &) be a smooth vector field in R™ x R*, X(0, &) = 0. Note X, its linear part.
Then, if X1 does not depend on &, it can be formally develop along its resonant
monomials up to a flat term.

The proof of the initial theorem can be adapted since the bracket [X,.] doest not
see & : we reason by induction on the space of homogeneous monomials.

Here 3 3
X1 = —pa—p + Sa.

Resonant monomials are

k O

3 keN.

k 0 k O
a(&)pu 3 b(&)su 35’ c(E)u
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Proof of the Lemma

So X is formally conjugate to

p' = —p(1+) 15 ak(a)uk)
Wids = s(1+Y ., br(E)u®)
E,’ =p ka Ck(a)uk
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Proof of the Lemma

So X is formally conjugate to

1

p = —p(1+ ) 1py ar(Eu
Wiis' =s(1+) 5, b (E)u”)
g = P ka Ck(a)uk

“)

Step 3: Generalization of Borel theorem, proven by Malgrange to realize the con-
jugation and W by smooth functions (field) : X = X% + Ry, where Ry has a zero
infinite jet.
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Proof of the Lemma

So X is formally conjugate to

1

p = —p(1+ ) 1py ar(Eu
Wids = s(1+Y ., br(E)u®)
g = P Zkz1 Ck(E)uk

“)

Step 3: Generalization of Borel theorem, proven by Malgrange to realize the con-
jugation and W by smooth functions (field) : X = X% + Ry, where Ry has a zero
infinite jet.

Step 4: Kill the flat perturbation. Path method : equivalent to solve

[Xt, Zt] = Reo. (7)

with X a path of field joining X and X*°, with unknown Z;.
Using normal hyperbolicity, (7) has a solution (Roussarie, 1975).
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Sketch of the proof

A consequence of the normal form theorem.

1

s'=s
(Y”) equivalent to {p' = —p(1 + uA(u, £)) (8)
& =uCu, &)

Transition time : t(so) = In(s¢/so),
(u=ps)

so =0,

Z:{u' = WAy, &), )
& =uC(u, &),

to integrate in time t(so) from I, to X;.
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Sketch of the proof

- Rescale the time : Z = SLOZ :

so =0,
u' = —(u?/so)A(w, &), (10)
&' = (u/s0)Clu, &).

Its flow @ is well defined and the Poincaré mapping is obtained by evaluating it in
time so In(s¢/sg) :

T(s0, &) = @(so In(s¢/50), 505 PoS0, E0)-
Issue : Z is not smooth.
Blow up on {u=s=0}: f(u,s,&) = (n,s, &) withn =u/s
™' sends a rectangle —1p <1 < 1o, =S¢ < S < Sp ON a cone —Tps < U < Tos. Lemma
= the flow of Z is contained in that cone.
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Sketch of the proof

The blown up vector field writes:

o =0,
Z:1n" = -1 AMmso, &), (1)
&' =1nCnso, &).

and is smooth.
Denote ¢ = (7, &) its flow, we only need to evaluate it on a small band sy € [—s1, s1],
Mo € [-M, M], on which it is smooth.

T(s0, £0) = (Also In(s¢/50), S0, Po» £0)s &(s0 In(s¢/50), 50, Po o),
which has the desired regularity.
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SUFFICIENT CONDITIONS FOR OPTIMALITY



Let
x = f(x,u)
X(O) Xo, (tf)
/0 ), w )dt - min

be an optimal control problem. Recall, that its pseudo-Hamiltonian is
H(x, p, 1) = {p, f(x))—@(x, 1), assume that its maximized Hamiltonian H* is smooth.
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Smooth case

Let

x = f(x,u)

x(0) = x, x(tf) = x¢

5" @(x(t), u(t))dt - min

be an optimal control problem. Recall, that its pseudo-Hamiltonian is
H(x, p, 1) = {p, f(x))—@(x, 1), assume that its maximized Hamiltonian H* is smooth.
Let z = (x, p) be an extremal and assume :
((Bo): The reference extremal is normal (meaning po #0).)
(B4): :—;‘O(t, X0, Po) is invertible for t €]0, t¢[.

Théoréme

Under those hypothesis, the reference trajectory x = T1(z) is a local minimizer along
all trajectories with same endpoints.
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Compare using the Poincaré-Cartan invariant along an extremal z(t):

[ pax-rat= [ oo, (0. - H el = [ plxte) ue)at
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Compare using the Poincaré-Cartan invariant along an extremal z(t):

[ pax-rat= [ oo, (0. - H el = [ plxte) ue)at

To compare with every C° curves on M, one has to lift them to T*M.

- Make the canonical projection TT: T*M - M invertible: build a Lagrangian sub-
manifold £, transverse to Ty, M on which TT is invertible (tangent space transversal
to ker dIT) and propagate it by the extremal flow.

L={(t,z),3zp € Lo,z = eXP(tﬁ)(Zo)}

1T is still invertible on £.
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Ly can be chosen so that o« = pdx — H*dtw is exact on L.
Let (X, 1) be any admissible trajectory with same endpoints, denote Z = (X, p) its lift
it to T*M (through TT).

[ ot ana = [ pe)it - HEw.ama > [ poi0 - HE0)at

(12)
but

[ pws0-reEa= [ a= [ a= [ poxn-H e = [ ok ua
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Application to Kepler and the RC3BP

In this case : (B) : [F;,F,]=0= Hy; = 0.
Previous results apply directly to the controlled RC3BP, and

= I ={z,Hi(z) = Hy(z) = 0, Hpa(z)” + Hoa(2)* > 0}
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Application to Kepler and the RC3BP

In this case : (B) : [F;,F,]=0= Hy; = 0.
Previous results apply directly to the controlled RC3BP, and

= I ={z,Hi(z) = Hy(z) = 0, Hpa(z)” + Hoa(2)* > 0}

Proposition

In the controlled Kepler problem and RC3BP switching are instantaneous rotations of
angle 7t of the controlu: if t is a switching time, u(t_) = —u(t,).

We call such switchings m-singularities.
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m-singularities

We can globally bound the number of 7-singularities on a time interval [0, t¢].
Définition (Distance to collisions)

We define & = inf[o,1]q(t)],
81 = infpo.,1q(t) + nl,
& = i"lf[o,tf] [q(t) = (1= ).

. 518
Finally note &,(u) = W-
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m-singularities

We can globally bound the number of 7-singularities on a time interval [0, t¢].

Définition (Distance to collisions)

We define & = inf[o,1]q(t)],
81 = info¢,11q(t) + pl,
& = i"lf[o,tf] [q(t) = (1= ).

. 518
Finally note &,(u) = W-

Proposition

- Keplerian case : Time interval of length 75°/? between two ni-singularities. On a time
interval [0, t¢] the number of such singularities is at most Ny = [ﬁ]

- Controlled RC3BP : Time interval of length 1, 2(u)3/ ? between two n-singularities.
On a time interval [0, t¢] there is at most N, = [W] mt-singularities.
12
- Sturm type estimations.
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Conclusion and open problems

- Well known structure of the extremal flow = Good criteria for optimality in
our case (lack of regularity).

- More general way to treat sufficient conditions for optimal control problems
using degenerate symplectic geometry?

— Global answer to the sufficient condition questions by Fillipov’s theorem:
construct a compact containing the extremals.
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Thank you for
your attention !
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