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The restricted 3-body problem

Simplified version of the general 3-body problem. One of the bodies has
negligible mass.
The other two bodies move independently of it following Kepler’s laws for
the 2-body problem.

Figure: Circular 3-body problem
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Planar restricted 3-body problem

The time-dependent self-potential of the small body is
U(q, t) = 1−µ

|q−q1| + µ
|q−q2| , with q1 = q1(t) the position of the planet with

mass 1− µ at time t and q2 = q2(t) the position of the one with mass µ.

The Hamiltonian of the system is
H(q, p, t) = p2/2− U(q, t), (q, p) ∈ R2 ×R2, where p = q̇ is the
momentum of the planet.

Consider the canonical change (X,Y, PX , PY ) 7→ (r, α, Pr =: y, Pα =: G).

Introduce McGehee coordinates (x, α, y,G), where r = 2
x2 , x ∈ R+,

can be then extended to infinity (x = 0).

The symplectic structure becomes a singular object
ω = − 4

x3 dx ∧ dy + dα ∧ dG. for x > 0

The integrable 2-body problem for µ = 0 is integrable with respect to the
singular ω.

Eva Miranda (UPC) Constructing and destructing September, 2017 3 / 27



Model for these systems

ω = 1
xn

1
dx1 ∧ dy1 +

∑
i≥2

dxi ∧ dyi

Close to x1 = 0, the systems behave like,

and not like,
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Other examples

Kustaanheimo-Stiefel regularization for n-body problem  folded-type
symplectic structures

two fixed-center problem via Appell’s transformation (Albouy)  
combination of folded-type and bm-symplectic structures  Dirac
structures.
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Can we get any singularity we want in physical examples?
Consider a system of two particles moving under the influence of the generalized
potential U(x) = −|x|−α, α > 0, with |x| the distance.

Answer
The McGehee change of coordinates used to study collisions provides
bm-symplectic and m-folded symplectic forms for any m in the problem of a
particle moving in a central force field with general potential depending on m.

Figure: The proof was somewhere on this greenboard
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b-Symplectic/b-Poisson structures

Definition

Let (M2n,Π) be an (oriented) Poisson manifold such that the map

p ∈M 7→ (Π(p))n ∈ Λ2n(TM)

is transverse to the zero section, then Z = {p ∈M |(Π(p))n = 0} is a
hypersurface called the critical hypersurface and we say that Π is a
b-Poisson structure on (M,Z).

Symplectic foliation of a b-Poisson manifold
The symplectic foliation has dense symplectic leaves and codimension 2
symplectic leaves whose union is Z.
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Darboux normal forms

Theorem (Guillemin-M.-Pires)
For all p ∈ Z, there exists a Darboux coordinate system x1, y1, . . . , xn, yn
centered at p such that Z is defined by x1 = 0 and

Π = x1
∂

∂x1
∧ ∂

∂y1
+

n∑
i=2

∂

∂xi
∧ ∂

∂yi

Darboux for bn-symplectic structures

Π = xm1
∂

∂x1
∧ ∂

∂y1
+

n∑
i=2

∂

∂xi
∧ ∂

∂yi

or dually

ω = 1
xn1

dx1 ∧ dy1 +
n∑
i=2

dxi ∧ dyi
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Dimension 2

Radko classified b-Poisson structures on compact oriented surfaces:

Geometrical invariants: The topology of S and the curves γi where Π
vanishes.

Dynamical invariants: The periods of the “modular vector field” along γi.

Measure: The regularized Liouville volume of S, V εh (Π) =
∫
|h|>ε ωΠ for h a

function vanishing linearly on the curves γ1, . . . , γn and ωΠ the “dual ”form
to the Poisson structure.
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Higher dimensions: Some compact examples.

The product of (R, πR) a Radko compact surface with a compact
symplectic manifold (S, ω) is a b-Poisson manifold.
corank 1 Poisson manifold (N, π) and X Poisson vector field ⇒
(S1 ×N, f(θ) ∂∂θ ∧X + π) is a b-Poisson manifold if,

1 f vanishes linearly.
2 X is transverse to the symplectic leaves of N .

We then have as many copies of N as zeroes of f .
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Poisson Geometry of the critical hypersurface

This last example is semilocally the canonical picture of a b-Poisson
structure .

1 The critical hypersurface Z has an induced regular Poisson structure
of corank 1.

2 There exists a Poisson vector field transverse to the symplectic
foliation induced on Z.
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The singular hypersurface

Theorem (Guillemin-M.-Pires)
If L contains a compact leaf L, then Z is the mapping torus of the
symplectomorphism φ : L→ L determined by the flow of a Poisson vector
field v transverse to the symplectic foliation.

This description also works for bm-symplectic structures.
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A dual approach...

b-Poisson structures can be seen as symplectic structures modeled
over a Lie algebroid (the b-cotangent bundle).
A vector field v is a b-vector field if vp ∈ TpZ for all p ∈ Z. The
b-tangent bundle bTM is defined by

Γ(U, bTM) =
{

b-vector fields
on (U,U ∩ Z)

}
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b-forms

The b-cotangent bundle bT ∗M is (bTM)∗. Sections of Λp(bT ∗M)
are b-forms, bΩp(M).The standard differential extends to

d : bΩp(M)→ bΩp+1(M)

A b-symplectic form is a closed, nondegenerate, b-form of degree 2.
This dual point of view, allows to prove a b-Darboux theorem and
semilocal forms via an adaptation of Moser’s path method because
we can play the same tricks as in the symplectic case.

What else?
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b-integrable systems

Definition
b-integrable system A set of b-functionsa f1, . . . , fn on (M2n, ω) such that

f1, . . . , fn Poisson commute.

df1 ∧ · · · ∧ dfn 6= 0 as a section of Λn(bT ∗(M)) on a dense subset of M
ac log |x| + g

Example
The symplectic form 1

hdh ∧ dθ defined on the interior of the upper hemisphere
H+ of S2 extends to a b-symplectic form ω on the double of H+ which is S2.
The triple (S2, ω, log|h|) is a b-integrable system.

Example
If (f1, . . . , fn) is an integrable system on M , then (log |h|, f1, . . . , fn) on
H+ ×M extends to a b-integrable on S2 ×M .
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Action-angle coordinates for b-integrable systems
The compact regular level sets of a b-integrable system are (Liouville) tori.

Theorem (Kiesenhofer-M.-Scott)
Around a Liouville torus there exist coordinates
(p1, . . . , pn, θ1, . . . , θn) : U → Bn ×Tn such that

ω|U = c

p1
dp1 ∧ dθ1 +

n∑
i=2

dpi ∧ dθi, (1)

and the level sets of the coordinates p1, . . . , pn correspond to the Liouville
tori of the system.

Reformulation of the result
Integrable systems semilocally ! twisted cotangent lifta of a Tn action
by translations on itself to (T ∗Tn).

aWe replace the Liouville form by log |p1|dθ1 +
∑n

i=2 pidθi.

Eva Miranda (UPC) Constructing and destructing September, 2017 16 / 27



Intermezzo on twisted b-cotangent lifts
Consider G := S1 ×R+ × S1 acting on M := S1 ×R2:
(ϕ, a, α) · (θ, x1, x2) := (θ + ϕ, aRα(x1, x2)), with Rα rotation.
Its twisted b-cotangent lift gives focus-focus singularities on b-symplectic
manifolds.
The logarithmic Liouville one-form is λ := log |p|dθ + y1dx1 + y2dx2 and the
moment map is µ := (f1, f2, f3) with

f1 = 〈λ,X#
1 〉 = log |p|,

f2 = 〈λ,X#
2 〉 = x1y1 + x2y2,

f3 = 〈λ,X#
3 〉 = x1y2 − y1x2.

Eva Miranda (UPC) Constructing and destructing September, 2017 17 / 27



Proof

1 Topology of the foliation. In a neighbourhood of a compact connected fiber
the b-integrable system F is diffeomorphic to the b-integrable system on
W := Tn ×Bn given by the projections p1, . . . , pn−1 and log |pn|.

2 Uniformization of periods: We want to define integrals whose
(b-)Hamiltonian vector fields induce a Tn action. Start with Rn-action:

Φ : Rn × (Tn ×Bn) → Tn ×Bn

((t1, . . . , tn),m) 7→ Φ(1)
t1 ◦ · · · ◦ Φ(n)

tn (m).

Uniformize to get a Tn action with fundamental vector fields Yi.
3 The vector fields Yi are Poisson vector fields (check LYi

LYi
ω = 0).

4 The vector fields Yi are Hamiltonian with primitives σ1, . . . , σn ∈bC∞(W ).
In this step the properties of b-cohomology are essential. Use this action to
drag a local normal form (Darboux-Carathéodory) in a whole
neighbourhood.
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A picture is worth more than a thousand words...

Figure: Fibration by Liouville tori

Applications to KAM theory (surviving torus under perturbations) on b-symplectic
manifolds (Kiesenhofer-M.-Scott).
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KAM for b-symplectic manifolds

Theorem (Kiesenhofer-M.-Scott)
Consider Tn ×Bnr with the standard b-symplectic structure and the b-function
H = k log |y1|+ h(y) with h analytic. If the frequency map has a Diophantine
value and is non-degenerate, then a Liouville torus on Z persists under sufficiently
small perturbations of H. More precisely, if |ε| is sufficiently small, then the
perturbed system

Hε = H + εP

(with P (ϕ, y) = log |y1|+ f1(ϕ̃, y) + y1f2(ϕ, y) + f3(ϕ1, y1)) admits an
invariant torus T .
Moreover, there exists a diffeomorphism Tn → T close to the identity taking the
flow γt of the perturbed system on T to the linear flow on Tn with frequency
vector (k+εk′

c , ω̃).
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Global classification

Circle actions on b-surfaces:
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Further results

Delzant theorem and a convexity theorem for Tk-actions on
b-symplectic manifolds (Guillemin- M.-Pires-Scott).
What about bm-symplectic manifolds? Guillemin-M.-Weitsman

bn -symplectic  

Symplectic 

Folded symplectic 
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Déjà-vu...

Symplectic
manifolds

• Darboux theorem
• Delzant and 

convexity theorems
• Action-Angle

coordinates

b-Symplectic
manifolds

• Darboux theorem
• Delzant and 

convexity theorems
• Action-Angle

theorems

Folded symplectic
manifolds

• Darboux theorem
(Martinet)

• Delzant-type
theorems (Cannas da 
Silva-Guillemin-Pires)

• ?
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Examples and counterexamples

Orientable 
Surface

• Is symplectic
• Is folded

symplectic
• (orientable 

or not) is b-
symplectic

CP2

• Is symplectic
• Is folded

symplectic
• Is not b-

symplectic

S4

• Is not
symplectic

• Is not b-
symplectic

• Is folded-
symplectic
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Desingularizing bm-symplectic structures

Theorem (Guillemin-M.-Weitsman)
Given a bm-symplectic structure ω on a compact manifold (M2n, Z):

If m = 2k, there exists a family of symplectic forms ωε which coincide
with the bm-symplectic form ω outside an ε-neighbourhood of Z and
for which the family of bivector fields (ωε)−1 converges in the
C2k−1-topology to the Poisson structure ω−1 as ε→ 0 .
If m = 2k + 1, there exists a family of folded symplectic forms ωε
which coincide with the bm-symplectic form ω outside an
ε-neighbourhood of Z.
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Deblogging b2k-symplectic structures

ω = dx

x2k ∧ (
2k−1∑
i=0

αix
i) + β (2)

Let f ∈ C∞(R) be an odd smooth function satisfying f ′(x) > 0 for all
x ∈ [−1, 1],

0-1
1

and satisfying

f(x) =
{

−1
(2k−1)x2k−1 − 2 for x < −1

−1
(2k−1)x2k−1 + 2 for x > 1

outside [−1, 1].Eva Miranda (UPC) Constructing and destructing September, 2017 23 / 27



Deblogging b2k-symplectic structures

Scaling:
fε(x) := 1

ε2k−1 f
(x
ε

)
. (3)

Outside the interval [−ε, ε] ,

fε(x) =
{

−1
(2k−1)x2k−1 − 2

ε2k−1 for x < −ε
−1

(2k−1)x2k−1 + 2
ε2k−1 for x > ε

Replace dx
x2k by dfε to obtain

ωε = dfε ∧ (
2k−1∑
i=0

αix
i) + β

which is symplectic.
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New toy: Deblogging integrable systems
Denote Fm−i

ε (x) = ( d
dxfε(x))xi, and hence F iε (x) = ( d

dxfε(x))xm−i.
The desingularized ωε reads

ωε =
m−1∑
i=0

Fm−i
ε (x)dx ∧ αm−i + β.

Definition
The desingularization of a bm-integrable system µ = (f1, . . . , fn) is given by:

µ = (f1 = c0 log(x) +
m−1∑
i=1

ci
1
xi
, . . . , fn) 7→ µε = (f1ε =

m∑
i=1

ĉiG
i
ε(x), f2, . . . , fn)

with Giε(x) =
∫ x

0 F
i
ε (τ)dτ , and ĉ1 = c0 and ĉi−1 = −ici if i 6= 0.

limits
When ε tends to 0, µε tends to µ.
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Deblogging everything...

What? Integrable 
systems..

Toric actions.
Singular forms.
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