Pencils of skew-symmetric matrices and Jordan-Kronecker invariants

Alexey Bolsinov, Loughborough University

September 25-27, 2017
Journée Astronomie et Systèmes Dynamiques
IMCCE / Observatoire de Paris

- What is a normal formal of a "mathematical object"?
- Similarity and Congruence Transformations
- Jordan normal form and simultaneous diagonalisation
- Representation of groups: orbits and invariants
- Pencils of skew-symmetric matrices (forms)
- Jordan-Kronecker decomposition theorem
- Lie algebras and their invariants
- JK invariants of Lie algebras and their applications

Idea of normal (canonical) forms

Jordan normal form

Take a square matrix A and try to simplify (diagonalise?) it!
Theorem
Let A be a $n \times n$ complex matrix. Then there exists an invertible matrix P such that $A^{\prime}=P^{-1} A P$ takes the following block-diagonal form (called Jordan normal form):

$$
A^{\prime}=\left(\begin{array}{llll}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{k}
\end{array}\right)
$$

where the blocks J_{m} are

$$
J_{m}=J\left(\lambda_{m}\right)=\left(\begin{array}{ccccc}
\lambda_{m} & 1 & & & \\
& \lambda_{m} & 1 & & \\
& & \ddots & \ddots & \\
& & & \lambda_{m} & 1 \\
& & & & \lambda_{m}
\end{array}\right)
$$

Comment: 1×1 blocks $J_{m}=\left(\lambda_{m}\right)$ are allowed (moreover, they are "typical") and some of λ 's may coincide (i.e., $\lambda_{i}=\lambda_{j}$ is OK).

Pairs of symmetric matrices

Let A and B be two symmetric matrices (symmetric bilinear forms).
Question. To which normal form can one reduce these matrices simultaneously by congruence transformation:

$$
A \mapsto P A P^{\top}, \quad B \mapsto P B P^{\top} ?
$$

Theorem

Assume that A is positive definite, then there exists an invertible matrix P such that

$$
A \mapsto P^{\top} A P=\mathrm{Id}, \quad B \mapsto P^{\top} B P=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Almost equivalent version of this result:
Theorem (Spectral theorem)
Let $\phi: V \rightarrow V$ be a symmetric operator on a Euclidean vector space. Then there exists an orthonormal basis that consists of eigenvectors of ϕ.
Equivalently, in matrix form:
Let B be symmetric. Then there exists an orthogonal matrix P such that

$$
B \mapsto P^{\top} B P=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Viewpoint of the representation theory

A group G acts on a set S, i.e., each element $g \in G$ is represented as a bijective map $g: S \rightarrow S$. (E.g., $S=V$ is a vector space and $g: V \rightarrow V$ is an invertible linear operator.)

Definition

The orbit of a point $x \in S$ is

$$
\mathcal{O}(x)=\{y=g(x) \in S \mid g \in G\} .
$$

S can be presented as the disjoint union of orbits (i.e., can be partitioned into orbits).
Finding "normal form" is just "classification of orbits": for each orbit $\mathcal{O} \subset V$ we wish to find a representative $x \in \mathcal{O}$ (of the simplest possible form).

Definition

A function $f: S \rightarrow \mathbb{R}$ (not necessarily \mathbb{R} !) is called an invariant of the action if $f(x)=f(g(x))$ for all $x \in S, g \in G$. In other words, f is constant on each orbit (but this constant may depend on the orbit).
Similarity transformation $A \mapsto P A P^{-1}$ and congruence transformation $B \mapsto P B P^{\top}$ are two different actions of $G L(n)$ on the space of square matrices.

General problem

Given a (linear) action of G on V, we wish to find the invariants and to describe the orbits.

Example

$S L(2, \mathbb{R})$ acts on $s(2, \mathbb{R})=\left\{A=\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right)\right\}$ by conjugation $A \mapsto C A C^{-1}$.
$f(A)=\operatorname{det} A=-a^{2}-b c$ is an invariant of this action.
The orbits are "connected components" of f-levels: $\quad-a^{2}-b c=$ const.

Example

$G L(2, \mathbb{R})$ acts on the space of symmetric matrices $V=\left\{A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)\right\}$ by: $A \mapsto C A C^{\top}$.
There are no smooth invariants.
There are 6 distinct orbits represented by the following matrices:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Orbits of SL $(2, \mathbb{R})$ acting on $\operatorname{sl}(2, \mathbb{R})$ $X \longmapsto$ PX P $^{-1}$

Orbit space $\approx \mathbb{R}$

Skew-symmetric pencils

Now consider two skew-symmetric matrices A and $B\left(A^{\top}=-A\right.$ and $\left.B^{\top}=-B\right)$ and the pencil $\mathcal{P}=\{A+\lambda B\}$ generated by them. Can we say anything similar about simultaneous canonical form in this case?

Karl Weierstrass (1815-1897), Leopold Kronecker (1823-1891), Camille Jordan (1838-1922)

Felix Gantmacher (1908-1964) and his famous book Theory of Matrices (1953).

Jordan-Kronecker decomposition theorem

Theorem
Let A and B be skew-symmetric $n \times n$ matrices. Then there exists an invertible P such that the transformation $A \mapsto P A P^{\top}, B \mapsto P B P^{\top}$ gives the following normal form

where pairs of the corresponding blocks A_{i} and B_{i} can be of the following types (see next slide)

Blocks in the skew-symmetric case

A
B

Jordan type $\left(\lambda_{m} \in \mathbb{C}\right)$

here $J\left(\lambda_{m}\right)$ is standard Jordan λ-block

Kronecker type

Some comments

- The characteristic number λ_{m} plays the same role as an "eigenvalue" in the case of linear operators. More precisely, λ_{m} are those numbers for which the rank of $A_{\lambda}=A+\lambda B$ for $\lambda=\lambda_{m}$ is not maximal.
- If $\mu \neq \lambda_{m}$, then $A_{\mu}=A+\mu B$ is called regular (in the pencil $\mathcal{P}=\left\{A_{\lambda}\right\}$).
- Characteristic numbers are the roots of the characteristic polynomial $\mathrm{f}_{\mathcal{P}}(\lambda)=\operatorname{gcd}\left\{\operatorname{Pf}_{i_{1} \ldots i_{2 k}}(A+\lambda B)\right\}, 2 k=$ rank P.
- The sizes of Kronecker blocks are odd $2 k_{i}-1$, the sizes of Jordan blocks are even $2 j_{m}$. The numbers k_{i} and j_{m} are called Kronecker and Jordan indices of the pencil.
- If a pencil $P=\{A+\lambda B\}$ is pure Kronecker (i.e. no Jordan blocks), then all matrices in the pencil are of the same rank.
- The number of Kronecker blocks equals the corank of the pencil \mathcal{P}, i.e., $n-\operatorname{rank} \mathcal{P}$.
- The number of all characteristic numbers (with multiplicities) equals the degree of the characteristic polynomial $f_{\mathcal{P}}(\lambda)$

Lie groups and Lie algebras

Lie algebras and their invariants, adjoint and coadjoint representations

Definition

A Lie algebra \mathfrak{g} is a vector space endowed with a bilinear operation (Lie bracket) [,]: $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ such that:

- $[\xi, \eta]=-[\eta, \xi]$ (skew symmetry),
- $[\xi,[\eta, \zeta]]+[\eta,[\zeta, \xi]]+[\zeta,[\xi, \eta]]=0$ (Jacobi identity).

In the case of matrix Lie algebras: $[X, Y]=X Y-Y X$.
Each Lie algebra \mathfrak{g} can be defined by means of its structure constants. Take a basis e_{1}, \ldots, e_{n} of \mathfrak{g}. Then

$$
\left[e_{i}, e_{j}\right]=\sum_{k=1}^{n} c_{i j}^{k} e_{k}, \quad\left(c_{i j}^{k} \text { are structure constants of } \mathfrak{g}\right)
$$

They depend on the choice of a basis. Invariants of \mathfrak{g} are "functions" of $c_{i j}^{k}$ which do not depend on this choice.

Jordan-Kronecker invariants of finite-dimensional Lie algebras

First we simplify $\left(c_{i j}^{k}\right)$ by transferring it to a pair of skew symmetric matrices:

$$
\mathcal{A}_{x}=\left(\sum_{k} c_{i j}^{k} x_{k}\right) \quad \text { and } \quad \mathcal{A}_{a}=\left(\sum_{k} c_{i j}^{k} a_{k}\right)
$$

for some $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathfrak{g}^{*}$ and $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathfrak{g}^{*}$. Now \mathcal{A}_{x} and \mathcal{A}_{a} are two skew symmetric forms defined on \mathfrak{g} :

$$
\mathcal{A}_{x}(\xi, \eta)=\langle x,[\xi, \eta]\rangle \quad \text { and } \quad \mathcal{A}_{a}(\xi, \eta)=\langle a,[\xi, \eta]\rangle
$$

Consider the pencil $\mathcal{A}_{x+\lambda_{a}}$ generated by these two forms and its algebraic type defined by the Jordan-Kronecker decomposition: Kronecker and Jordan indices, multiplicities of characteristic numbers and so on... everything except specific values of characteristic numbers. This algebraic type, of course, depends on x and a, but...

For almost all x and a (in other words, for a generic pair (x, a)) the algebraic type of the pencil $\mathcal{A}_{x+\lambda a}$ will be one and the same.

Definition

The algebraic type (in the sense of Jordan-Kronecker canonical form) of the pencil $\mathcal{A}_{x+\lambda a}$ for a generic pair $(x, a) \in \mathfrak{g}^{*} \times \mathfrak{g}^{*}$, is called the Jordan-Kronecker invariant of \mathfrak{g}.
The Kronecker and Jordan indices of a generic pencil $\left\{\mathcal{A}_{x}+\lambda \mathcal{A}_{a}\right\}$ are said to be the Kronecker and Jordan indices of \mathfrak{g}.

Examples

More examples, properties and applications can be found in
Bolsinov, A. V., Zhang P., Jordan-Kronecker invariants of finite-dimensional Lie algebras, Transformation Groups 21 (2016) 1, 51-86.

Kronecker indices and Ad^{*}-invaraint polynomials

Let $f: \mathfrak{g}^{*} \rightarrow \mathbb{C}$ be a polynomial on \mathfrak{g}^{*}. Using the duality between \mathfrak{g} and \mathfrak{g}^{*}, we may think of f as a formal polynomial in e_{1}, \ldots, e_{n} (basis of \mathfrak{g}). For instance, $f=e_{1}^{2}+3 e_{2} e_{3}$. The corresponding Lie group G acts on \mathfrak{g} in the adjoint way:

$$
\xi \mapsto \operatorname{Ad}_{g} \xi, \quad \xi \in \mathfrak{g}, g \in G
$$

The polynomial f is called Ad*-invariant if it does not change under the * natural transformation induced by the adjoint action, i.e.,

$$
f\left(e_{1}, \ldots, e_{n}\right)=f\left(\operatorname{Ad}_{g} e_{1}, \ldots, \operatorname{Ad}_{g} e_{n}\right), \quad \text { for all } g \in G
$$

All together Ad *-invariants form an algebra $\mathrm{I}(\mathfrak{g})$ called the algebra of Ad*-invariants.

How complicated is this algebra $\mathrm{I}(\mathfrak{g})$?

Theorem

Let $f_{1}(x), f_{2}(x), \ldots, f_{s}(x) \in P(\mathfrak{g})$ be algebraically independent polynomial Ad*-invariants of $\mathfrak{g}, s=$ ind \mathfrak{g}, and $m_{1} \leq m_{2} \leq \cdots \leq m_{s}$ be their degrees, $m_{i}=\operatorname{deg} f_{i}$. Then

$$
m_{i} \geq k_{i}
$$

where $k_{1} \leq k_{2} \leq \cdots \leq k_{s}$ are Kronecker indices of the Lie algebra \mathfrak{g}.
In the semisimple case (but not only!): $m_{i}=k_{i}$.

Polynomiality of the algebra $\mathrm{I}(\mathfrak{g})$ of Ad^{*}-invariants

Let $f_{1}, \ldots, f_{s}, s=$ ind \mathfrak{g}, be algebraically independent Ad *-invariant polynomials. Then

$$
\sum_{i=1}^{s} \operatorname{deg} f_{i} \geq \sum_{i=1}^{s} k_{i}=\frac{1}{2}(\operatorname{dim} \mathfrak{g}+\operatorname{ind} \mathfrak{g})-\operatorname{deg} f_{\mathfrak{g}}
$$

For many classes of Lie algebras, this estimate becomes an equality (known as a sum rule).

Theorem
Let $k_{1} \leq \cdots \leq k_{s}$ be the Kronecker indices of \mathfrak{g} and $f_{1}, \ldots, f_{s} \in I(\mathfrak{g})$ be algebraically independent Ad*-invariant polynomials with $\operatorname{deg} f_{1} \leq \operatorname{deg} f_{2} \leq \cdots \leq \operatorname{deg} f_{s}, s=\operatorname{ind} \mathfrak{g}$. Assume that \mathfrak{g} is unimodular and $f_{\mathfrak{g}} \in I(\mathfrak{g})$. Then the following conditions are equivalent:

1. $k_{i}=\operatorname{deg} f_{i}, i=1 \ldots, s$;
2. $\sum_{i=1}^{s} \operatorname{deg} f_{i}=\frac{1}{2}(\operatorname{dim} \mathfrak{g}+\operatorname{ind} \mathfrak{g})-\operatorname{deg} \mathfrak{f}_{\mathfrak{g}}$;
3. $\mathrm{I}(\mathfrak{g})$ is polynomial on f_{1}, \ldots, f_{s}.

THANK YOU FOR YOUR ATTENTION

