Real Geometric Quantization

Francisco Presas

ICMAT, CSIC

January 17th, 2018

Contents

(1) Quantization Scheme

- Geometric Quantization
- A la Kostant Quantization
(2) Computations and examples
- Classical example
- Semitoric systems and almost toric manifolds

Bertram Kostant.

Nick Woodhouse.

Jędrzej S̀niatycki.

Eva Miranda.

Mark Hamilton.

Romero Solha.

Fran Presas.

Setup

Classical mechanics

Setup

Classical mechanics

- Phase space: Symplectic manifold (M, ω).

Setup

Classical mechanics

- Phase space: Symplectic manifold (M, ω).

Setup

Classical mechanics

- Phase space: Symplectic manifold (M, ω).
- Dynamics: defined by a Hamiltonian function by Hamilton's equation:

$$
i_{X_{H}} \omega+\mathrm{d} H=0 .
$$

Setup

Classical mechanics

Quantum mechanics

- Phase space: Symplectic manifold (M, ω).
- Dynamics: defined by a Hamiltonian function by Hamilton's equation:

$$
i_{X_{H}} \omega+\mathrm{d} H=0 .
$$

Setup

Classical mechanics

Quantum mechanics

- Phase space: Symplectic manifold (M, ω).
- Dynamics: defined by a Hamiltonian function by Hamilton's equation:

$$
i_{X_{H}} \omega+\mathrm{d} H=0 .
$$

- Phase space: Complex Hilbert space $(\mathcal{H},\langle\rangle$,$) .$

Setup

Classical mechanics

Quantum mechanics

- Phase space: Symplectic manifold (M, ω).
- Dynamics: defined by a Hamiltonian function by Hamilton's equation:

$$
i_{X_{H}} \omega+\mathrm{d} H=0 .
$$

- Phase space: Complex Hilbert space $(\mathcal{H},\langle\rangle$,$) .$

Setup

Classical mechanics

- Phase space: Symplectic manifold (M, ω).
- Dynamics: defined by a Hamiltonian function by Hamilton's equation:

$$
i_{X_{H}} \omega+\mathrm{d} H=0 .
$$

Quantum mechanics

- Phase space: Complex Hilbert space $(\mathcal{H},\langle\rangle$,$) .$
- Dynamics: operator defined as $\mathfrak{a} \in i \mathfrak{u}(\mathcal{H})$, satisfying the equation

$$
v(t)=e^{i a t} v(0)
$$

Setup

Classical mechanics

- Phase space: Symplectic manifold (M, ω).
- Dynamics: defined by a Hamiltonian function by Hamilton's equation:

$$
i_{X_{H}} \omega+\mathrm{d} H=0 .
$$

Quantum mechanics

- Phase space: Complex Hilbert space $(\mathcal{H},\langle\rangle$,$) .$
- Dynamics: operator defined as $\mathfrak{a} \in i \mathfrak{u}(\mathcal{H})$, satisfying the equation

$$
v(t)=e^{i a t} v(0)
$$

Not unique: Planck's constant \hbar parameter.

Geometric Quantization

(M, ω)

Geometric Quantization

$(M, \omega) \xlongequal{\text { Quantization condition: }[\omega] \text { lifts to } H^{2}(M ; \mathbb{Z}) .} \begin{aligned} & (L, \nabla, h) \operatorname{curv}(\nabla)=-i \omega \\ & \text { Hilbert space: } L^{2}(\Gamma(L)) .\end{aligned}$

Geometric Quantization

$(M, \omega) \xlongequal{\left.\text { Quantization condition:[} \omega] \text { lifts to } H^{2}(M ; \mathbb{Z})\right)} \begin{aligned} & (L, \nabla, h) \operatorname{curv}(\nabla)=-i \omega \\ & \text { Hilbert space: } L^{2}(\Gamma(L)) .\end{aligned}$

- $k=\frac{1}{\hbar} \in \mathbb{Z}_{+}$. Different quantizations given by $L^{\otimes k}$, $\operatorname{curv}\left(L^{\otimes k}\right)=-i k \omega$.

Geometric Quantization

$(M, \omega) \xlongequal{\left.\text { Quantization condition:[} \omega] \text { lifts to } H^{2}(M ; \mathbb{Z})\right)} \begin{aligned} & (L, \nabla, h) \operatorname{curv}(\nabla)=-i \omega \\ & \text { Hilbert space: } L^{2}(\Gamma(L)) .\end{aligned}$

- $k=\frac{1}{\hbar} \in \mathbb{Z}_{+}$. Different quantizations given by $L^{\otimes k}$, $\operatorname{curv}\left(L^{\otimes k}\right)=-i k \omega$.
- Space too big; i.e. $\left(T^{*} N, \omega=\mathrm{d} \lambda_{\text {Liouville }}\right), L=\mathbb{C}$. We obtain $L^{2} \Gamma\left(T^{*} N ; \mathbb{C}\right)$, and however we expect $L^{2} \Gamma(N ; \mathbb{C})$.

Geometric Quantization

$(M, \omega) \xlongequal{\text { Quantization condition: }[\omega] \text { lifts to } H^{2}(M ; \mathbb{Z}) .} \begin{aligned} & (L, \nabla, h) \operatorname{curv}(\nabla)=-i \omega \\ & \text { Hilbert space: } L^{2}(\Gamma(L)) .\end{aligned}$

- $k=\frac{1}{\hbar} \in \mathbb{Z}_{+}$. Different quantizations given by $L^{\otimes k}$, $\operatorname{curv}\left(L^{\otimes k}\right)=-i k \omega$.
- Space too big; i.e. $\left(T^{*} N, \omega=\mathrm{d} \lambda_{\text {Liouville }}\right), L=\mathbb{C}$. We obtain $L^{2} \Gamma\left(T^{*} N ; \mathbb{C}\right)$, and however we expect $L^{2} \Gamma(N ; \mathbb{C})$.
- Polarizations: A way of reducing the dimension of the Hilbert space.

Geometric Quantization

$(M, \omega) \xlongequal{\text { Quantization condition:[} \omega] \text { lifts to } H^{2}(M ; \mathbb{Z}) .} \begin{aligned} & (L, \nabla, h) \operatorname{curv}(\nabla)=-i \omega \\ & \text { Hilbert space: } L^{2}(\Gamma(L)) .\end{aligned}$

- $k=\frac{1}{\hbar} \in \mathbb{Z}_{+}$. Different quantizations given by $L^{\otimes k}$, $\operatorname{curv}\left(L^{\otimes k}\right)=-i k \omega$.
- Space too big; i.e. $\left(T^{*} N, \omega=\mathrm{d} \lambda_{\text {Liouville }}\right), L=\mathbb{C}$. We obtain $L^{2} \Gamma\left(T^{*} N ; \mathbb{C}\right)$, and however we expect $L^{2} \Gamma(N ; \mathbb{C})$.
- Polarizations: A way of reducing the dimension of the Hilbert space. $\mathcal{P} \subset\left(T^{\mathbb{C}} M=T M \otimes \mathbb{C}, \omega_{\mathbb{C}}\right)$ regular n-dimensional complex Lagrangian integrable distribution.

Geometric Quantization

$(M, \omega) \xlongequal{\text { Quantization condition: }[\omega] \text { lifts to } H^{2}(M ; \mathbb{Z}) .} \begin{aligned} & (L, \nabla, h) \operatorname{curv}(\nabla)=-i \omega \\ & \text { Hilbert space: } L^{2}(\Gamma(L)) .\end{aligned}$

- $k=\frac{1}{\hbar} \in \mathbb{Z}_{+}$. Different quantizations given by $L^{\otimes k}$, $\operatorname{curv}\left(L^{\otimes k}\right)=-i k \omega$.
- Space too big; i.e. $\left(T^{*} N, \omega=\mathrm{d} \lambda_{\text {Liouville }}\right), L=\mathbb{C}$. We obtain $L^{2} \Gamma\left(T^{*} N ; \mathbb{C}\right)$, and however we expect $L^{2} \Gamma(N ; \mathbb{C})$.
- Polarizations: A way of reducing the dimension of the Hilbert space. $\mathcal{P} \subset\left(T^{\mathbb{C}} M=T M \otimes \mathbb{C}, \omega_{\mathbb{C}}\right)$ regular n-dimensional complex Lagrangian integrable distribution.
- $\mathcal{P}^{\mathbb{R}} \subset T M$ Lagrangian foliation $\Rightarrow \mathcal{P}^{\mathbb{R}} \otimes \mathbb{C}$ is a polarization.

Geometric Quantization

$(M, \omega) \xlongequal{\text { Quantization condition:[} \omega] \text { lifts to } H^{2}(M ; \mathbb{Z}) .} \begin{aligned} & (L, \nabla, h) \operatorname{curv}(\nabla)=-i \omega \\ & \text { Hilbert space: } L^{2}(\Gamma(L)) .\end{aligned}$

- $k=\frac{1}{\hbar} \in \mathbb{Z}_{+}$. Different quantizations given by $L^{\otimes k}$, $\operatorname{curv}\left(L^{\otimes k}\right)=-i k \omega$.
- Space too big; i.e. $\left(T^{*} N, \omega=\mathrm{d} \lambda_{\text {Liouville }}\right), L=\mathbb{C}$. We obtain $L^{2} \Gamma\left(T^{*} N ; \mathbb{C}\right)$, and however we expect $L^{2} \Gamma(N ; \mathbb{C})$.
- Polarizations: A way of reducing the dimension of the Hilbert space. $\mathcal{P} \subset\left(T^{\mathbb{C}} M=T M \otimes \mathbb{C}, \omega_{\mathbb{C}}\right)$ regular n-dimensional complex Lagrangian integrable distribution.
- $\mathcal{P}^{\mathbb{R}} \subset T M$ Lagrangian foliation $\Rightarrow \mathcal{P}^{\mathbb{R}} \otimes \mathbb{C}$ is a polarization. $M=T^{*} N$ then $\mathcal{P}^{\mathbb{R}}=\operatorname{ker} \mathrm{d} \pi, \pi: T^{*} N \rightarrow N$ projection.

Geometric Quantization

- Fix J a compatible almost-complex structure and define $\mathcal{P}^{J}=T M^{1,0}$ integrable $\Leftrightarrow J$ integrable.

Geometric Quantization

- Fix J a compatible almost-complex structure and define $\mathcal{P}^{J}=T M^{1,0}$ integrable $\Leftrightarrow J$ integrable.
- $\mathcal{H}=L^{2} H^{0}(M ; \mathcal{J}), \mathcal{J}$ sheaf of parallel sections, i.e. $\forall U \in \operatorname{Open}(M), s \in \mathcal{J}(U)$ iff $\nabla_{\mathcal{P}} s=0$.

Geometric Quantization

- Fix J a compatible almost-complex structure and define $\mathcal{P}^{J}=T M^{1,0}$ integrable $\Leftrightarrow J$ integrable.
- $\mathcal{H}=L^{2} H^{0}(M ; \mathcal{J}), \mathcal{J}$ sheaf of parallel sections, i.e. $\forall U \in \operatorname{Open}(M), s \in \mathcal{J}(U)$ iff $\nabla_{\mathcal{P}} s=0$.
(1) $M=T^{*} N, \mathcal{P}^{\mathbb{R}}=\operatorname{ker} \mathrm{d} \pi$ then
$H^{0}(M ; \mathcal{J}) \equiv\{$ sections constant along leaves $\}$. We obtain $\mathcal{H}=L^{2} \Gamma(N)$.

Geometric Quantization

- Fix J a compatible almost-complex structure and define $\mathcal{P}^{J}=T M^{1,0}$ integrable $\Leftrightarrow J$ integrable.
- $\mathcal{H}=L^{2} H^{0}(M ; \mathcal{J}), \mathcal{J}$ sheaf of parallel sections, i.e. $\forall U \in \operatorname{Open}(M), s \in \mathcal{J}(U)$ iff $\nabla_{\mathcal{P}} s=0$.
(1) $M=T^{*} N, \mathcal{P}^{\mathbb{R}}=\operatorname{ker} \mathrm{d} \pi$ then
$H^{0}(M ; \mathcal{J}) \equiv\{$ sections constant along leaves $\}$. We obtain $\mathcal{H}=L^{2} \Gamma(N)$.
(2) \mathcal{P}^{J} then $H^{0}(M ; \mathcal{J}) \equiv\{$ Holomorphic sections $\}$.

Geometric Quantization

- Fix J a compatible almost-complex structure and define $\mathcal{P}^{J}=T M^{1,0}$ integrable $\Leftrightarrow J$ integrable.
- $\mathcal{H}=L^{2} H^{0}(M ; \mathcal{J}), \mathcal{J}$ sheaf of parallel sections, i.e. $\forall U \in \operatorname{Open}(M), s \in \mathcal{J}(U)$ iff $\nabla_{\mathcal{P}} s=0$.
(1) $M=T^{*} N, \mathcal{P}^{\mathbb{R}}=\operatorname{ker} \mathrm{d} \pi$ then
$H^{0}(M ; \mathcal{J}) \equiv\{$ sections constant along leaves $\}$. We obtain $\mathcal{H}=L^{2} \Gamma(N)$.
(2) \mathcal{P}^{J} then $H^{0}(M ; \mathcal{J}) \equiv\{$ Holomorphic sections $\}$.
- H Hamiltonian, $s \in \mathcal{H}$.

$$
\hat{H} s=-i \hbar \nabla_{x_{H}} s+H s
$$

- Algebraic geometry provides a way of dealing with poles.

A la Kostant Quantization

- Algebraic geometry provides a way of dealing with poles.
- So (Kostant) we want to replace $L^{2} H^{0}(M ; \mathcal{J})$ by $\mathcal{Q}(M):=\oplus_{j \geq 0} H^{i}(M ; \mathcal{J})$.

A la Kostant Quantization

- Algebraic geometry provides a way of dealing with poles.
- So (Kostant) we want to replace $L^{2} H^{0}(M ; \mathcal{J})$ by $\mathcal{Q}(M):=\oplus_{j \geq 0} H^{i}(M ; \mathcal{J})$.

Theorem (S̀niatycki)

$\left(f_{1}, \ldots, f_{n}\right):\left(M^{2 n}, \omega\right) \rightarrow B^{n} \subset \mathbb{R}^{n}$ integrable system, then $L^{2} H^{0}(M ; \mathcal{J})=\mathcal{Q}(M)$.

Computation Kit

(1) $0 \rightarrow \mathcal{J} \rightarrow \mathcal{S}_{\mathcal{P}}^{0} \xrightarrow{\nabla} \mathcal{S}_{\mathcal{P}}^{1} \xrightarrow{d^{\nabla}} \mathcal{S}_{\mathcal{P}}^{2} \xrightarrow{d^{\nabla}} \cdots$ exact fine resolution.

Computation Kit

(1) $0 \rightarrow \mathcal{J} \rightarrow \mathcal{S}_{\mathcal{P}}^{0} \xrightarrow{\nabla} \mathcal{S}_{\mathcal{P}}^{1} \xrightarrow{d^{\nabla}} \mathcal{S}_{\mathcal{P}}^{2} \xrightarrow{d^{\nabla}} \cdots$ exact fine resolution.
(2) Exactness: Poincaré Lemma works for generic singular polarizations (Miranda, Solha).

Computation Kit

(1) $0 \rightarrow \mathcal{J} \rightarrow \mathcal{S}_{\mathcal{P}}^{0} \xrightarrow{\nabla} \mathcal{S}_{\mathcal{P}}^{1} \xrightarrow{d^{\nabla}} \mathcal{S}_{\mathcal{P}}^{2} \xrightarrow{d^{\nabla}} \cdots$ exact fine resolution.
(2) Exactness: Poincaré Lemma works for generic singular polarizations (Miranda, Solha).
(3) $H^{j}(M ; \mathcal{J})=0$ for $j>n$.

Computation Kit

(1) $0 \rightarrow \mathcal{J} \rightarrow \mathcal{S}_{\mathcal{P}}^{0} \xrightarrow{\nabla} \mathcal{S}_{\mathcal{P}}^{1} \xrightarrow{d^{\nabla}} \mathcal{S}_{\mathcal{P}}^{2} \xrightarrow{d^{\nabla}} \cdots$ exact fine resolution.
(2) Exactness: Poincaré Lemma works for generic singular polarizations (Miranda, Solha).
(3) $H^{j}(M ; \mathcal{J})=0$ for $j>n$.
(c) Mayer-Vietoris works $M=M_{1} \cup M_{2}$ (Miranda, P, Solha)

$$
\begin{aligned}
\cdots \rightarrow & H^{j}(M ; \mathcal{J}) \rightarrow H^{j}\left(M_{1} ; \mathcal{J}\right) \oplus H^{j}\left(M_{2} ; \mathcal{J}\right) \rightarrow \\
& H^{j}\left(M_{1} \cap M_{2} ; \mathcal{J}\right) \rightarrow H^{j+1}(M ; \mathcal{J}) \rightarrow \cdots
\end{aligned}
$$

Computation Kit

(1) $0 \rightarrow \mathcal{J} \rightarrow \mathcal{S}_{\mathcal{P}}^{0} \xrightarrow{\nabla} \mathcal{S}_{\mathcal{P}}^{1} \xrightarrow{\mathrm{~d}^{\nabla}} \mathcal{S}_{\mathcal{P}}^{2} \xrightarrow{\mathrm{~d}^{\nabla}} \cdots$ exact fine resolution.
(2) Exactness: Poincaré Lemma works for generic singular polarizations (Miranda, Solha).
(3) $H^{j}(M ; \mathcal{J})=0$ for $j>n$.
(1) Mayer-Vietoris works $M=M_{1} \cup M_{2}$ (Miranda, P, Solha)

$$
\begin{aligned}
\cdots \rightarrow & H^{j}(M ; \mathcal{J}) \rightarrow H^{j}\left(M_{1} ; \mathcal{J}\right) \oplus H^{j}\left(M_{2} ; \mathcal{J}\right) \rightarrow \\
& H^{j}\left(M_{1} \cap M_{2} ; \mathcal{J}\right) \rightarrow H^{j+1}(M ; \mathcal{J}) \rightarrow \cdots
\end{aligned}
$$

© Künneth (Miranda, P):

$$
H^{j}\left(M_{1} \times M_{2} ; \mathcal{J}_{1} \boxtimes \mathcal{J}_{2}\right) \cong \bigoplus_{j=p+q} H^{p}\left(M_{1} ; \mathcal{J}_{1}\right) \oplus H^{q}\left(M_{2} ; \mathcal{J}_{2}\right)
$$

whenever M_{1} admits a good cover, the geometric quantization associated to $\left(M_{2}, \mathcal{J}_{2}\right)$ has finite dimension and M_{2} is a submanifold of a compact manifold.

Regular integrable system

$l_{j}=(-\varepsilon, \varepsilon), j=1,2$.
Computation 1: $\mathcal{Q}\left(\boldsymbol{I}_{1} \times I_{2}, \omega=\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} ; \mathcal{P}=\partial_{x_{2}}\right)$.

Regular integrable system

$I_{j}=(-\varepsilon, \varepsilon), j=1,2$.
Computation 1: $\mathcal{Q}\left(\digamma_{1} \times I_{2}, \omega=\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} ; \mathcal{P}=\partial_{x_{2}}\right)$.

- $H^{0}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=C^{\infty}\left(I_{1}, \mathbb{C}\right)$,

Regular integrable system

$I_{j}=(-\varepsilon, \varepsilon), j=1,2$.
Computation 1: $\mathcal{Q}\left(\digamma_{1} \times I_{2}, \omega=\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} ; \mathcal{P}=\partial_{x_{2}}\right)$.

- $H^{0}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=C^{\infty}\left(I_{1}, \mathbb{C}\right)$,
- $H^{1}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=0$.

Regular integrable system

$I_{j}=(-\varepsilon, \varepsilon), j=1,2$.
Computation 1: $\mathcal{Q}\left(\digamma_{1} \times I_{2}, \omega=\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} ; \mathcal{P}=\partial_{x_{2}}\right)$.

- $H^{0}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=C^{\infty}\left(I_{1}, \mathbb{C}\right)$,
- $H^{1}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=0$.

Computation 2: $\mathcal{Q}\left(I_{1} \times \mathbb{S}_{2}^{1}, \omega=\mathrm{d} x_{1} \wedge \mathrm{~d} \theta_{2} ; \mathcal{P}=\partial_{\theta_{1}}\right)$.

Regular integrable system

$l_{j}=(-\varepsilon, \varepsilon), j=1,2$.
Computation 1: $\mathcal{Q}\left(\iota_{1} \times I_{2}, \omega=\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} ; \mathcal{P}=\partial_{x_{2}}\right)$.

- $H^{0}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=C^{\infty}\left(I_{1}, \mathbb{C}\right)$,
- $H^{1}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=0$.

Computation 2: $\mathcal{Q}\left(\Lambda_{1} \times \mathbb{S}_{2}^{1}, \omega=\mathrm{d} x_{1} \wedge \mathrm{~d} \theta_{2} ; \mathcal{P}=\partial_{\theta_{1}}\right)$.

- $H^{0}\left(I_{1} \times \mathbb{S}_{2}^{1} ; \mathcal{J}\right)=0$ since BS leaves are isolated.

Regular integrable system

$l_{j}=(-\varepsilon, \varepsilon), j=1,2$.
Computation 1: $\mathcal{Q}\left(\iota_{1} \times I_{2}, \omega=\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} ; \mathcal{P}=\partial_{x_{2}}\right)$.

- $H^{0}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=C^{\infty}\left(I_{1}, \mathbb{C}\right)$,
- $H^{1}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=0$.

Computation 2: $\mathcal{Q}\left(I_{1} \times \mathbb{S}_{2}^{1}, \omega=\mathrm{d} x_{1} \wedge \mathrm{~d} \theta_{2} ; \mathcal{P}=\partial_{\theta_{1}}\right)$.

- $H^{0}\left(I_{1} \times \mathbb{S}_{2}^{1} ; \mathcal{J}\right)=0$ since BS leaves are isolated.
- Consider $I_{1} \times \mathbb{S}_{2}^{1}=U \cup V=\left(I_{1} \times(0.4,1.1)\right) \cup\left(I_{1} \times(-0.1,0.6)\right)$.

Regular integrable system

Apply Mayer-Vietoris and computation 1 to obtain

$$
H^{0}(V) \oplus H^{0}(U) \hookrightarrow H^{0}\left(W_{1}\right) \oplus H^{0}\left(W_{2}\right) \rightarrow H^{1}\left(I_{1} \times \mathbb{S}_{2}^{1}\right) .
$$

Regular integrable system

Apply Mayer-Vietoris and computation 1 to obtain

$$
H^{0}(V) \oplus H^{0}(U) \hookrightarrow H^{0}\left(W_{1}\right) \oplus H^{0}\left(W_{2}\right) \rightarrow H^{1}\left(I_{1} \times \mathbb{S}_{2}^{1}\right) .
$$

$H^{0}(V)=H^{0}(U)=H^{0}\left(W_{1}\right)=\Gamma\left(I_{1} \times\{0\} ; \mathbb{C}\right)$ and $H^{0}\left(W_{2}\right)=\Gamma\left(I_{1} \times\{0.5\} ; \mathbb{C}\right)$.

Regular integrable system

Apply Mayer-Vietoris and computation 1 to obtain

$$
H^{0}(V) \oplus H^{0}(U) \hookrightarrow H^{0}\left(W_{1}\right) \oplus H^{0}\left(W_{2}\right) \rightarrow H^{1}\left(I_{1} \times \mathbb{S}_{2}^{1}\right) .
$$

$H^{0}(V)=H^{0}(U)=H^{0}\left(W_{1}\right)=\Gamma\left(I_{1} \times\{0\} ; \mathbb{C}\right)$ and $H^{0}\left(W_{2}\right)=\Gamma\left(I_{1} \times\{0.5\} ; \mathbb{C}\right)$. Take $f_{0} \in H^{0}(V)$ and $f_{1} \in H^{0}(U)=\Gamma\left(I_{1} \times\{0\} ; \mathbb{C}\right)$.

Regular integrable system

Apply Mayer-Vietoris and computation 1 to obtain

$$
H^{0}(V) \oplus H^{0}(U) \hookrightarrow H^{0}\left(W_{1}\right) \oplus H^{0}\left(W_{2}\right) \rightarrow H^{1}\left(I_{1} \times \mathbb{S}_{2}^{1}\right) .
$$

$H^{0}(V)=H^{0}(U)=H^{0}\left(W_{1}\right)=\Gamma\left(I_{1} \times\{0\} ; \mathbb{C}\right)$ and $H^{0}\left(W_{2}\right)=\Gamma\left(I_{1} \times\{0.5\} ; \mathbb{C}\right)$. Take $f_{0} \in H^{0}(V)$ and $f_{1} \in H^{0}(U)=\Gamma\left(I_{1} \times\{0\} ; \mathbb{C}\right)$. The first map of the sequence is given by

$$
\binom{f_{2}}{f_{3}}=\left(\begin{array}{cc}
1 & -1 \\
e^{i \theta x} & e^{-i \theta x}
\end{array}\right)\binom{f_{0}}{f_{1}}
$$

Regular integrable system

Apply Mayer-Vietoris and computation 1 to obtain

$$
H^{0}(V) \oplus H^{0}(U) \hookrightarrow H^{0}\left(W_{1}\right) \oplus H^{0}\left(W_{2}\right) \rightarrow H^{1}\left(I_{1} \times \mathbb{S}_{2}^{1}\right) .
$$

$H^{0}(V)=H^{0}(U)=H^{0}\left(W_{1}\right)=\Gamma\left(I_{1} \times\{0\} ; \mathbb{C}\right)$ and $H^{0}\left(W_{2}\right)=\Gamma\left(I_{1} \times\{0.5\} ; \mathbb{C}\right)$.Take $f_{0} \in H^{0}(V)$ and
$f_{1} \in H^{0}(U)=\Gamma\left(I_{1} \times\{0\} ; \mathbb{C}\right)$. The first map of the sequence is given by

$$
\binom{f_{2}}{f_{3}}=\left(\begin{array}{cc}
1 & -1 \\
e^{i \theta x} & e^{-i \theta x}
\end{array}\right)\binom{f_{0}}{f_{1}}
$$

Thus

$$
H^{1}\left(I_{1} \times \mathbb{S}_{2}^{1}\right)= \begin{cases}0 & \text { if non } \mathrm{BS}, \\ \mathbb{C} & \text { if there is one } \mathrm{BS} .\end{cases}
$$

Regular integrable system

Computation 3: $\mathcal{Q}\left(I^{k} \times \mathbb{T}^{k} ; \mathbb{T}^{k}\right)$.

Regular integrable system

Computation 3: $\mathcal{Q}\left(I^{k} \times \mathbb{T}^{k} ; \mathbb{T}^{k}\right)$.
By Künneth $H^{j}\left(I^{k} \times \mathbb{T}^{k} ; \mathcal{J}\right)=0$, if $j \neq k$, and

$$
H^{k}\left(I^{k} \times \mathbb{T}^{k} ; \mathcal{J}\right)= \begin{cases}0 & \text { if non } \mathrm{BS}, \\ \mathbb{C} & \text { if there is one } \mathrm{BS} .\end{cases}
$$

Regular integrable system

Computation 3: $\mathcal{Q}\left(I^{k} \times \mathbb{T}^{k} ; \mathbb{T}^{k}\right)$.
By Künneth $H^{j}\left(I^{k} \times \mathbb{T}^{k} ; \mathcal{J}\right)=0$, if $j \neq k$, and

$$
H^{k}\left(I^{k} \times \mathbb{T}^{k} ; \mathcal{J}\right)= \begin{cases}0 & \text { if non BS } \\ \mathbb{C} & \text { if there is one BS. }\end{cases}
$$

Computation 4:

$$
\mathcal{Q}\left(M_{\text {Tor }, \operatorname{Reg}}^{2 n} ; \mathcal{P}(\text { Torus })\right)=\bigoplus_{j=1}^{n} H^{j}(M ; \mathcal{J})=\mathbb{C}^{b}, \quad b=\# \mathrm{BS} .
$$

Semitoric systems and almost toric manifolds

Consider an integrable system $\left(f_{1}, \ldots, f_{n}\right): M^{2 n} \rightarrow \mathbb{R}^{n}$ with, possibly, singular fibers given by non-degenerate critical points.

Semitoric systems and almost toric manifolds

Consider an integrable system $\left(f_{1}, \ldots, f_{n}\right): M^{2 n} \rightarrow \mathbb{R}^{n}$ with, possibly, singular fibers given by non-degenerate critical points. We have a local model $B_{1} \times \cdots \times B_{p}$, in some Darboux local coordinates $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$, where each B_{l} iconforms one of the following canonical models (Miranda):

Semitoric systems and almost toric manifolds

Consider an integrable system $\left(f_{1}, \ldots, f_{n}\right): M^{2 n} \rightarrow \mathbb{R}^{n}$ with, possibly, singular fibers given by non-degenerate critical points. We have a local model $B_{1} \times \cdots \times B_{p}$, in some Darboux local coordinates $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$, where each B_{l} iconforms one of the following canonical models (Miranda):

- Regular: $f_{j}=x_{j}$

Semitoric systems and almost toric manifolds

Consider an integrable system $\left(f_{1}, \ldots, f_{n}\right): M^{2 n} \rightarrow \mathbb{R}^{n}$ with, possibly, singular fibers given by non-degenerate critical points. We have a local model $B_{1} \times \cdots \times B_{p}$, in some Darboux local coordinates $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$, where each B_{l} iconforms one of the following canonical models (Miranda):

- Regular: $f_{j}=x_{j}$
- Elliptic: $f_{j}=x_{j}^{2}+y_{j}^{2}$

Semitoric systems and almost toric manifolds

Consider an integrable system $\left(f_{1}, \ldots, f_{n}\right): M^{2 n} \rightarrow \mathbb{R}^{n}$ with, possibly, singular fibers given by non-degenerate critical points. We have a local model $B_{1} \times \cdots \times B_{p}$, in some Darboux local coordinates $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$, where each B_{l} iconforms one of the following canonical models (Miranda):

- Regular: $f_{j}=x_{j}$
- Elliptic: $f_{j}=x_{j}^{2}+y_{j}^{2}$
- Hyperbolic: $f_{j}=x_{j} y_{j}$

Semitoric systems and almost toric manifolds

Consider an integrable system $\left(f_{1}, \ldots, f_{n}\right): M^{2 n} \rightarrow \mathbb{R}^{n}$ with, possibly, singular fibers given by non-degenerate critical points. We have a local model $B_{1} \times \cdots \times B_{p}$, in some Darboux local coordinates $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$, where each B_{l} iconforms one of the following canonical models (Miranda):

- Regular: $f_{j}=x_{j}$
- Elliptic: $f_{j}=x_{j}^{2}+y_{j}^{2}$
- Hyperbolic: $f_{j}=x_{j} y_{j}$
- Focus-focus: $\left\{\begin{array}{l}h_{j}=x_{j} y_{j}+x_{j+1} y_{j+1} \\ h_{j+1}=x_{j} y_{j+1}-x_{j+1} y_{j}\end{array}\right.$

Semitoric systems and almost toric manifolds

Consider an integrable system $\left(f_{1}, \ldots, f_{n}\right): M^{2 n} \rightarrow \mathbb{R}^{n}$ with, possibly, singular fibers given by non-degenerate critical points. We have a local model $B_{1} \times \cdots \times B_{p}$, in some Darboux local coordinates $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$, where each B_{l} iconforms one of the following canonical models (Miranda):

- Regular: $f_{j}=x_{j}$
- Elliptic: $f_{j}=x_{j}^{2}+y_{j}^{2}$
- Hyperbolic: $f_{j}=x_{j} y_{j}$
- Focus-focus: $\left\{\begin{array}{l}h_{j}=x_{j} y_{j}+x_{j+1} y_{j+1} \\ h_{j+1}=x_{j} y_{j+1}-x_{j+1} y_{j}\end{array}\right.$

Geometric quantization of these models gives us all the possible combinations.

Semilocal computation

(1) Regular fiber: \mathbb{C} or $\{0\}$.

Semilocal computation

(1) Regular fiber: \mathbb{C} or $\{0\}$.
(2) Elliptic \times (Regular or elliptic): $\{0\}$. (Hamilton, Miranda, Solha)

Semilocal computation

(1) Regular fiber: \mathbb{C} or $\{0\}$.
(2) Elliptic \times (Regular or elliptic): $\{0\}$. (Hamilton, Miranda, Solha)
(3) Hyperbolic fiber: $\mathbb{C}^{\mathbb{N}}$. (Miranda, Solha)

Semilocal computation

(1) Regular fiber: \mathbb{C} or $\{0\}$.
(2) Elliptic \times (Regular or elliptic): $\{0\}$. (Hamilton, Miranda, Solha)
(3) Hyperbolic fiber: $\mathbb{C}^{\mathbb{N}}$. (Miranda, Solha)
(9) Focus-Focus fiber:
(Miranda, P, Solha)
 if the singular fiber is not $B S$, if the singular fiber is BS.
Where, $k=\#\{$ singular points in the fiber $\}$ if the fiber is compact and $k=\#\{$ singular points in the fiber $\}-1$ in other case.

Semilocal computation

(1) Regular fiber: \mathbb{C} or $\{0\}$.
(2) Elliptic \times (Regular or elliptic): $\{0\}$. (Hamilton, Miranda, Solha)
(3) Hyperbolic fiber: $\mathbb{C}^{\mathbb{N}}$. (Miranda, Solha)
(9) Focus-Focus fiber:
(Miranda, P, Solha)
$\left\{\begin{array}{l}0 \\ \bigoplus_{1 \leq j \leq k} C^{\infty}(\mathbb{R} ; \mathbb{C})\end{array}\right.$ if the singular fiber is not BS , if the singular fiber is BS.
Where, $k=\#\{$ singular points in the fiber $\}$ if the fiber is compact and $k=\#\{$ singular points in the fiber $\}-1$ in other case.
(0) Focus-Focus \times (Whatever) fiber. Apply Künneth and that's it.

Semilocal computation

(1) Regular fiber: \mathbb{C} or $\{0\}$.
(2) Elliptic \times (Regular or elliptic): $\{0\}$. (Hamilton, Miranda, Solha)
(3) Hyperbolic fiber: $\mathbb{C}^{\mathbb{N}}$. (Miranda, Solha)
(9) Focus-Focus fiber:
(Miranda, P, Solha)
$\left\{\begin{array}{l}0 \\ \bigoplus_{1 \leq j \leq k} C^{\infty}(\mathbb{R} ; \mathbb{C})\end{array}\right.$ if the singular fiber is not BS , if the singular fiber is BS.
Where, $k=\#\{$ singular points in the fiber $\}$ if the fiber is compact and $k=\#\{$ singular points in the fiber $\}-1$ in other case.
(0) Focus-Focus \times (Whatever) fiber. Apply Künneth and that's it.

Lego land provides any answer.

K3 surface

Figure: Delzant polytopes of $\mathbb{C} P^{2}$, $\mathbb{C} P^{2} \# 3 \overline{\mathbb{C}}^{2}$ and $\mathbb{C} P^{2} \# 9 \overline{\mathbb{C}}^{2}$.

Figure: Delzant polytopes of $\mathbb{C} P^{2}$, $\mathbb{C} P^{2} \# 3 \overline{\mathbb{C}} \bar{P}^{2}$ and $\mathbb{C} P^{2} \# 9 \overline{\mathbb{C}}^{2}$.

Figure: Nodal trades on $\mathbb{C} P^{2} \# 9 \overline{\mathbb{C P}}^{2}$.

K3 surface

Figure: Delzant polytopes of $\mathbb{C} P^{2}$, $\mathbb{C} P^{2} \# 3 \overline{\mathbb{C}}^{2}$ and $\mathbb{C} P^{2} \# 9 \overline{\mathbb{C}}^{2}$.

Figure: $K 3$ surface as a singular fiber bundle over the sphere.

Figure: Nodal trades on $\mathbb{C} P^{2} \# 9 \overline{\mathbb{C}}^{2}$.

K3 surface

Figure: Delzant polytopes of $\mathbb{C} P^{2}$, $\mathbb{C} P^{2} \# 3 \overline{\mathbb{C}}^{2}$ and $\mathbb{C} P^{2} \# 9 \overline{\mathbb{C}}^{2}$.

Figure: $K 3$ surface as a singular fiber bundle over the sphere.

Figure: Nodal trades on $\mathbb{C} P^{2} \# 9 \overline{\mathbb{C}}^{2}$.

Thus, we obtain a $K 3$ with up to 24 BS focus-focus fibers.

$$
\mathcal{Q}(K 3) \cong \mathbb{C}^{14} \oplus \bigoplus_{j=1}^{24} C^{\infty}(\mathbb{R} ; \mathbb{C})
$$

Other examples

(1) Spin-spin system.

Figure: Nodal trade on $\mathbb{S}^{2} \times \mathbb{S}^{2}$.

Other examples

(1) Spin-spin system.

Figure: Nodal trade on $\mathbb{S}^{2} \times \mathbb{S}^{2}$.

Other examples

(1) Spin-spin system.

$$
\mathcal{Q}\left(\mathbb{S}^{2} \times \mathbb{S}^{2}\right) \cong C^{\infty}(\mathbb{R} ; \mathbb{C}) .
$$

Figure: Nodal trade on $\mathbb{S}^{2} \times \mathbb{S}^{2}$.
(2) Spherical pendulum and the spin-oscillator system.

Thanks for listening!

Special thanks to Eduardo Fernández for helping with these slides

