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IMCCE / Observatoire de Paris



Plan

I What is a normal formal of a “mathematical object”?

I Similarity and Congruence Transformations

I Jordan normal form and simultaneous diagonalisation

I Representation of groups: orbits and invariants

I Pencils of skew-symmetric matrices (forms)

I Jordan-Kronecker decomposition theorem

I Lie algebras and their invariants

I JK invariants of Lie algebras and their applications



Idea of normal (canonical) forms



Jordan normal form

Take a square matrix A and try to simplify (diagonalise?) it!

Theorem
Let A be a n⇥ n complex matrix. Then there exists an invertible matrix P such
that A0 = P�1AP takes the following block-diagonal form (called Jordan
normal form):
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Comment: 1⇥ 1 blocks J
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) are allowed (moreover, they are ”typical”)
and some of �’s may coincide (i.e., �
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is OK).



Pairs of symmetric matrices

Let A and B be two symmetric matrices (symmetric bilinear forms).
Question. To which normal form can one reduce these matrices simultaneously
by congruence transformation:

A 7! PAP>, B 7! PBP>?

Theorem
Assume that A is positive definite, then there exists an invertible matrix P such
that

A 7! P>AP = Id, B 7! P>BP = diag(�1, . . . ,�n

).

Almost equivalent version of this result:

Theorem (Spectral theorem)

Let � : V ! V be a symmetric operator on a Euclidean vector space. Then
there exists an orthonormal basis that consists of eigenvectors of �.
Equivalently, in matrix form:
Let B be symmetric. Then there exists an orthogonal matrix P such that

B 7! P>BP = diag(�1, . . . ,�n

).



Viewpoint of the representation theory

A group G acts on a set S , i.e., each element g 2 G is represented as a
bijective map g : S ! S . (E.g., S = V is a vector space and g : V ! V is an
invertible linear operator.)

Definition
The orbit of a point x 2 S is

O(x) = {y = g(x) 2 S | g 2 G}.

S can be presented as the disjoint union of orbits (i.e., can be partitioned into
orbits).

Finding “normal form” is just “classification of orbits”: for each orbit O ⇢ V
we wish to find a representative x 2 O (of the simplest possible form).

Definition
A function f : S ! R (not necessarily R!) is called an invariant of the action if
f (x) = f (g(x)) for all x 2 S , g 2 G . In other words, f is constant on each
orbit (but this constant may depend on the orbit).

Similarity transformation A 7! PAP�1 and congruence transformation
B 7! PBP> are two di↵erent actions of GL(n) on the space of square matrices.



General problem

Given a (linear) action of G on V , we wish to find the invariants and to
describe the orbits.

Example

SL(2,R) acts on sl(2,R) =
⇢
A =

✓
a b
c �a

◆�
by conjugation A 7! CAC�1.

f (A) = detA = �a2 � bc is an invariant of this action.

The orbits are ”connected components” of f -levels: �a2 � bc = const.

Example

GL(2,R) acts on the space of symmetric matrices V =

⇢
A =

✓
a b
b c

◆�
by:

A 7! CAC>.
There are no smooth invariants.
There are 6 distinct orbits represented by the following matrices:
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Skew-symmetric pencils

Now consider two skew-symmetric matrices A and B (A>=�A and B>=�B)
and the pencil P = {A+ �B} generated by them. Can we say anything similar
about simultaneous canonical form in this case?

Karl Weierstrass (1815 -1897), Leopold Kronecker (1823-1891), Camille Jordan
(1838-1922)

Felix Gantmacher (1908 - 1964) and his famous book Theory of Matrices
(1953).



Jordan-Kronecker decomposition theorem

Theorem
Let A and B be skew-symmetric n⇥ n matrices. Then there exists an invertible
P such that the transformation A 7! PAP>, B 7! PBP> gives the following
normal form
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where pairs of the corresponding blocks A
i

and B
i

can be of the following types
(see next slide)



Blocks in the skew-symmetric case
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Some comments

I The characteristic number �
m

plays the same role as an “eigenvalue” in
the case of linear operators. More precisely, �

m

are those numbers for
which the rank of A� = A+ �B for � = �

m

is not maximal.

I If µ 6= �
m

, then Aµ = A+ µB is called regular (in the pencil P = {A�}).
I Characteristic numbers are the roots of the characteristic polynomial

fP(�) = gcd {Pf
i1...i2k (A+ �B)}, 2k = rankP.

I The sizes of Kronecker blocks are odd 2k
i

� 1, the sizes of Jordan blocks
are even 2j

m

. The numbers k
i

and j
m

are called Kronecker and Jordan
indices of the pencil.

I If a pencil P = {A+ �B} is pure Kronecker (i.e. no Jordan blocks), then
all matrices in the pencil are of the same rank.

I The number of Kronecker blocks equals the corank of the pencil P, i.e.,
n � rankP.

I The number of all characteristic numbers (with multiplicities) equals the
degree of the characteristic polynomial fP(�)



Lie groups and Lie algebras

GL(n) = {A invertible} and gl(n) = {all matrices},
SL(n) = {A, detA = 0} and sl(n) = {X , trX = 0},
SO(n) = {A,A> = A�1} and so(n) = {X ,X> = �X},



Lie algebras and their invariants, adjoint and coadjoint representations

Definition
A Lie algebra g is a vector space endowed with a bilinear operation (Lie
bracket) [ , ] : g⇥ g ! g such that:

I [⇠, ⌘] = �[⌘, ⇠] (skew symmetry),

I [⇠, [⌘, ⇣]] + [⌘, [⇣, ⇠]] + [⇣, [⇠, ⌘]] = 0 (Jacobi identity).

In the case of matrix Lie algebras: [X ,Y ] = XY � YX .

Each Lie algebra g can be defined by means of its structure constants.
Take a basis e1, . . . , en of g. Then

[e
i

, e
j

] =
nX

k=1

ck
ij

e
k

, (ck
ij

are structure constants of g)

They depend on the choice of a basis. Invariants of g are “functions” of ck
ij

which do not depend on this choice.



Jordan-Kronecker invariants of finite-dimensional Lie algebras

First we simplify
�
ck
ij

�
by transferring it to a pair of skew symmetric matrices:
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for some x = (x1, . . . , xn) 2 g⇤ and a = (a1, . . . , an) 2 g⇤. Now A
x

and A
a

are
two skew symmetric forms defined on g:

A
x

(⇠, ⌘) = hx , [⇠, ⌘]i and A
a

(⇠, ⌘) = ha, [⇠, ⌘]i.
Consider the pencil A

x+�a generated by these two forms and its algebraic type
defined by the Jordan-Kronecker decomposition: Kronecker and Jordan indices,
multiplicities of characteristic numbers and so on... everything except specific
values of characteristic numbers. This algebraic type, of course, depends on x
and a, but...

For almost all x and a (in other words, for a generic pair (x , a)) the algebraic
type of the pencil A

x+�a will be one and the same.

Definition
The algebraic type (in the sense of Jordan-Kronecker canonical form) of the
pencil A

x+�a for a generic pair (x , a)2g⇤ ⇥ g⇤, is called the Jordan-Kronecker
invariant of g.

The Kronecker and Jordan indices of a generic pencil {A
x

+ �A
a

} are said to
be the Kronecker and Jordan indices of g.



Examples

More examples, properties and applications can be found in

Bolsinov, A. V., Zhang P., Jordan–Kronecker invariants of finite-dimensional
Lie algebras, Transformation Groups 21 (2016) 1, 51–86.



Kronecker indices and Ad⇤-invaraint polynomials

Let f : g⇤ ! C be a polynomial on g⇤. Using the duality between g and g⇤, we
may think of f as a formal polynomial in e1, . . . , en (basis of g). For instance,
f = e21 + 3e2e3. The corresponding Lie group G acts on g in the adjoint way:

⇠ 7! Ad
g

⇠, ⇠ 2 g, g 2 G .

The polynomial f is called Ad⇤-invariant if it does not change under the
natural transformation induced by the adjoint action, i.e.,

f (e1, . . . , en) = f (Ad
g

e1, . . . ,Adg en), for all g 2 G .

All together Ad⇤-invariants form an algebra I(g) called the algebra of
Ad⇤-invariants.

How complicated is this algebra I(g)?

Theorem
Let f1(x), f2(x), . . . , fs(x) 2 P(g) be algebraically independent polynomial
Ad⇤-invariants of g, s = ind g, and m1  m2  · · ·  m

s

be their degrees,
m

i

= deg f
i

. Then
m

i

� k
i

,

where k1  k2  · · ·  k
s

are Kronecker indices of the Lie algebra g.

In the semisimple case (but not only!): m
i

= k
i

.



Polynomiality of the algebra I(g) of Ad⇤-invariants

Let f1, . . . , fs , s = ind g, be algebraically independent Ad⇤-invariant
polynomials. Then

sX

i=1

deg f
i

�
sX

i=1

k
i

=
1
2
(dim g+ ind g)� deg fg.

For many classes of Lie algebras, this estimate becomes an equality (known as
a sum rule).

Theorem
Let k1  · · ·  k

s

be the Kronecker indices of g and f1, . . . , fs 2 I(g) be
algebraically independent Ad⇤-invariant polynomials with
deg f1  deg f2  · · ·  deg f

s

, s = ind g. Assume that g is unimodular and
fg 2 I(g). Then the following conditions are equivalent:

1. k
i

= deg f
i

, i = 1. . . . , s;

2.
P

s

i=1 deg fi =
1
2 (dim g+ ind g)� deg fg;

3. I(g) is polynomial on f1, . . . , fs .
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