Geometric Quantization, Semi-classical limits, and
Formal quantization : work in common with Paul-Emile
Paradan

SUMMARY :

1) G torus acting on M compact even dimensional manifold :
L line bundle,  : M — g* moment map.
Semi-classical behavior of geometric quantization.

2) G compact connected, M non necessarily compact but ¢
proper

3) The semi-classical behavior determines the quantization :
Application to formal quantization.




Moment map and Marsden-Weinstein reduction

(M, Q) compact symplectic manifold

Liouville measure : Q4mM/2

G torus acting on M in a Hamiltonian way

g : Lie algebra of G, Xy, vector field on M produced by X € g.
®: M— g*:moment map :

FUNDAMENTAL RELATION

Xeg:
d{®, X) = o(Xy)Q.

t(Xp) contraction of differential forms by Xy.

Marsden Weinstein reduction

The symplectic (orbifold) manifold M,eq4(a) = ¢~ 1(a)/G .

Here a € g*, regular value of .



Volume of the fiber : the Duistermaat-Heckman

measure

ac gt regularvalueof & : M — g* :

The Duistermaat-Heckman measure
DH(a) = vol(¢~1(a)/G)

A priori, DH(a) defined only for regular values.
BUT

DH(a) extends to a continuous and piecewise polynomial
function on the convex polytope (M) C g*.




More generally

(M,Q, ®), M even dimensional oriented. Q2 not necessarily non
degenerate. Q(@MM)/2 3 signed measure on M.

We say : ¢ is the moment map if

d(®, X) = (X))

Assume that ® admits regular values. Q2 descend to a two-form
on ®~1(a)/G for a regular. We obtain a corresponding signed
"Liouville measure” on ¢~ '(a)/G.

The Duistermaat-Heckman measure

DH(a) = vol(¢~'(a)/G).

DH(a) extends to a piecewise polynomial function on g*
supported on a union of convex polytopes. We call DH(a)da
the Duistermaat-Heckman measure




An example : Hamiltonian action of G on M

In the next frame,
M= O[1,0,—-1] x O[1,0, —1]

with O([1,0, —1])= Hermitian matrices (x;) with eigenvalues

(1 9 07 71 )
e’ 0 0
G=| 0 €% 0
0 0 1

On M, with coordinates (xj, y;), ® = (¢1,¢2) : M — R?

o1 = X141 + Y11, 2 = Xop + Yoo.

Then the reduced manifolds ®~'(a)/G are of dimension
8 = 6 + 6 — 4. The volume is given by local polynomials of
degree 4 :






Varying the moment map : M toric manifold

corresponding to the Delzant polytope on the left.

T multiplicitie:

s|for Or(9,5)

On the left : moment map and Duistermaat-Heckman measure

associated to a symplectic form.

On the right : moment map associated to a degenerate form.

The red is 41, and the blue is —1.



Kostant line bundle

(M, Q, ®) as before.
Let L be a G-equivariant line bundle with connection V

Definition : L is a Kostant line bundle for (M, Q, ¢)

V2=—iQ and L(X)—Vx=Ii(®, X).

That is Q is the curvature of the line bundle, and do not need to
be non degenerate. The moment map is determined by the
connection.




Quantization with Dirac operators

Let (M,Q, ®) and L a Kostant line bundle for this data.
To simplify, assume M with a G-equivariant spin structure.
We consider the Dirac operator D;

D, := C®(M,S*® L) - C*(M,S L)

by D, = ", Vo®L(e;) ® Cliff(e;) where e; is a local orthonormal
frame, S = ST & S~ the spin bundle, and Cliff(e;) the Clifford
action of g; on the spin module.

Q%(M, L) = Index(D,) = Ker(D,) — Coker(Dy).

We call Q4(M, L) the quantization of (M, L). This is a virtual
finite dimensional representation of G.

If G= {1}, Q(M, L) = Q%(M, L) € Z is the index of the elliptic
operator D; .



Quantization and multiplicities

G := a lattice A € g%

If A € A, we denote by ) the corresponding character of G.
Example G = S' = {€?}. Then G = Z : mp(e'®) = e is the
corresponding character.

Traou.o)(t) = Y mA)ma(t).

We write this as




Quantization commutes with reduction

QE(M,L) = m(N)my

AEA
A € A aregular value of .

Mred()‘) = CI)_1(/\)/6

L ® [C,] descends to a line bundle Ly on Mygq(A).

Theorem (Cannas da Silva-Karshon-Tolman (2000))

A regular value of ¢ :

m(A) = Q(Mreq(}), L)

This is Guillemin-Sternberg conjecture proved by
Meinrenken-Sjamaar (1999) for G compact and any X in the
symplectic case. For Dirac quantization by Paradan-Vergne
(2015)



Multiplicity function under dilation




Multiplicity function under dilation

(A, k) — m(\, k) is a piecewise quasi-polynomial function on
A x N. The domains of quasi-polynomiality are convex
polyhedral cones.

Meinrenken-Sjamaar (1999) in the symplectic case and any
compact connected Lie group G. For Dirac quantization,
Paradan-Vergne (2015)



Behavior for large k

Let test be a smooth function on g*. It is natural to consider
(Vi test) =~ m(X, k) test(A/K).

AEN

Theorem (Paradan-Vergne (2017))
The family of distributions V admits an asymptotic expansion

Vi = k(@mm/2 3 %Qn

n>0

with 6y the Duistermaat-Heckman measure.

AIM : GIVE AN EXPLICIT FORMULA FOR THE FULL
ASYMPTOTIC EXPANSION



Example : Variation on the Euler-MacLaurin formula

M = P;(C) with L = 0?2
tak _ t—ak .
TrQG(M,Lk)(t) = ﬁ = Z tj.
je€lka,—kaln(ka+(2Z+1))

So
(Vj, test) = > test(t)

¢ela,—ana+22
2
= Z/ test(t dt+z )= 13"( / )(t st~V (a)—test(" 1 (—a)).

Here By(t) is the n-th Bernoulli polynomial.



Equivalent formulation with A operator

Use

Then we obtain :




The main results

The semi-classical expansion can be computed explicitly in
term of the graded equivariant class A(M) of the manifold M.

The semi-classical expansion determines Q%(M, L).




De Rham model for Equivariant cohomology

Equivariant form : equivariant polynomial map
n:g— AM)
Differential :

(Dn)(X) = d(n(X)) = e(Xm)n(X).

Here A(M) = differential forms, d De Rham differential.
Equivariant curvature : Q(X) := Q — (¢, X).
Fundamental relation = Q(X) is a closed equivariant two-form.




Twisted Duistermaat-Heckman distributions

If X — n(X) is an equivariant form, we define

(DH(M, Q. n), test) = / / e~ 200,(X)lest(X)dX.
Mxg

Here test is a test function on g*, and test its Fourier transform.
DH(M,Q,n) depends only of the cohomology class of 7.
When M non-compact, DH(M, Q2,n) is still defined if  is proper.




The equivariant class A(M)

Let p =dim M. If x is a p x p matrix, let

X/2 _ A—Xx/2
J(x) := det (exe) .

J1/2(x an

n>0

and

with p,(x) homogeneous invariant polynomial of degree n.
Chern-Weil morphism : py(x) ~ equivariant form A,(M)

The series

converges for X € g small enough.




Berline-Vergne equivariant Riemann-Roch formula

For X € g small,

Tkern, (expX) — TrCokerDL (expX) =

1 o1
(2,‘7T)cll'rnl\/l/2/Me’ CIAM)(X).




Formula for the asymptotic expansion

Theorem :
The measure

< Vi, test >="Y " m(\, k)test(\/K)
A
admits the asymptotic expansion

KImMM/ZN" k=" < DH(M, Q, py), test >
n=0

as a series of distributions supported on ®(M).

When M is toric : Asymptotic expansion : asymptotic of a
Riemann sum (Guillemin-Sternberg ; Berline-Vergne) : given by
various derivatives of the faces.



Why this is true ?

By Fourier transform, this means that

TrKerDLk (eXp(X/k)) - TrCokerDLk (eXp(X/k)) =

1

kQUX/kK) 2
iy 7 PAMK

provided we replace the right hand side by its Laurent series in
1/k, and the left hand side by its semi-classical approximation.
In other words, B-V formula holds for the semi-classical
expansion, if we replace the A class by its series in the graded
ring of equivariant conomology.

The proof indeed follows from B-V formula.



M non compact with proper moment map

Assume the fibers of the moment map compact. Then various
definitions (Weitsman,Paradan-Vergne,Braverman, Ma-Zhang)
of Q4(M, L) as an infinite dimensional representation of G can
be given. They all coincide.

¢ Defined as the index of a G-transversally elliptic operator
DP“*" by Paradan-Vergne (using the Kirwan vector field)

QC(M, L) = Ker(DP*") — CoKer(DP"").

e Defined as formal quantization by J Weitsman

QG(M7 L) = Z Q(Mred,)u LA)WA
AEN

Here Q(Mieq », L)) can be defined since Mgy ) = o~1(\)/Gis
compact (defined by "continuity” of the index if A is not a regular
value using a nearbye regular value.)



Example 1

M = T*S', with coordinates (e”, t),

Q=doAdt, o(e” t) =t

= [C] with connection d — itd¢ is a Kostant line bundle.

QS(M,L) = L3(S") =) e

nez




Example 2

M=C,acZ G=S",L=MxC

with action e(z, v) = (€®?z, e@v).

V=d- é/m(de).

Moment map ¢g(z) = a+ |z|? proper. Then

QG(M, L) _ eika@ Z ei(2j+1)9'
j=0




The same theorem holds with same proof

Use Berline-Vergne-Paradan formula for index of transversally
elliptic operators.
(M, Q, ®); L Kostant line bundle :  proper moment map.

Q%(M, LK) = em(X, k).

Theorem :
The measure

< Vi, test >= ~m(), k)test()\/k)
A
admits the asymptotic expansion

KImM/ZN " k=" < DH(M, Q, py), test >
n=0




G compact connected

(M, L, ®), ® : M — g* proper moment map.

L Kostant line bundle : then we can define (as index of a
transversally elliptic operator)

QE(M, LK) =" m(X, k).
reG

We now describe G and the classical analog of the right hand
side.

G can be identified to a discrete subset of coadjoint orbits in g*.
T maximal torus, choice of positive roots, t%, positive Weyl
chamber.



Coadjoint orbits

Function j,(X) = dety(£25¢2), X € g.
Coadjoint orbits G¢ € g* have a canonical symplectic form and
Liouville measure dg;.

Gcg*/G
by

Kirillov formula

Tr(m(exp X))/ 2(X) = / &<X> g/

Ox

The corresponding set of all the O, is the set of regular
admissible orbits in the sense of Duflo.
Identification

G =~ {dominant regular admissible weights} C t%,



Assume G simply connected.

(A, k) — m(\, k) extends to a piecewise quasi-polynomial

W-antiinvariant function on A x N. The domains of
quasi-polynomiality are convex polyhedral cones.




Restrict here (for simplicity) to the case of abelian generic
stabilizer. Write :

Q%(M, L¥) = Zm(G)\k

The function jy(X) = det, €22-e**” gives rise to an infinite

series of constant coefﬂments differential operators on g*.




Theorem : The measure

Z m(G, \, k)Measure( O, /)

admits an asymptotic expansion

kdImM/2 1/2(0//( <Zk "DH(M, Q pn>
n=0

as a series of distributions supported on ¢(M).




The semi-classical behavior determines Q%(M, L)

If M is compact, knowing the behavior of Q4(M, LX) for k large

determines Q%(M, L) for k = 1.
For M non compact, we need to consider also the asymptotic

development of

ﬁOG(M,Lk)(S exp X/k)

where s.X = X. Similar formulae can be proven for the
asymptotics in terms of equivariant differential forms.




Application

Annoying feature of the definition of Q%(M, L) for M non
compact : Not clear on any of the definitions of Q4(M, L) that if
H is a subgroup of G, Q%(M, L) restricts to Q"(M, L) !!!

Proof that this is true by Paradan using cutting and
compactifications.

Here we can give a natural proof.




Restrictions of the formal quantization to a subgroup

If His a compact subgroup of G such that & : M — b* is proper,
we can define Q4(M, L) and Q"(M, L).

It is obvious that the asymptotic development of Q"(M, L) is the
push forward of the asymptotic development of Q4(M, L) by the
map g* — h*.

So comparing the asymptotic developments we obtain a natural
proof.




