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Quantization Scheme Computations and examples Geometric Quantization A la Kostant Quantization

Setup

Classical mechanics

Phase space: Symplectic

manifold (M, ω).

Dynamics: de�ned by a

Hamiltonian function by

Hamilton's equation:

iXH
ω + dH = 0.

Quantum mechanics

Phase space: Complex

Hilbert space (H, 〈, 〉).
Dynamics: operator

de�ned as a ∈ iu(H),
satisfying the equation

v(t) = e iatv(0).

Not unique: Planck's constant } parameter.
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Geometric Quantization

(M, ω)

Quantization condition:[ω] lifts to H2(M;Z).
==========================⇒

(L,∇, h) curv(∇) = −iω
Hilbert space: L2(Γ(L)).

k = 1
} ∈ Z+. Di�erent quantizations given by L⊗k ,

curv(L⊗k) = −ikω.
Space too big; i.e. (T ∗N, ω = dλLiouville), L = C. We obtain

L2Γ(T ∗N;C), and however we expect L2Γ(N;C).

Polarizations: A way of reducing the dimension of the Hilbert

space. P ⊂ (TCM = TM ⊗ C, ωC) regular n-dimensional

complex Lagrangian integrable distribution.

PR ⊂ TM Lagrangian foliation ⇒ PR ⊗ C is a polarization.

M = T ∗N then PR = ker dπ, π : T ∗N → N projection.
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Geometric Quantization

Fix J a compatible almost-complex structure and de�ne

PJ = TM1,0 integrable ⇔ J integrable.

H = L2H0(M;J ), J sheaf of parallel sections, i.e.
∀U ∈ Open(M), s ∈ J (U) i� ∇Ps = 0.

1 M = T ∗N,PR = ker dπ then
H0(M;J ) ≡ {sections constant along leaves}. We obtain
H = L2Γ(N).

2 PJ then H0(M;J ) ≡ {Holomorphic sections}.

H Hamiltonian, s ∈ H.

Ĥs = −i}∇XH
s + Hs.
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A la Kostant Quantization

Algebraic geometry provides a way of dealing with poles.

So (Kostant) we want to replace L2H0(M;J ) by

Q(M) := ⊕j≥0H
i (M;J ).

Theorem (�Sniatycki)

(f1, . . . , fn) : (M2n, ω)→ Bn ⊂ Rn integrable system, then

L2H0(M;J ) = Q(M).
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Computation Kit

1 0→ J → S0P
∇−→ S1P

d∇−−→ S2P
d∇−−→ · · · exact �ne resolution.

2 Exactness: Poincaré Lemma works for generic singular

polarizations (Miranda, Solha).
3 H j(M;J ) = 0 for j > n.
4 Mayer-Vietoris works M = M1 ∪M2 (Miranda, P, Solha)

· · · →H j(M;J )→ H j(M1;J )⊕ H j(M2;J )→
H j(M1 ∩M2;J )→ H j+1(M;J )→ · · ·

5 Künneth (Miranda, P):

H j(M1 ×M2;J1 � J2) ∼=
⊕

j=p+q

Hp(M1;J1)⊕ Hq(M2;J2)

whenever M1 admits a good cover, the geometric quantization

associated to (M2,J2) has �nite dimension and M2 is a

submanifold of a compact manifold.
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Regular integrable system

Ij = (−ε, ε), j = 1, 2.
Computation 1: Q(I1 × I2, ω = dx1 ∧ dx2;P = ∂x2).

H0(I1 × I2;J ) = C∞(I1,C),

H1(I1 × I2;J ) = 0.

Computation 2: Q(I1 × S12, ω = dx1 ∧ dθ2;P = ∂θ1).

H0(I1 × S12;J ) = 0 since BS leaves are isolated.

Consider I1 × S1
2

= U ∪ V = (I1 × (0.4, 1.1)) ∪ (I1 × (−0.1, 0.6)).
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H0(I1 × I2;J ) = C∞(I1,C),

H1(I1 × I2;J ) = 0.
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H0(I1 × S12;J ) = 0 since BS leaves are isolated.
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Regular integrable system

Apply Mayer-Vietoris and computation 1 to obtain

H0(V )⊕ H0(U) ↪→ H0(W1)⊕ H0(W2) � H1(I1 × S12).

H0(V ) = H0(U) = H0(W1) = Γ(I1 × {0};C) and

H0(W2) = Γ(I1 × {0.5};C).Take f0 ∈ H0(V ) and

f1 ∈ H0(U) = Γ(I1 × {0};C). The �rst map of the sequence is

given by (
f2
f3

)
=

(
1 −1

e iθx e−iθx

)(
f0
f1

)
Thus

H1(I1 × S12) =

{
0 if non BS,

C if there is one BS.
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Regular integrable system

Computation 3: Q(I k × Tk ;Tk).

By Künneth H j(I k × Tk ;J ) = 0, if j 6= k , and

Hk(I k × Tk ;J ) =

{
0 if non BS,

C if there is one BS.

Computation 4:

Q(M2n
Tor ,Reg ;P(Torus)) =

n⊕
j=1

H j(M;J ) = Cb, b = #BS.
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Semitoric systems and almost toric manifolds

Consider an integrable system (f1, . . . , fn) : M2n → Rn with,

possibly, singular �bers given by non-degenerate critical points.

We

have a local model B1 × · · · × Bp, in some Darboux local

coordinates (x1, y1, . . . , xn, yn), where each Bl iconforms one of the

following canonical models (Miranda):

Regular: fj = xj

Elliptic: fj = x2j + y2j
Hyperbolic: fj = xjyj

Focus-focus:

{
hj = xjyj + xj+1yj+1

hj+1 = xjyj+1 − xj+1yj

Geometric quantization of these models gives us all the possible

combinations.
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Semilocal computation

1 Regular �ber: C or {0}.

2 Elliptic × (Regular or elliptic): {0}. (Hamilton, Miranda, Solha)

3 Hyperbolic �ber: CN. (Miranda, Solha)

4 Focus-Focus �ber: (Miranda, P, Solha){
0 if the singular �ber is not BS,⊕

1≤j≤k C
∞(R;C) if the singular �ber is BS.

Where, k = #{singular points in the �ber} if the �ber is

compact and k = #{singular points in the �ber} − 1 in other

case.

5 Focus-Focus × (Whatever) �ber. Apply Künneth and that's it.

Lego land provides any answer.
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K3 surface

Figure: Delzant polytopes of CP2,

CP2#3CP2

and CP2#9CP2

.

Figure: Nodal trades on

CP2#9CP2

.

Figure: K3 surface as a singular
�ber bundle over the sphere.

.

Thus, we obtain a K3 with up to

24 BS focus-focus �bers.

Q(K3) ∼= C14 ⊕
24⊕
j=1

C∞(R;C).

Francisco Presas Real Geometric Quantization



Quantization Scheme Computations and examples Classical example Semitoric systems and almost toric manifolds

K3 surface

Figure: Delzant polytopes of CP2,

CP2#3CP2

and CP2#9CP2

.

Figure: Nodal trades on

CP2#9CP2

.

Figure: K3 surface as a singular
�ber bundle over the sphere.

.

Thus, we obtain a K3 with up to

24 BS focus-focus �bers.

Q(K3) ∼= C14 ⊕
24⊕
j=1

C∞(R;C).

Francisco Presas Real Geometric Quantization



Quantization Scheme Computations and examples Classical example Semitoric systems and almost toric manifolds

K3 surface

Figure: Delzant polytopes of CP2,

CP2#3CP2

and CP2#9CP2

.

Figure: Nodal trades on

CP2#9CP2

.

Figure: K3 surface as a singular
�ber bundle over the sphere.

.

Thus, we obtain a K3 with up to

24 BS focus-focus �bers.

Q(K3) ∼= C14 ⊕
24⊕
j=1

C∞(R;C).

Francisco Presas Real Geometric Quantization



Quantization Scheme Computations and examples Classical example Semitoric systems and almost toric manifolds

K3 surface

Figure: Delzant polytopes of CP2,

CP2#3CP2

and CP2#9CP2

.

Figure: Nodal trades on

CP2#9CP2

.

Figure: K3 surface as a singular
�ber bundle over the sphere.

.

Thus, we obtain a K3 with up to

24 BS focus-focus �bers.

Q(K3) ∼= C14 ⊕
24⊕
j=1

C∞(R;C).

Francisco Presas Real Geometric Quantization



Quantization Scheme Computations and examples Classical example Semitoric systems and almost toric manifolds

Other examples

1 Spin-spin system.

Figure: Nodal trade on S2 × S2.

Q(S2 × S2) ∼= C∞(R;C).

2 Spherical pendulum and the spin-oscillator system.
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Thanks

Thanks for listening!

Special thanks to Eduardo Fernández for helping with these
slides
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