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1. VORTEX PROBLEM AS A HAMILTONIAN
SYSTEM



Vortices as we might see in real life:

(a) A vortex in Atlantic (b) The Jupitor Red Spot (c) When One flushes the
Ocean Toilet

Figure 1: Some Examples of Vortices
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Vortex System

- The study of vortices goes back to Helmholtz since 1858

Figure 2: Hermann Von Helmholtz, 1821-1894
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Vortex System

- The study of vortices goes back to Helmholtz since 1858

Figure 2: Hermann Von Helmholtz, 1821-1894

- Its Hamiltonian structure is first formulated by Kirchhoff in 1876

Figure 3: Gustav Robert Kirchhoff, 1824-1887
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Hamiltonian Structure of Vortex Dynamics

- Let z; = (x,yi) denotes the position of i-th vortex in the plane, with a given
vorticity I73.
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Hamiltonian Structure of Vortex Dynamics

- Let z; = (x,yi) denotes the position of i-th vortex in the plane, with a given
vorticity I73.
- Their movements are governed by the System

{riki(t) ou

oy (1)
Moi(t) = -5

with

1 2
H = ~ I Z Il log |z — z;

1<i<j<N

3/21



Hamiltonian Structure of Vortex Dynamics

- Let z; = (x,yi) denotes the position of i-th vortex in the plane, with a given
vorticity I73.
- Their movements are governed by the System

{riki(t) ou

= oy (1)
Moi(t) = -5

with

1 2
H = ~ I Z Il log |z — z;

1<i<j<N

- The energy surface is neither compact, nor convex
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Integrability

Define the Poisson Bracket

) 1. 0f dg  of dg
{f.o)= 151251\1 ri(axi dyi Oy axi)
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Integrability

Define the Poisson Bracket

1. 0f dg  of dg
fal = L or 99 9t 99
{f.0) 151251\1 ri(axi dyi Oy axi)

- The system is an autonomous Hamiltonian system
1 2
= H-= i Z1Si<j5N Flrj |0g |Z1'_ - Z’jl =CST
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Integrability

Define the Poisson Bracket

1,0f o0g of 0g
f = - ——Z
{ ’g} EZ Tk(axi ayi 8yi 8xi)

1=isN
- The system is an autonomous Hamiltonian system
2

= H-= —# Z1Si<j5N Flrj |0g |Z1'_ - Zjl = CST

- The system is invariant under translation

= X= Z]sisN Fixi = CST,Y = 21515]\, Fiyi = CST
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Integrability

Define the Poisson Bracket

1,0f o0g of 0g
f = - ——Z
{ ’g} EZ Tk(axi ayi 8yi 8xi)
1=i<N
- The system is an autonomous Hamiltonian system
2
= H-= —# Z1Si<j5N Flrj |0g |Z1'_ - Zjl = CST
- The system is invariant under translation
= X= Z]sisN Fixi = CST,Y = 21515]\, Fiyi = CST
- The system is invariant under rotation
2
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Integrability

- There are three independent first integrals in involution: H, I, P?+ Q2

(HP*+Q% =0, {HI}=0, {LP’+Q%}=0
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- The 3-vortex problem is integrable.
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Integrability

- There are three independent first integrals in involution: H, I, P?+ Q2
(HP*+Q% =0, {HI}=0, {LP’+Q%}=0

- The 3-vortex problem is integrable.
- The N-vortex problem is in general not integrable when N > 3
(S. Ziglin 1980; J. Koiller and S. P. Carvalho 1989).
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VARIATIONAL APPROACH FOR HAMILTONIAN
SYSTEM



- Analogy in Celestial Mechanics
(A. Chenciner and R. Montgomery, 2000)

Figure 4: The eight-figure curve
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- Analogy in Celestial Mechanics
(A. Chenciner and R. Montgomery, 2000)

g

Figure 4: The eight-figure curve

- Give an example that linking techniques apply to Superquatratic Hamiltonian with
physical background
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Variational Formulation

- Let L*(S",R*™) denote the set of 2N-tuples of 27 periodic functions which are
square integrable. The Fourrier expansion hence exists, i.e., for z € L2(§1, IRZN),

Define the norm

2 2,1
lzllwzr = () (14 [KIP)axl’)?
kezZ

It has been noticed that a proper functional space for Hamiltonian system is the

1
space H%(St Rzn), where
1 1
HZ(S',R™) = {z(t) € H2(S; R*™)| 2(0) = 2(T)}
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Variational Formulation

1 1
- The space H§(§1, R*") admits the following decomposition H%(St R™=t"eoE @

E’:
2mjt 27 27) 27j
E =span{(sin%])ek - (cos%]t)ekm, (cos%]t)ek + (sin%t)ekm}
- 27j 27j 27j 27j
E :span{(sin?t)ek + (cos%t)ekﬂl, (cos?t)ek - (sin%t)emn}

=5pan{e1,€2p~,92n}
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Variational Formulation

1 1
- The space H;(SK R*") admits the following decomposition H%(SK R™=t"eoE @

E":
2mt 27 27) 27j
E -span{(mn%])ek —(cos _Tr[] t)exsn, (cos%]t)ek + (sin%t)emn}
- 2 27j 271j 27j
E :span{(singt)ek + (cos?t)ekﬂl, (cos?t)ek - (sin%t)emn}

0

E =Span{e1’ €7, ..., eZn}

- Given the vortex Hamiltonian function, we define the following functionals for
variational argument

va(t) € Hi(s' R / yldxdt

Tn(z) = / yldx — H(x,y)dt

8/21



Variational Formulation

-Givenz=z++z_+zo, and T} >0,V1<i<n

AlzY) > 0,A(z7) < 0,A(z) = 0
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Variational Formulation

-Givenz=z++z_+zo, and T} >0,V1<i<n
AlzY) > 0,A(z7) < 0,A(z) = 0

, where
n

- One can define an equivalent norm ||.||¢ = ||.|| :
H7 (S'R?")

I1E = A7) - Az) + | 2°
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Variational Formulation

-Givenz=z++z_+zo, and T} >0,V1<i<n
AlzY) > 0,A(z7) < 0,A(z) = 0

- One can define an equivalent norm ||.||¢ = |[.|| , where
H n

1
2 (g1 @2
T(S’R )

I1E = A7) - Az) + | 2°

1
- The subspaces E*, E~, E® are mutually orthogonal not only in H%(§1, R”") but also
in L*(S',R*™)
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Variational Formulation

- We will always assume I'; = 1,V1<i< N
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Variational Formulation

- We will always assume I; = 1, V1 <i < N - Consider the following Hamiltonians:

N . .

Z log|z" — 2
1j=1,1<j

N . .

'|_|' |Z1. _ Z) |2
1,j=1,1<j

N o .

T 12 =21 +£(1(z)

1,j=1i<j

Ho

H,

H;

where f(A) = A, for an integer k > 0 fixed large enough whose value is to be

precised later on.while

x <21

=%
H—kT,
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Variational Formulation

- We will always assume I; = 1, V1 <i < N - Consider the following Hamiltonians:
N . .
Z log|z" — 2
1j=1<]
N . .
'|_|' |Z1. _ Z) |2
1j=1,i<j
N . .
T 12 -2 +f(1(2)

1,j=1i<j

Ho

H,

H;

where f(A) = A, for an integer k > 0 fixed large enough whose value is to be
precised later on.while

x <21

=%
U—kT,

- Hy = H; replaces collision singularity by fixed point
- H; = H; ensures the compactness: the validity of Palais-Smale condition 10/21



N . . N . . N . .
Ho= ) logle' =2 Hi= [ =2 H= ] 122 +1(1(2)
Lj=1i<j 1,j=1,i<j 1,j=1,i<j

The main lines of the strategy are as the following;:
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N . . N . . N . .
Ho= ) logle' =2 Hi= [ =2 H= ] 122 +1(1(2)
Lj=1i<j 1,j=1,i<j 1,j=1,i<j

The main lines of the strategy are as the following;:

1
- 1. We show that Jyy, possesses a critical point zy, in H%(St R”") by the construc-
tion of topological linking,Standard argument then shows that this critical point is
indeed a classical solution z, of the Hamltonian H,
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N . o N . . N . .
Ho= ) loglz' =21 Hi= T 1221 Hy= [ 12" = 2 +£(1(z)
Lj=1i<j 1,j=1,i<j 1,j=1,i<j

The main lines of the strategy are as the following;:

:
- 1. We show that Jyy, possesses a critical point zy, in H%(S], R”") by the construc-
tion of topological linking,Standard argument then shows that this critical point is
indeed a classical solution z, of the Hamltonian H,

- 2. By the fact that flows of Hamiltonians in involution commute, we show that,
zy, will induce a relative T-periodic solution zy, of the Hamiltonian H ;

- 3. We will exclure the possibility of collision in zy, , thus H; # 0;

- 4. Now by taking logarithm of H; (which is a legal operation when H; # 0), zy,
will become, after a reparametrization of time, a relative periodic solution zy, for
Ho
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EXISTENCE OF CRITICAL POINT FOR Jyy,



Subquadratic Hamiltonian

Theorem (Rabinowitz-Benci, 1979)

Suppose that the Hamiltonian H is of class €' (S',R*™") and satisfies that

1. H(z) >0

2. H(z) = o(||zl|*) when ||z]| - 0

3. 3r>0and pu>2s.t. 0 < uH(z) < VH(z),z > when ||z|| >

Then for any T > 0 the Hamiltonian system has a non-constant T-periodic solution.
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Then for any T > 0 the Hamiltonian system has a non-constant T-periodic solution.

- This critical point is characterized by minmax method through topological linking.
- Apply this to Hj, we can find a non-constant periodic solution zy,.
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Subquadratic Hamiltonian

Theorem (Rabinowitz-Benci, 1979)

Suppose that the Hamiltonian H is of class €' (S',R*™") and satisfies that

1. H(z) >0

2. H(z) = o(||z|*) when ||z]| > 0

3. 3r>0and pu> 2 s.t. 0 < uH(z) < VH(z),z > when ||z|| > r

Then for any T > 0 the Hamiltonian system has a non-constant T-periodic solution.

- This critical point is characterized by minmax method through topological linking

- Apply this to Hj, we can find a non-constant periodic solution zy,.
- It can be proved that the corresponding critical value c satisfies that

c<(1+e)n

for a small e depending on k
12/21



H,

H,

- Note that in our setting

Xn(1) = IV(H + (1)) = Xy + Xgq)
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H,

H;

- Note that in our setting
Xy = IV(H + £(I)) = Xy + Xg(p)

- {f(I),H} = 0, as a result [ X, X¢y] = 0
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H,

H;

- Note that in our setting
Xn(1) = IV(H + (1)) = Xy + Xgq)
- {f(I),H} = 0, as a result [ X, X¢y] = 0

- z, induces a relative T-periodic solution zy, for H;
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- If zy, does not have any collision, then it is, up to a reparametrization of time, a
relative Ty-periodic solution zy, of the Hamltonian H,.
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- If zy, does not have any collision, then it is, up to a reparametrization of time, a
relative Ty-periodic solution zy, of the Hamltonian H,.
- Adding a rotationing frame work does not change the mutual distances.
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- If zy, does not have any collision, then it is, up to a reparametrization of time, a
relative Ty-periodic solution zy, of the Hamltonian H,.

- Adding a rotationing frame work does not change the mutual distances.

- If zy, does not have any collision, then it is, up to a reparametrization of time, a
relative To-periodic solution zy, of the Hamltonian H,.
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ExcLusiON OF COLLISION FOR Zy,



What if a Collision Happened

- Suppose that there is a collision. It implies that VH; = 0, and zy, becomes a
centered uniform rotation.
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What if a Collision Happened

- Suppose that there is a collision. It implies that VH; = 0, and zy, becomes a
centered uniform rotation.
- The critical value satisfies that

]
= Tiy(z,) = | ydx—Hafa,)at

= TTwI(ZHZ) - Tf(I(ZHz))
- g, - Tof (12112,
- 1) - L0z,

Tw

= Sz - 1)

= mal(z,)(1 - )

here m is number of rotation in time T 15/21
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What if a Collision Happened

- The collision cannot happen when I(zy,) too small. If I(zy,) < 1, then :

df -
|l = 275 (I(zy,) = pk*™

27

X
T T

<
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What if a Collision Happened

- The collision cannot happen when I(zy,) too small. If I(zy,) < 1, then :

daf _
|l = 275 (I(zy,) = pk*™

o 21
<S=<—=

T T
- We conclude that I(zy,) > 1.
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What if a Collision Happened

- The collision cannot happen when I(zy,) too small. If I(zy,) < 1, then :

daf _
|l = 275 (I(zy,) = pk*™

X 2
T T
- We conclude that I(zy,) > 1.
1 1
c= mﬂI(ZHZ)“ - E) > mrt(1 - E)

- Recall that
c<(1+ ek)zn

Lemma

Suppose that the solution zy, that we have found does have a collision, then this

solution must verify that T is its minimal period.
16/21



Symmetry and Palai’s Principle

Theorem (Palais, 1979)

(Palai’s Principle of symmetric criticality)Let G be a group of isometries of a
Riemannian manifold M and letf : M - R be a e function invariant under G. Then
the set " of stationary points of M under the action of G is a totally geodesic smooth
submanifold of M, and if p € T is a critical point of f|I" then p is in fact a critical
point of f
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Symmetry and Palai’s Principle

Theorem (Palais, 1979)

(Palai’s Principle of symmetric criticality)Let G be a group of isometries of a
Riemannian manifold M and let f : M — R be a ' function invariant under G. Then
the set " of stationary points of M under the action of G is a totally geodesic smooth
submanifold of M, and if p € T is a critical point of f|I" then p is in fact a critical
point of f

- Let G be a finite subgroup of O(2) x Xy x O(2). Let A be T-periodic loops in the
configuration space of our vortex system (Note that for the vortex problem, the
configuration space coincides with the phase space). Let g = (1,0,p) € G acts on
z(t) = (z1(t), z5(t), ..., zn(t)) € A be such that:

9zi(t) = py 1T (1))

In the special case, let p = I, o '(j) = j - 1, with the convention that z, = z,_;
() =t- %, then the group thus generated is called the group of choregraphy

17/21



Choregraphy

Consider the simple choregraphy of N vortices
Zi(t+ %) —z{t), i=12..N
This gives us a solution zy, that is a simple choregraphy
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Choregraphy

Consider the simple choregraphy of N vortices

Z(t+ %) —z{t), i=12..N

This gives us a solution z, that is a simple choregraphy - Suppose to the contrary
that zy, has a collision. Then it becomes a uniform rotation with T* = T. Moreover,

Without loss of generality we could assume the collision involes Z1H2, ie.,
21, (1) = 211, (1), V1 < i< N
Now by the definition of choregraphy again, we see that Vt € [0, T]

zﬁ;1(t+T(i_1) B +T(i]\I1))

It turns out that
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Choregraphy

- It is clear how we can define an equivalent class for vortices collided in this way.
The index of vortices in one equivalent class will be a subgroup of the cyclic group
S™, thus each equivalent will at least have two elements. Dividing $' parameterized
by [0, T] into two equal parts [0, %] and [%,T). Now by Pigeonhole principle there
must be at least two elements falling into the same part, i.e., the time gap is less or
equal to % In other words, any collision will imply that

T" <

N —

In other words, the collision will lead to m > 2
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Choregraphy

- We have thus proved the following theorem:

VN € N*, the identical N-vortex system has a relative periodic choregraphy.
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Choregraphy

- We have thus proved the following theorem:

Theorem

VN € N*, the identical N-vortex system has a relative periodic choregraphy.

- Is the solution the Thomson’s N-polygon?...
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Thank you!
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