Real Geometric Quantization

Francisco Presas

ICMAT, CSIC

January 17th, 2018

Francisco Presas Real Geometric Quantization

Contents

Quantization Scheme

- Geometric Quantization
- A la Kostant Quantization

2 Computations and examples

- Classical example
- Semitoric systems and almost toric manifolds

Bertram Kostant.

Nick Woodhouse.

Jędrzej Šniatycki.

Eva Miranda.

Mark Hamilton.

Romero Solha.

・ロト ・日 ・ ・ ヨ ・ ・

Fran Presas.

Francisco Presas Real Geometric Quantization

포 > 문

 Phase space: Symplectic manifold (M, ω).

 Phase space: Symplectic manifold (M, ω).

- Phase space: Symplectic manifold (M, ω).
- Dynamics: defined by a Hamiltonian function by Hamilton's equation:

$$i_{X_H}\omega + \mathrm{d}H = 0.$$

- Phase space: Symplectic manifold (M, ω).
- Dynamics: defined by a Hamiltonian function by Hamilton's equation:

$$i_{X_H}\omega + \mathrm{d}H = 0.$$

Quantum mechanics

Setup

Classical mechanics

- Phase space: Symplectic manifold (M, ω).
- Dynamics: defined by a Hamiltonian function by Hamilton's equation:

$$i_{X_H}\omega + \mathrm{d}H = 0.$$

Quantum mechanics

 Phase space: Complex Hilbert space (H, ⟨, ⟩).

Setup

Classical mechanics

- Phase space: Symplectic manifold (M, ω).
- Dynamics: defined by a Hamiltonian function by Hamilton's equation:

$$i_{X_H}\omega + \mathrm{d}H = 0.$$

Quantum mechanics

 Phase space: Complex Hilbert space (H, ⟨, ⟩).

- Phase space: Symplectic manifold (M, ω).
- Dynamics: defined by a Hamiltonian function by Hamilton's equation:

$$i_{X_H}\omega + \mathrm{d}H = 0.$$

Quantum mechanics

- Phase space: Complex Hilbert space (H, ⟨, ⟩).
- Dynamics: operator defined as a ∈ iu(H), satisfying the equation

$$v(t)=e^{i\mathfrak{a}t}v(0).$$

- Phase space: Symplectic manifold (M, ω).
- Dynamics: defined by a Hamiltonian function by Hamilton's equation:

$$i_{X_H}\omega + \mathrm{d}H = 0.$$

Quantum mechanics

- Phase space: Complex Hilbert space (H, ⟨, ⟩).
- Dynamics: operator defined as a ∈ iu(H), satisfying the equation

$$v(t)=e^{i\mathfrak{a}t}v(0).$$

Not unique: Planck's constant \hbar parameter.

< 17 ▶

æ

Geometric Quantization

 (M,ω)

Francisco Presas Real Geometric Quantization

・ロト ・同ト ・ヨト

æ

Geometric Quantization

(*M*,

$$\omega) \qquad \underbrace{ \begin{array}{c} \text{Quantization condition:} [\omega] \text{ lifts to } H^2(M;\mathbb{Z}). \\ \text{Hilbert space: } L^2(\Gamma(L)). \end{array}}_{\text{Wilbert space: } L^2(\Gamma(L)). \end{array}}$$

Francisco Presas Real Geometric Quantization

< A

э

$$M,\omega) \xrightarrow{\text{Quantization condition:}[\omega] \text{ lifts to } H^2(M;\mathbb{Z}).}_{\text{Hilbert space: } L^2(\Gamma(L)).} (L,\nabla,h) \text{ curv}(\nabla) = -i\omega$$

$$(M,\omega) \xrightarrow{\text{Quantization condition:}[\omega] \text{ lifts to } H^2(M;\mathbb{Z}).} (L,\nabla,h) \operatorname{curv}(\nabla) = -i\omega$$

Hilbert space: $L^2(\Gamma(L)).$

•
$$k = \frac{1}{\hbar} \in \mathbb{Z}_+$$
. Different quantizations given by $L^{\otimes k}$,
curv $(L^{\otimes k}) = -ik\omega$.

• Space too big; i.e. $(T^*N, \omega = d\lambda_{\text{Liouville}}), L = \mathbb{C}$. We obtain $L^2\Gamma(T^*N; \mathbb{C})$, and however we expect $L^2\Gamma(N; \mathbb{C})$.

- k = ¹/_ħ ∈ ℤ₊. Different quantizations given by L^{⊗k}, curv(L^{⊗k}) = −ikω.
- Space too big; i.e. $(T^*N, \omega = d\lambda_{\text{Liouville}}), L = \mathbb{C}$. We obtain $L^2\Gamma(T^*N; \mathbb{C})$, and however we expect $L^2\Gamma(N; \mathbb{C})$.
- Polarizations: A way of reducing the dimension of the Hilbert space.

- k = ¹/_ħ ∈ ℤ₊. Different quantizations given by L^{⊗k}, curv(L^{⊗k}) = −ikω.
- Space too big; i.e. $(T^*N, \omega = d\lambda_{\text{Liouville}}), L = \mathbb{C}$. We obtain $L^2\Gamma(T^*N; \mathbb{C})$, and however we expect $L^2\Gamma(N; \mathbb{C})$.
- Polarizations: A way of reducing the dimension of the Hilbert space. P ⊂ (T^CM = TM ⊗ C, ω_C) regular n-dimensional complex Lagrangian integrable distribution.

向下 イヨト イヨト

Geometric Quantization

- k = ¹/_ħ ∈ ℤ₊. Different quantizations given by L^{⊗k}, curv(L^{⊗k}) = −ikω.
- Space too big; i.e. $(T^*N, \omega = d\lambda_{\text{Liouville}}), L = \mathbb{C}$. We obtain $L^2\Gamma(T^*N; \mathbb{C})$, and however we expect $L^2\Gamma(N; \mathbb{C})$.
- Polarizations: A way of reducing the dimension of the Hilbert space. P ⊂ (T^CM = TM ⊗ C, ω_C) regular n-dimensional complex Lagrangian integrable distribution.
- $\mathcal{P}^{\mathbb{R}} \subset TM$ Lagrangian foliation $\Rightarrow \mathcal{P}^{\mathbb{R}} \otimes \mathbb{C}$ is a polarization.

伺 とう きょう うちょう

Geometric Quantization

- k = ¹/_ħ ∈ ℤ₊. Different quantizations given by L^{⊗k}, curv(L^{⊗k}) = −ikω.
- Space too big; i.e. (*T***N*, ω = dλ_{Liouville}), *L* = C. We obtain L²Γ(*T***N*; C), and however we expect L²Γ(*N*; C).
- Polarizations: A way of reducing the dimension of the Hilbert space. P ⊂ (T^CM = TM ⊗ C, ω_C) regular n-dimensional complex Lagrangian integrable distribution.
- $\mathcal{P}^{\mathbb{R}} \subset TM$ Lagrangian foliation $\Rightarrow \mathcal{P}^{\mathbb{R}} \otimes \mathbb{C}$ is a polarization. $M = T^*N$ then $\mathcal{P}^{\mathbb{R}} = \ker d\pi, \ \pi : T^*N \to N$ projection.

• Fix J a compatible almost-complex structure and define $\mathcal{P}^J = TM^{1,0}$ integrable $\Leftrightarrow J$ integrable.

- Fix J a compatible almost-complex structure and define $\mathcal{P}^J = TM^{1,0}$ integrable $\Leftrightarrow J$ integrable.
- $\mathcal{H} = L^2 H^0(M; \mathcal{J}), \mathcal{J}$ sheaf of parallel sections, i.e. $\forall U \in \operatorname{Open}(M), s \in \mathcal{J}(U)$ iff $\nabla_{\mathcal{P}} s = 0$.

- Fix J a compatible almost-complex structure and define $\mathcal{P}^J = TM^{1,0}$ integrable $\Leftrightarrow J$ integrable.
- $\mathcal{H} = L^2 H^0(M; \mathcal{J}), \mathcal{J}$ sheaf of parallel sections, i.e. $\forall U \in \operatorname{Open}(M), s \in \mathcal{J}(U)$ iff $\nabla_{\mathcal{P}} s = 0$.
 - $M = T^*N, \mathcal{P}^{\mathbb{R}} = \ker d\pi$ then $H^0(M; \mathcal{J}) \equiv \{\text{sections constant along leaves}\}$. We obtain $\mathcal{H} = L^2\Gamma(N)$.

- Fix J a compatible almost-complex structure and define $\mathcal{P}^J = TM^{1,0}$ integrable $\Leftrightarrow J$ integrable.
- $\mathcal{H} = L^2 H^0(M; \mathcal{J}), \mathcal{J}$ sheaf of parallel sections, i.e. $\forall U \in \operatorname{Open}(M), s \in \mathcal{J}(U)$ iff $\nabla_{\mathcal{P}} s = 0$.
 - $M = T^*N, \mathcal{P}^{\mathbb{R}} = \ker d\pi \text{ then} \\ H^0(M; \mathcal{J}) \equiv \{ \text{sections constant along leaves} \}. \text{ We obtain} \\ \mathcal{H} = L^2 \Gamma(N).$
 - **2** \mathcal{P}^J then $H^0(M; \mathcal{J}) \equiv \{\text{Holomorphic sections}\}.$

- Fix J a compatible almost-complex structure and define $\mathcal{P}^J = TM^{1,0}$ integrable $\Leftrightarrow J$ integrable.
- $\mathcal{H} = L^2 H^0(M; \mathcal{J}), \mathcal{J}$ sheaf of parallel sections, i.e. $\forall U \in \operatorname{Open}(M), s \in \mathcal{J}(U)$ iff $\nabla_{\mathcal{P}} s = 0$.
 - $M = T^*N, \mathcal{P}^{\mathbb{R}} = \ker d\pi$ then $H^0(M; \mathcal{J}) \equiv \{\text{sections constant along leaves}\}.$ We obtain $\mathcal{H} = L^2 \Gamma(N).$

2 \mathcal{P}^J then $H^0(M; \mathcal{J}) \equiv \{\text{Holomorphic sections}\}$.

• *H* Hamiltonian, $s \in \mathcal{H}$.

$$\hat{H}s = -i\hbar \nabla_{X_H}s + Hs.$$

A la Kostant Quantization

• Algebraic geometry provides a way of dealing with poles.

A la Kostant Quantization

- Algebraic geometry provides a way of dealing with poles.
- So (Kostant) we want to replace $L^2 H^0(M; \mathcal{J})$ by $\mathcal{Q}(M) := \bigoplus_{j \ge 0} H^i(M; \mathcal{J}).$

A la Kostant Quantization

- Algebraic geometry provides a way of dealing with poles.
- So (Kostant) we want to replace $L^2 H^0(M; \mathcal{J})$ by $\mathcal{Q}(M) := \bigoplus_{j \ge 0} H^i(M; \mathcal{J}).$

Theorem (Šniatycki)

$$(f_1, \ldots, f_n) : (M^{2n}, \omega) \to B^n \subset \mathbb{R}^n$$
 integrable system, then $L^2 H^0(M; \mathcal{J}) = \mathcal{Q}(M).$

イロト 不得ト イヨト イヨト

Computation Kit

 $0 \to \mathcal{J} \to \mathcal{S}^0_{\mathcal{P}} \xrightarrow{\nabla} \mathcal{S}^1_{\mathcal{P}} \xrightarrow{d^{\nabla}} \mathcal{S}^2_{\mathcal{P}} \xrightarrow{d^{\nabla}} \cdots \text{ exact fine resolution.}$

Francisco Presas Real Geometric Quantization

伺下 イヨト イヨト

Computation Kit

- $0 \to \mathcal{J} \to \mathcal{S}_{\mathcal{P}}^{0} \xrightarrow{\nabla} \mathcal{S}_{\mathcal{P}}^{1} \xrightarrow{d^{\nabla}} \mathcal{S}_{\mathcal{P}}^{2} \xrightarrow{d^{\nabla}} \cdots \text{ exact fine resolution.}$
- Exactness: Poincaré Lemma works for generic singular polarizations (Miranda, Solha).

吊 ・ ・ ヨ ト ・ ヨ ト

Computation Kit

- $0 \to \mathcal{J} \to \mathcal{S}^0_{\mathcal{P}} \xrightarrow{\nabla} \mathcal{S}^1_{\mathcal{P}} \xrightarrow{d^\nabla} \mathcal{S}^2_{\mathcal{P}} \xrightarrow{d^\nabla} \cdots \text{ exact fine resolution.}$
- Exactness: Poincaré Lemma works for generic singular polarizations (Miranda, Solha).
- **3** $H^{j}(M; \mathcal{J}) = 0$ for j > n.

Computation Kit

- $0 \to \mathcal{J} \to \mathcal{S}^0_{\mathcal{P}} \xrightarrow{\nabla} \mathcal{S}^1_{\mathcal{P}} \xrightarrow{d^\nabla} \mathcal{S}^2_{\mathcal{P}} \xrightarrow{d^\nabla} \cdots \text{ exact fine resolution.}$
- Exactness: Poincaré Lemma works for generic singular polarizations (Miranda, Solha).
- $I = H^{j}(M; \mathcal{J}) = 0 \text{ for } j > n.$
- Mayer-Vietoris works $M = M_1 \cup M_2$ (Miranda, P, Solha)

$$\cdots \to H^{j}(M; \mathcal{J}) \to H^{j}(M_{1}; \mathcal{J}) \oplus H^{j}(M_{2}; \mathcal{J}) \to$$
$$H^{j}(M_{1} \cap M_{2}; \mathcal{J}) \to H^{j+1}(M; \mathcal{J}) \to \cdots$$

Computation Kit

- $0 \to \mathcal{J} \to \mathcal{S}^0_\mathcal{P} \xrightarrow{\nabla} \mathcal{S}^1_\mathcal{P} \xrightarrow{d^\nabla} \mathcal{S}^2_\mathcal{P} \xrightarrow{d^\nabla} \cdots \text{ exact fine resolution.}$
- Exactness: Poincaré Lemma works for generic singular polarizations (Miranda, Solha).
- $I \quad H^{j}(M; \mathcal{J}) = 0 \text{ for } j > n.$
- Mayer-Vietoris works $M = M_1 \cup M_2$ (Miranda, P, Solha)

$$\cdots
ightarrow H^{j}(M; \mathcal{J})
ightarrow H^{j}(M_{1}; \mathcal{J}) \oplus H^{j}(M_{2}; \mathcal{J})
ightarrow H^{j}(M_{1} \cap M_{2}; \mathcal{J})
ightarrow H^{j+1}(M; \mathcal{J})
ightarrow \cdots$$

Künneth (Miranda, P):

$$H^{j}(M_{1} \times M_{2}; \mathcal{J}_{1} \boxtimes \mathcal{J}_{2}) \cong \bigoplus_{j=p+q} H^{p}(M_{1}; \mathcal{J}_{1}) \oplus H^{q}(M_{2}; \mathcal{J}_{2})$$

whenever M_1 admits a good cover, the geometric quantization associated to (M_2, \mathcal{J}_2) has finite dimension and M_2 is a submanifold of a compact manifold.

< 1 →

Regular integrable system

$$\begin{split} I_j &= (-\varepsilon, \varepsilon), j = 1, 2.\\ \text{Computation 1: } \mathcal{Q}(I_1 \times I_2, \omega = \mathsf{d} x_1 \wedge \mathsf{d} x_2; \mathcal{P} = \partial_{x_2}). \end{split}$$

< 1 →

Regular integrable system

$$I_{j} = (-\varepsilon, \varepsilon), j = 1, 2.$$

Computation 1: $Q(I_{1} \times I_{2}, \omega = dx_{1} \wedge dx_{2}; \mathcal{P} = \partial_{x_{2}}).$

•
$$H^0(I_1 \times I_2; \mathcal{J}) = C^{\infty}(I_1, \mathbb{C}),$$

< 1 →

Regular integrable system

$$\begin{split} &I_j = (-\varepsilon, \varepsilon), j = 1, 2.\\ &\text{Computation 1: } \mathcal{Q}(I_1 \times I_2, \omega = \mathsf{d} x_1 \wedge \mathsf{d} x_2; \mathcal{P} = \partial_{x_2}).\\ &\bullet \ &H^0(I_1 \times I_2; \mathcal{J}) = C^\infty(I_1, \mathbb{C}), \end{split}$$

•
$$H^1(I_1 \times I_2; \mathcal{J}) = 0.$$

伺 ト く ヨ ト く ヨ ト

Regular integrable system

$$\begin{split} I_{j} &= (-\varepsilon, \varepsilon), j = 1, 2.\\ \text{Computation 1: } \mathcal{Q}(I_{1} \times I_{2}, \omega = \mathsf{d}x_{1} \wedge \mathsf{d}x_{2}; \mathcal{P} = \partial_{x_{2}}).\\ \bullet \ H^{0}(I_{1} \times I_{2}; \mathcal{J}) &= C^{\infty}(I_{1}, \mathbb{C}),\\ \bullet \ H^{1}(I_{1} \times I_{2}; \mathcal{J}) &= 0. \end{split}$$

Computation 2: $\mathcal{Q}(I_1 \times \mathbb{S}_2^1, \omega = \mathsf{d} x_1 \wedge \mathsf{d} \theta_2; \mathcal{P} = \partial_{\theta_1}).$

$$\begin{split} I_{j} &= (-\varepsilon, \varepsilon), j = 1, 2.\\ \text{Computation 1: } \mathcal{Q}(I_{1} \times I_{2}, \omega = \mathsf{d}x_{1} \wedge \mathsf{d}x_{2}; \mathcal{P} = \partial_{x_{2}}).\\ \bullet \ H^{0}(I_{1} \times I_{2}; \mathcal{J}) &= C^{\infty}(I_{1}, \mathbb{C}),\\ \bullet \ H^{1}(I_{1} \times I_{2}; \mathcal{J}) &= 0.\\ \text{Computation 2: } \mathcal{Q}(I_{1} \times \mathbb{S}^{1}_{2}, \omega = \mathsf{d}x_{1} \wedge \mathsf{d}\theta_{2}; \mathcal{P} = \partial_{\theta_{1}}). \end{split}$$

• $H^0(I_1 \times \mathbb{S}^1_2; \mathcal{J}) = 0$ since BS leaves are isolated.

$$\begin{split} &I_j = (-\varepsilon, \varepsilon), j = 1, 2.\\ &\text{Computation 1: } \mathcal{Q}(I_1 \times I_2, \omega = \mathsf{d} x_1 \wedge \mathsf{d} x_2; \mathcal{P} = \partial_{x_2}).\\ &\bullet \ H^0(I_1 \times I_2; \mathcal{J}) = C^\infty(I_1, \mathbb{C}),\\ &\bullet \ H^1(I_1 \times I_2; \mathcal{J}) = 0.\\ &\text{Computation 2: } \mathcal{Q}(I_1 \times \mathbb{S}^1_2, \omega = \mathsf{d} x_1 \wedge \mathsf{d} \theta_2; \mathcal{P} = \partial_{\theta_1}). \end{split}$$

• $H^0(I_1 \times \mathbb{S}^1_2; \mathcal{J}) = 0$ since BS leaves are isolated.

• Consider
$$I_1 \times \mathbb{S}_2^1 = U \cup V = (I_1 \times (0.4, 1.1)) \cup (I_1 \times (-0.1, 0.6)).$$

$$H^0(V)\oplus H^0(U)\hookrightarrow H^0(W_1)\oplus H^0(W_2)\twoheadrightarrow H^1(I_1 imes \mathbb{S}^1_2).$$

$$H^0(V)\oplus H^0(U) \hookrightarrow H^0(W_1)\oplus H^0(W_2)\twoheadrightarrow H^1(I_1 imes \mathbb{S}^1_2).$$

$$egin{aligned} & H^0(V) = H^0(U) = H^0(W_1) = \Gamma(I_1 imes \{0\}; \mathbb{C}) ext{ and } \ & H^0(W_2) = \Gamma(I_1 imes \{0.5\}; \mathbb{C}). \end{aligned}$$

$$H^0(V)\oplus H^0(U) \hookrightarrow H^0(W_1)\oplus H^0(W_2)\twoheadrightarrow H^1(I_1 imes \mathbb{S}^1_2).$$

$$egin{aligned} & H^0(V) = H^0(U) = H^0(W_1) = \Gamma(I_1 imes \{0\}; \mathbb{C}) ext{ and } \ & H^0(W_2) = \Gamma(I_1 imes \{0.5\}; \mathbb{C}). ext{Take } f_0 \in H^0(V) ext{ and } \ & f_1 \in H^0(U) = \Gamma(I_1 imes \{0\}; \mathbb{C}). \end{aligned}$$

$$H^0(V)\oplus H^0(U) \hookrightarrow H^0(W_1)\oplus H^0(W_2)\twoheadrightarrow H^1(I_1 imes \mathbb{S}^1_2).$$

$$H^{0}(V) = H^{0}(U) = H^{0}(W_{1}) = \Gamma(I_{1} \times \{0\}; \mathbb{C})$$
 and
 $H^{0}(W_{2}) = \Gamma(I_{1} \times \{0.5\}; \mathbb{C})$. Take $f_{0} \in H^{0}(V)$ and
 $f_{1} \in H^{0}(U) = \Gamma(I_{1} \times \{0\}; \mathbb{C})$. The first map of the sequence is
given by

$$\left(\begin{array}{c} f_2\\ f_3\end{array}\right) = \left(\begin{array}{cc} 1 & -1\\ e^{i\theta \times} & e^{-i\theta \times}\end{array}\right) \left(\begin{array}{c} f_0\\ f_1\end{array}\right)$$

Apply Mayer-Vietoris and computation 1 to obtain

$$H^0(V)\oplus H^0(U) \hookrightarrow H^0(W_1)\oplus H^0(W_2)\twoheadrightarrow H^1(I_1 imes \mathbb{S}^1_2).$$

$$H^{0}(V) = H^{0}(U) = H^{0}(W_{1}) = \Gamma(I_{1} \times \{0\}; \mathbb{C})$$
 and
 $H^{0}(W_{2}) = \Gamma(I_{1} \times \{0.5\}; \mathbb{C})$. Take $f_{0} \in H^{0}(V)$ and
 $f_{1} \in H^{0}(U) = \Gamma(I_{1} \times \{0\}; \mathbb{C})$. The first map of the sequence is
given by

$$\left(\begin{array}{c} f_2\\ f_3\end{array}\right) = \left(\begin{array}{cc} 1 & -1\\ e^{i\theta \times} & e^{-i\theta \times}\end{array}\right) \left(\begin{array}{c} f_0\\ f_1\end{array}\right)$$

Thus

$$H^1(I_1 imes \mathbb{S}^1_2) = egin{cases} 0 & ext{if non BS,} \ \mathbb{C} & ext{if there is one BS,} \end{cases}$$

Computation 3: $\mathcal{Q}(I^k \times \mathbb{T}^k; \mathbb{T}^k)$.

Computation 3: $Q(I^k \times \mathbb{T}^k; \mathbb{T}^k)$. By Künneth $H^j(I^k \times \mathbb{T}^k; \mathcal{J}) = 0$, if $j \neq k$, and

$$H^k(I^k imes \mathbb{T}^k; \mathcal{J}) = egin{cases} 0 & ext{if non BS,} \ \mathbb{C} & ext{if there is one BS.} \end{cases}$$

Computation 3: $Q(I^k \times \mathbb{T}^k; \mathbb{T}^k)$. By Künneth $H^j(I^k \times \mathbb{T}^k; \mathcal{J}) = 0$, if $j \neq k$, and

$$H^k(I^k imes \mathbb{T}^k; \mathcal{J}) = \begin{cases} 0 & \text{if non BS,} \\ \mathbb{C} & \text{if there is one BS.} \end{cases}$$

Computation 4:

$$\mathcal{Q}(M^{2n}_{Tor,Reg}; \mathcal{P}(Torus)) = \bigoplus_{j=1}^{n} H^{j}(M; \mathcal{J}) = \mathbb{C}^{b}, \ b = \#BS.$$

Consider an integrable system $(f_1, \ldots, f_n) : M^{2n} \to \mathbb{R}^n$ with, possibly, singular fibers given by non-degenerate critical points.

• Regular:
$$f_j = x_j$$

• Regular:
$$f_j = x_j$$

• Elliptic:
$$f_j = x_j^2 + y_j^2$$

- Regular: $f_j = x_j$
- Elliptic: $f_j = x_j^2 + y_j^2$
- Hyperbolic: $f_j = x_j y_j$

- Regular: $f_j = x_j$
- Elliptic: $f_j = x_j^2 + y_j^2$
- Hyperbolic: $f_j = x_j y_j$
- Focus-focus: $\begin{cases} h_j = x_j y_j + x_{j+1} y_{j+1} \\ h_{j+1} = x_j y_{j+1} x_{j+1} y_j \end{cases}$

Consider an integrable system $(f_1, \ldots, f_n) : M^{2n} \to \mathbb{R}^n$ with, possibly, singular fibers given by non-degenerate critical points. We have a local model $B_1 \times \cdots \times B_p$, in some Darboux local coordinates $(x_1, y_1, \ldots, x_n, y_n)$, where each B_l iconforms one of the following canonical models (Miranda):

- Regular: $f_j = x_j$
- Elliptic: $f_j = x_j^2 + y_j^2$
- Hyperbolic: $f_j = x_j y_j$
- Focus-focus: $\begin{cases} h_j = x_j y_j + x_{j+1} y_{j+1} \\ h_{j+1} = x_j y_{j+1} x_{j+1} y_j \end{cases}$

Geometric quantization of these models gives us all the possible combinations.

0 Regular fiber: \mathbb{C} or $\{0\}$.

- **0** Regular fiber: \mathbb{C} or $\{0\}$.
- \bigcirc Elliptic \times (Regular or elliptic): {0}. (Hamilton, Miranda, Solha)

- **0** Regular fiber: \mathbb{C} or $\{0\}$.
- 2 Elliptic \times (Regular or elliptic): {0}. (Hamilton, Miranda, Solha)
- Hyperbolic fiber: $\mathbb{C}^{\mathbb{N}}$. (Miranda, Solha)

O Regular fiber: \mathbb{C} or $\{0\}$.

- \bigcirc Elliptic \times (Regular or elliptic): {0}. (Hamilton, Miranda, Solha)
- Hyperbolic fiber: $\mathbb{C}^{\mathbb{N}}$. (Miranda, Solha)
- Focus-Focus fiber: (Miranda, P, Solha) $\begin{cases}
 0 & \text{if the singular fiber is not BS,} \\
 \bigoplus_{1 \le j \le k} C^{\infty}(\mathbb{R}; \mathbb{C}) & \text{if the singular fiber is BS.} \\
 \text{Where, } k = \#\{\text{singular points in the fiber}\} & \text{if the fiber is compact and } k = \#\{\text{singular points in the fiber}\} - 1 & \text{in other case.} \end{cases}$

• Regular fiber: \mathbb{C} or $\{0\}$.

- \bigcirc Elliptic \times (Regular or elliptic): {0}. (Hamilton, Miranda, Solha)
- Focus-Focus fiber: (Miranda, P, Solha) $\begin{cases}
 0 & \text{if the singular fiber is not BS,} \\
 \bigoplus_{1 \le j \le k} C^{\infty}(\mathbb{R}; \mathbb{C}) & \text{if the singular fiber is BS.} \\
 \text{Where, } k = \#\{\text{singular points in the fiber}\} & \text{if the fiber is compact and } k = \#\{\text{singular points in the fiber}\} - 1 & \text{in other case.} \end{cases}$
- **③** Focus-Focus \times (Whatever) fiber. Apply Künneth and that's it.

O Regular fiber: \mathbb{C} or $\{0\}$.

- \bigcirc Elliptic \times (Regular or elliptic): {0}. (Hamilton, Miranda, Solha)
- Focus-Focus fiber: (Miranda, P, Solha) $\begin{cases}
 0 & \text{if the singular fiber is not BS,} \\
 \bigoplus_{1 \le j \le k} C^{\infty}(\mathbb{R}; \mathbb{C}) & \text{if the singular fiber is BS.} \\
 \text{Where, } k = \#\{\text{singular points in the fiber}\} & \text{if the fiber is compact and } k = \#\{\text{singular points in the fiber}\} - 1 & \text{in other case.} \end{cases}$
- Focus-Focus × (Whatever) fiber. Apply Künneth and that's it.
 Lego land provides any answer.

Figure: Delzant polytopes of $\mathbb{C}P^2$, $\mathbb{C}P^2 \# 3\overline{\mathbb{C}P}^2$ and $\mathbb{C}P^2 \# 9\overline{\mathbb{C}P}^2$.

Figure: Delzant polytopes of $\mathbb{C}P^2$, $\mathbb{C}P^2 \# 3\overline{\mathbb{C}P}^2$ and $\mathbb{C}P^2 \# 9\overline{\mathbb{C}P}^2$.

Figure: Nodal trades on $\mathbb{C}P^2 \# 9\overline{\mathbb{C}P}^2$.

Figure: Delzant polytopes of $\mathbb{C}P^2$, $\mathbb{C}P^2 \# 3\overline{\mathbb{C}P}^2$ and $\mathbb{C}P^2 \# 9\overline{\mathbb{C}P}^2$.

Figure: Nodal trades on $\mathbb{C}P^2 \# 9 \overline{\mathbb{C}P}^2$.

Figure: K3 surface as a singular fiber bundle over the sphere.

Figure: Delzant polytopes of $\mathbb{C}P^2$, $\mathbb{C}P^2 \# 3\overline{\mathbb{C}P}^2$ and $\mathbb{C}P^2 \# 9\overline{\mathbb{C}P}^2$.

Figure: Nodal trades on $\mathbb{C}P^2 \# 9\overline{\mathbb{C}P}^2$.

Figure: K3 surface as a singular fiber bundle over the sphere.

Thus, we obtain a K3 with up to 24 BS focus-focus fibers.

$$\mathcal{Q}(\mathcal{K}3)\cong\mathbb{C}^{14}\oplus\bigoplus_{j=1}^{24}C^{\infty}(\mathbb{R};\mathbb{C}).$$

Other examples

Figure: Nodal trade on $\mathbb{S}^2 \times \mathbb{S}^2$.

Other examples

Figure: Nodal trade on $\mathbb{S}^2 \times \mathbb{S}^2$.

 $\mathcal{Q}(\mathbb{S}^2 \times \mathbb{S}^2) \cong C^\infty(\mathbb{R}; \mathbb{C}).$

Other examples

O Spin-spin system.

Figure: Nodal trade on $\mathbb{S}^2 \times \mathbb{S}^2$.

 $\mathcal{Q}(\mathbb{S}^2 \times \mathbb{S}^2) \cong \mathcal{C}^\infty(\mathbb{R};\mathbb{C}).$

2 Spherical pendulum and the spin-oscillator system.

Thanks for listening!

Special thanks to Eduardo Fernández for helping with these slides