Constructing and destructing tori on singular symplectic manifolds

Workshop on Classical Integrability and Perturbations

Eva Miranda (UPC-CEREMADE-IMCEE)

Journée Astronomie et Systèmes Dynamiques Paris

Outline

- Motivating examples
- $2 b^m$ -Symplectic manifolds
- \bigcirc Integrable systems on b-symplectic manifolds
- 4 Deblogging b^m -symplectic manifolds
- Deblogging integrable systems

The restricted 3-body problem

- Simplified version of the general 3-body problem. One of the bodies has negligible mass.
- The other two bodies move independently of it following Kepler's laws for the 2-body problem.

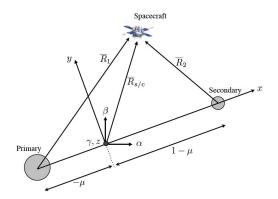


Figure: Circular 3-body problem

Planar restricted 3-body problem

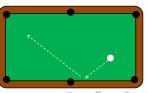
- The time-dependent self-potential of the small body is $U(q,t) = \frac{1-\mu}{|q-q_1|} + \frac{\mu}{|q-q_2|}, \text{ with } q_1 = q_1(t) \text{ the position of the planet with mass } 1-\mu \text{ at time } t \text{ and } q_2 = q_2(t) \text{ the position of the one with mass } \mu.$
- The Hamiltonian of the system is $H(q,p,t)=p^2/2-U(q,t), \quad (q,p)\in {\bf R}^2\times {\bf R}^2,$ where $p=\dot q$ is the momentum of the planet.
- Consider the canonical change $(X,Y,P_X,P_Y)\mapsto (r,\alpha,P_r=:y,P_\alpha=:G).$
- Introduce McGehee coordinates (x, α, y, G) , where $r = \frac{2}{x^2}$, $x \in \mathbb{R}^+$, can be then extended to infinity (x = 0).
- The symplectic structure becomes a singular object $\omega = -\frac{4}{x^3} dx \wedge dy + d\alpha \wedge dG$. for x > 0
- The integrable 2-body problem for $\mu=0$ is integrable with respect to the singular ω .

Model for these systems

$$\omega = \frac{1}{x_1^n} dx_1 \wedge dy_1 + \sum_{i \geq 2} dx_i \wedge dy_i$$

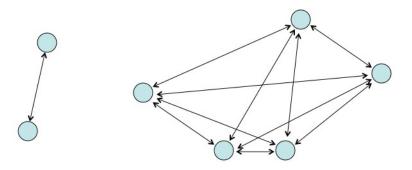
Close to $x_1 = 0$, the systems behave like,

and not like,



Other examples

 Kustaanheimo-Stiefel regularization for n-body problem → folded-type symplectic structures



• two fixed-center problem via Appell's transformation (Albouy) \leadsto combination of folded-type and b^m -symplectic structures \leadsto Dirac structures.

Can we get any singularity we want in physical examples?

Consider a system of two particles moving under the influence of the generalized potential $U(x)=-|x|^{-\alpha}$, $\alpha>0$, with |x| the distance.

Answer

The McGehee change of coordinates used to study collisions provides b^m -symplectic and m-folded symplectic forms for any m in the problem of a particle moving in a central force field with general potential depending on m.

Figure: The proof was somewhere on this greenboard

b-Symplectic/b-Poisson structures

Definition

Let (M^{2n},Π) be an (oriented) Poisson manifold such that the map

$$p \in M \mapsto (\Pi(p))^n \in \Lambda^{2n}(TM)$$

is transverse to the zero section, then $Z=\{p\in M|(\Pi(p))^n=0\}$ is a hypersurface called *the critical hypersurface* and we say that Π is a b-Poisson structure on (M,Z).

Symplectic foliation of a b-Poisson manifold

The symplectic foliation has dense symplectic leaves and codimension 2 symplectic leaves whose union is \mathbb{Z} .

Darboux normal forms

Theorem (Guillemin-M.-Pires)

For all $p \in Z$, there exists a Darboux coordinate system $x_1, y_1, \dots, x_n, y_n$ centered at p such that Z is defined by $x_1 = 0$ and

$$\Pi = x_1 \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial y_1} + \sum_{i=2}^n \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial y_i}$$

Darboux for b^n -symplectic structures

$$\Pi = x_1^m \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial y_1} + \sum_{i=2}^n \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial y_i}$$

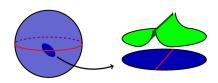
or dually

$$\omega = \frac{1}{x_1^n} dx_1 \wedge dy_1 + \sum_{i=2}^n dx_i \wedge dy_i$$

Dimension 2

Radko classified b-Poisson structures on compact oriented surfaces:

- Geometrical invariants: The topology of S and the curves γ_i where Π vanishes.
- ullet Dynamical invariants: The periods of the "modular vector field" along γ_i .
- Measure: The regularized Liouville volume of S, $V_h^{\varepsilon}(\Pi) = \int_{|h|>\varepsilon} \omega_{\Pi}$ for h a function vanishing linearly on the curves γ_1,\ldots,γ_n and ω_{Π} the "dual "form to the Poisson structure.



Higher dimensions: Some compact examples.

- The product of (R, π_R) a Radko compact surface with a compact symplectic manifold (S, ω) is a b-Poisson manifold.
- corank 1 Poisson manifold (N,π) and X Poisson vector field \Rightarrow $(S^1 \times N, f(\theta) \frac{\partial}{\partial \theta} \wedge X + \pi)$ is a b-Poisson manifold if,
 - $\mathbf{0}$ f vanishes linearly.
 - $oldsymbol{2}$ X is transverse to the symplectic leaves of N.

We then have as many copies of N as zeroes of f.

Poisson Geometry of the critical hypersurface

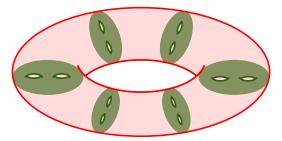
This last example is semilocally the *canonical* picture of a b-Poisson structure .

- f O The critical hypersurface Z has an induced regular Poisson structure of corank 1.
- ② There exists a Poisson vector field transverse to the symplectic foliation induced on Z.

The singular hypersurface

Theorem (Guillemin-M.-Pires)

If $\mathcal L$ contains a compact leaf L, then Z is the mapping torus of the symplectomorphism $\phi:L\to L$ determined by the flow of a Poisson vector field v transverse to the symplectic foliation.

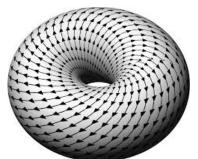


This description also works for b^m -symplectic structures.

A dual approach...

- b-Poisson structures can be seen as symplectic structures modeled over a Lie algebroid (the b-cotangent bundle).
- A vector field v is a b-vector field if $v_p \in T_pZ$ for all $p \in Z$. The b-tangent bundle bTM is defined by

$$\Gamma(U, {}^{b}TM) = \left\{ \begin{array}{l} \text{b-vector fields} \\ \text{on } (U, U \cap Z) \end{array} \right\}$$



b-forms

• The b-cotangent bundle ${}^bT^*M$ is $({}^bTM)^*$. Sections of $\Lambda^p({}^bT^*M)$ are b-forms, ${}^b\Omega^p(M)$. The standard differential extends to

$$d:{}^b\Omega^p(M)\to{}^b\Omega^{p+1}(M)$$

- ullet A b-symplectic form is a closed, nondegenerate, b-form of degree 2.
- This dual point of view, allows to prove a b-Darboux theorem and semilocal forms via an adaptation of Moser's path method because we can play the same tricks as in the symplectic case.

What else?

b-integrable systems

Definition

b-integrable system A set of b-functions f_1,\ldots,f_n on (M^{2n},ω) such that

- f_1, \ldots, f_n Poisson commute.
- $df_1 \wedge \cdots \wedge df_n \neq 0$ as a section of $\Lambda^n({}^bT^*(M))$ on a dense subset of M
- $c \log |x| + g$

Example

The symplectic form $\frac{1}{h}dh \wedge d\theta$ defined on the interior of the upper hemisphere H_+ of S^2 extends to a b-symplectic form ω on the double of H_+ which is S^2 . The triple $(S^2, \omega, \log |h|)$ is a b-integrable system.

Example

If (f_1, \ldots, f_n) is an integrable system on M, then $(\log |h|, f_1, \ldots, f_n)$ on $H_+ \times M$ extends to a b-integrable on $S^2 \times M$.

Action-angle coordinates for b-integrable systems

The compact regular level sets of a b-integrable system are (Liouville) tori.

Theorem (Kiesenhofer-M.-Scott)

Around a Liouville torus there exist coordinates $(p_1, \ldots, p_n, \theta_1, \ldots, \theta_n) : U \to B^n \times \mathbf{T}^n$ such that

$$\omega|_{U} = \frac{c}{p_{1}} dp_{1} \wedge d\theta_{1} + \sum_{i=2}^{n} dp_{i} \wedge d\theta_{i}, \tag{1}$$

and the level sets of the coordinates p_1, \ldots, p_n correspond to the Liouville tori of the system.

Reformulation of the result

Integrable systems semilocally \iff twisted cotangent lift^a of a \mathbb{T}^n action by translations on itself to $(T^*\mathbb{T}^n)$.

^aWe replace the Liouville form by $\log |p_1| d\theta_1 + \sum_{i=2}^n p_i d\theta_i$.

Intermezzo on twisted b-cotangent lifts

Consider $G := S^1 \times \mathbf{R}^+ \times S^1$ acting on $M := S^1 \times \mathbf{R}^2$: $(\varphi, a, \alpha) \cdot (\theta, x_1, x_2) := (\theta + \varphi, aR_{\alpha}(x_1, x_2))$, with R_{α} rotation.

Its twisted b-cotangent lift gives focus-focus singularities on b-symplectic manifolds.

The logarithmic Liouville one-form is $\lambda:=\log|p|d\theta+y_1dx_1+y_2dx_2$ and the moment map is $\mu:=(f_1,f_2,f_3)$ with

$$f_{1} = \langle \lambda, X_{1}^{\#} \rangle = \log |p|,$$

$$f_{2} = \langle \lambda, X_{2}^{\#} \rangle = x_{1}y_{1} + x_{2}y_{2},$$

$$f_{3} = \langle \lambda, X_{3}^{\#} \rangle = x_{1}y_{2} - y_{1}x_{2}.$$

- **1** Topology of the foliation. In a neighbourhood of a compact connected fiber the b-integrable system F is diffeomorphic to the b-integrable system on $W := \mathbf{T}^n \times B^n$ given by the projections p_1, \ldots, p_{n-1} and log $|p_n|$.
- ② Uniformization of periods: We want to define integrals whose (b-)Hamiltonian vector fields induce a \mathbf{T}^n action. Start with \mathbf{R}^n -action:

$$\Phi : \mathbf{R}^n \times (\mathbf{T}^n \times B^n) \to \mathbf{T}^n \times B^n$$

$$((t_1, \dots, t_n), m) \mapsto \Phi_{t_1}^{(1)} \circ \dots \circ \Phi_{t_n}^{(n)}(m)$$

- ③ The vector fields Y_i are Poisson vector fields (check $\mathcal{L}_{Y_i}\mathcal{L}_{Y_i}\omega=0$).
- ① The vector fields Y_i are Hamiltonian with primitives $\sigma_1, \ldots, \sigma_n \in {}^bC^\infty(W)$. In this step the properties of b-cohomology are essential. Use this action to drag a local normal form (Darboux-Carathéodory) in a whole neighbourhood.

- **1** Topology of the foliation. In a neighbourhood of a compact connected fiber the b-integrable system F is diffeomorphic to the b-integrable system on $W := \mathbf{T}^n \times B^n$ given by the projections p_1, \ldots, p_{n-1} and log $|p_n|$.
- **Uniformization of periods**: We want to define integrals whose (b-)Hamiltonian vector fields induce a \mathbf{T}^n action. Start with \mathbf{R}^n -action:

$$\Phi : \mathbf{R}^n \times (\mathbf{T}^n \times B^n) \to \mathbf{T}^n \times B^n ((t_1, \dots, t_n), m) \mapsto \Phi_{t_1}^{(1)} \circ \dots \circ \Phi_{t_n}^{(n)}(m).$$

- ③ The vector fields Y_i are Poisson vector fields (check $\mathcal{L}_{Y_i}\mathcal{L}_{Y_i}\omega=0$)
- ① The vector fields Y_i are Hamiltonian with primitives $\sigma_1, \ldots, \sigma_n \in {}^bC^\infty(W)$. In this step the properties of b-cohomology are essential. Use this action to drag a local normal form (Darboux-Carathéodory) in a whole neighbourhood.

- **1** Topology of the foliation. In a neighbourhood of a compact connected fiber the b-integrable system F is diffeomorphic to the b-integrable system on $W := \mathbf{T}^n \times B^n$ given by the projections p_1, \ldots, p_{n-1} and log $|p_n|$.
- **Uniformization of periods:** We want to define integrals whose (b-)Hamiltonian vector fields induce a \mathbf{T}^n action. Start with \mathbf{R}^n -action:

$$\Phi : \mathbf{R}^n \times (\mathbf{T}^n \times B^n) \to \mathbf{T}^n \times B^n ((t_1, \dots, t_n), m) \mapsto \Phi_{t_1}^{(1)} \circ \dots \circ \Phi_{t_n}^{(n)}(m).$$

- **3** The vector fields Y_i are Poisson vector fields (check $\mathcal{L}_{Y_i}\mathcal{L}_{Y_i}\omega=0$).
- ① The vector fields Y_i are Hamiltonian with primitives $\sigma_1, \ldots, \sigma_n \in {}^bC^\infty(W)$. In this step the properties of b-cohomology are essential. Use this action to drag a local normal form (Darboux-Carathéodory) in a whole neighbourhood.

- **1** Topology of the foliation. In a neighbourhood of a compact connected fiber the b-integrable system F is diffeomorphic to the b-integrable system on $W := \mathbf{T}^n \times B^n$ given by the projections p_1, \ldots, p_{n-1} and log $|p_n|$.
- **Uniformization of periods:** We want to define integrals whose (b-)Hamiltonian vector fields induce a \mathbf{T}^n action. Start with \mathbf{R}^n -action:

$$\Phi : \mathbf{R}^{n} \times (\mathbf{T}^{n} \times B^{n}) \to \mathbf{T}^{n} \times B^{n}$$

$$((t_{1}, \dots, t_{n}), m) \mapsto \Phi_{t_{1}}^{(1)} \circ \dots \circ \Phi_{t_{n}}^{(n)}(m).$$

- **3** The vector fields Y_i are Poisson vector fields (check $\mathcal{L}_{Y_i}\mathcal{L}_{Y_i}\omega=0$).
- The vector fields Y_i are Hamiltonian with primitives σ₁,...,σ_n ∈^b C[∞](W). In this step the properties of b-cohomology are essential. Use this action to drag a local normal form (Darboux-Carathéodory) in a whole neighbourhood.

A picture is worth more than a thousand words...

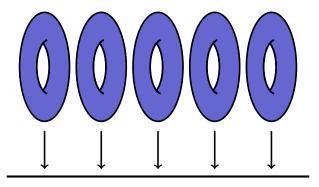


Figure: Fibration by Liouville tori

Applications to KAM theory (surviving torus under perturbations) on b-symplectic manifolds (Kiesenhofer-M.-Scott).

KAM for b-symplectic manifolds

Theorem (Kiesenhofer-M.-Scott)

Consider $\mathbf{T}^n \times B^n_r$ with the standard b-symplectic structure and the b-function $H = k \log |y_1| + h(y)$ with h analytic. If the frequency map has a Diophantine value and is non-degenerate, then a Liouville torus on Z persists under sufficiently small perturbations of H. More precisely, if $|\epsilon|$ is sufficiently small, then the perturbed system

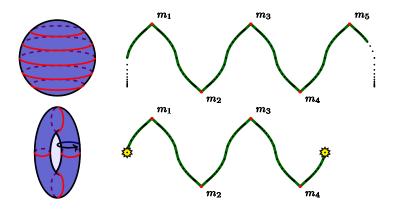
$$H_{\epsilon} = H + \epsilon P$$

(with $P(\varphi, y) = \log |y_1| + f_1(\tilde{\varphi}, y) + y_1 f_2(\varphi, y) + f_3(\varphi_1, y_1)$) admits an invariant torus \mathcal{T} .

Moreover, there exists a diffeomorphism $\mathbf{T}^n \to \mathcal{T}$ close to the identity taking the flow γ^t of the perturbed system on \mathcal{T} to the linear flow on \mathbf{T}^n with frequency vector $(\frac{k+\epsilon k'}{c}, \tilde{\omega})$.

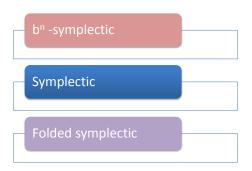
Global classification

Circle actions on b-surfaces:



Further results

- Delzant theorem and a convexity theorem for \mathbb{T}^k -actions on b-symplectic manifolds (Guillemin- M.-Pires-Scott).
- What about b^m -symplectic manifolds? Guillemin-M.-Weitsman



Déjà-vu...

Symplectic manifolds

- Darboux theorem
- Delzant and convexity theorems
- Action-Angle coordinates

b-Symple manifo

- Darboux theorem
- Delzant and convexity theorem
- Action-Angle theorems

Folded symplectic manifolds

- Darboux theo (Martinet)
- Delzant-type theorems (Cannas da Silva-Guillemin-Pires)
- 3

Examples and counterexamples

Orientable Surface

- Is symplectic
- Is folded symplectic
- (orientable or not) is bsymplectic

CP²

- Is symplectic
- Is folded symplectic
- Is not bsymplectic

S⁴

- Is not symplectic
- Is not bsymplectic
- Is foldedsymplectic

Desingularizing b^m -symplectic structures

Theorem (Guillemin-M.-Weitsman)

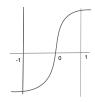
Given a b^m -symplectic structure ω on a compact manifold (M^{2n},Z) :

- If m=2k, there exists a family of symplectic forms ω_{ϵ} which coincide with the b^m -symplectic form ω outside an ϵ -neighbourhood of Z and for which the family of bivector fields $(\omega_{\epsilon})^{-1}$ converges in the C^{2k-1} -topology to the Poisson structure ω^{-1} as $\epsilon \to 0$.
- If m=2k+1, there exists a family of folded symplectic forms ω_{ϵ} which coincide with the b^m -symplectic form ω outside an ϵ -neighbourhood of Z.

Deblogging b^{2k} -symplectic structures

$$\omega = \frac{dx}{x^{2k}} \wedge \left(\sum_{i=0}^{2k-1} \alpha_i x^i\right) + \beta \tag{2}$$

• Let $f \in \mathcal{C}^{\infty}(\mathbb{R})$ be an odd smooth function satisfying f'(x) > 0 for all $x \in [-1,1]$,



and satisfying

$$f(x) = \begin{cases} \frac{-1}{(2k-1)x^{2k-1}} - 2 & \text{for } x < -1\\ \frac{-1}{(2k-1)x^{2k-1}} + 2 & \text{for } x > 1 \end{cases}$$

Deblogging b^{2k} -symplectic structures

• Scaling:

$$f_{\epsilon}(x) := \frac{1}{\epsilon^{2k-1}} f\left(\frac{x}{\epsilon}\right).$$
 (3)

Outside the interval $[-\epsilon,\epsilon]$,

$$f_{\epsilon}(x) = \begin{cases} \frac{-1}{(2k-1)x^{2k-1}} - \frac{2}{\epsilon^{2k-1}} & \text{for } x < -\epsilon \\ \frac{-1}{(2k-1)x^{2k-1}} + \frac{2}{\epsilon^{2k-1}} & \text{for } x > \epsilon \end{cases}$$

• Replace $\frac{dx}{x^{2k}}$ by df_{ϵ} to obtain

$$\omega_{\epsilon} = df_{\epsilon} \wedge (\sum_{i=0}^{2k-1} \alpha_i x^i) + \beta$$

which is symplectic.

Deblogging b^{2k} -symplectic structures

Scaling:

$$f_{\epsilon}(x) := \frac{1}{\epsilon^{2k-1}} f\left(\frac{x}{\epsilon}\right).$$
 (4)

Outside the interval $[-\epsilon,\epsilon]$,

$$f_{\epsilon}(x) = \begin{cases} \frac{-1}{(2k-1)x^{2k-1}} - \frac{2}{\epsilon^{2k-1}} & \text{for } x < -\epsilon \\ \frac{-1}{(2k-1)x^{2k-1}} + \frac{2}{\epsilon^{2k-1}} & \text{for } x > \epsilon \end{cases}$$

• Replace $\frac{dx}{x^{2k}}$ by df_{ϵ} to obtain

$$\omega_{\epsilon} = df_{\epsilon} \wedge (\sum_{i=0}^{2k-1} \alpha_i x^i) + \beta$$

which is symplectic.

New toy: Deblogging integrable systems

Denote $F_{\epsilon}^{m-i}(x)=(\frac{d}{dx}f_{\epsilon}(x))x^{i}$, and hence $F_{\epsilon}^{i}(x)=(\frac{d}{dx}f_{\epsilon}(x))x^{m-i}$. The desingularized ω_{ϵ} reads

$$\omega_{\epsilon} = \sum_{i=0}^{m-1} F_{\epsilon}^{m-i}(x) dx \wedge \alpha_{m-i} + \beta.$$

Definition

The desingularization of a b^m -integrable system $\mu = (f_1, \dots, f_n)$ is given by:

$$\mu = (f_1 = c_0 \log(x) + \sum_{i=1}^{m-1} c_i \frac{1}{x^i}, \dots, f_n) \mapsto \mu_{\epsilon} = (f_{1\epsilon} = \sum_{i=1}^m \hat{c}_i G^i_{\epsilon}(x), f_2, \dots, f_n)$$

with $G^i_\epsilon(x)=\int_0^x F^i_\epsilon(\tau)d au$, and $\hat{c}_1=c_0$ and $\hat{c}_{i-1}=-ic_i$ if $i\neq 0$.

limits

When ϵ tends to 0, μ_{ϵ} tends to μ .

Deblogging everything...

