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|. Passages through resonances, time 1/g.
1. Systems with fast rotating phases

X =ef (x,0,8), @ =Q(x) +eg(x,0,8),
0<e<<l

x =(x,,...,x, ) - slow variables

@ =(¢,,...,p,) - fast angular variables (phases)

Functions f,g are 2z periodic in all phases

€2 =(9,....82,) - unperturbed frequencies



2. Averaging method

Recipe of the averaging method: use solutions of the
averaged system for approximate description of slow
variables dynamics in the exact system.

X =eF(X), F(T)= (M gﬁf(x @.0)de

dp=dg,..dp

- unperturbed tori



3. Resonances

Resonant relation: klgzl(x) + .+ kmgm(x) = ()
Resonant torus g/
(for m=2):

Resonances are obstacles to application of the
averaging method.




4. Two-frequency systems:
¢ =(¢,9,), 0=(w,0,)

w, ko, +kw,=0

e
<

trajectory of averaged system

W
Effect of each resonance can be studied separately.
Principal phenomena associated with effect of a single

resonance are capture into resonance and scattering
on resonance.



escape Capture into resonance

resonant surface

"’
-
-

capture

mes(capture) = \E

(P.Goldreich, S.Peale, 1966)

Scattering on resonance

Amplitude of scattering = Ve

scattering (B.V.Chirikov, 1959)



5. Slow—fast Hamiltonian system:

E=E(pg,y,x) -Hamiltonian

0<e<<l
. JE . JOE .
p=—-——, g=—, (p.g9) ER* (fast variables)
oq Jop
y = —g@, X = gﬁ, (yvx)ER’" (slow variables)
ox dy

Symplectic structure dp Adq+ ldy Adx

€



For frozen . 0E . JE

: : =——, g=—, X =const
slow variables: P o”q q P Y,

Let this system be integrable

I, -action-angle variables

E(p,q,y,X) = H()(Iayax)

Unperturbed frequency:  |®0(1,Y,X) =

oH,(1,y,x)
ol

Averaging over fast phases => adiabatic approximation:

I=Const’ }}=_80’)H0(19y9x), x=80’)H0(1,y,X)

ox dy




resonant surface

I = const

adiabatic trajectory

time /e |1/&%/2 1/€?
mes(capture) | =€'/# | =1 =1
average =gl/2 | =1(drift, ~1
scattering D.Dolgopyat,

2005, 2012)
standard =gl/Z [ =g/t =1
deviation of (diffusion)
scattering




Stretching of phases is an indication of independence
of results of consecutive scatterings

resonant surface

AG 1\/EA¢ - LAgo >> A@

£ Je




Il. Example of dynamics on times >> 1/¢.
Kinetic equation.

A

lla. Model B

Larmor motion

R

plasma wave




Larmor motion

-

N

We consider the case of a high frequency wave.

Averaging over the phase of the wave washes out the

effect of the wave. The averaged motion is just a
Larmor motion.

plasma wave




Larmor motion

R

N

In the process of the Larmor motion the particle may
approach resonance with the wave: projection of the
particle’s velocity onto direction of the wave propagation
is equal to the phase velocity of the wave.

plasma wave




Equation of motion

—(mV)—E x B+ ¢E
dt C



Electrostatic wave perpendicular to a magnetic
field, non-relativistic particle

Z

The wave propagates along
X-axis

y B — the magnetic field
E 2 E, - the electric field of
v the wave

X = eB(x) y+—Ex,
mc m
§=— eB(x) P
mc

E =-E (x)cos(kx-wt).

k>>1, w>>1, v, =w/k=l, E, =1
V¢ - phase velocity of the wave



The equation can be reduced to the Hamiltonian
form with the Hamiltonian (assume mass m=17)

H = % P+ %QZb(x) + eu(x)sin(kx — wt), €2,

2
X, P - slow conjugate variables, ¢=1/k <<1. b(x) = x
p=kx-wi=k(x-v,t) - fast phase
Resonant line: p=v,

1
P +=Q,b(x) _averaged Hamiltonian, kinetic

1
2 2 energy of the particle

_ eB(0)

ﬁ:



P=Y; -resonant line

Trajectories @f the averaged system



Approximate equations for motion near the resonant line:
¢ +G(x)cosp+L(x)=0 - fast pendulum
x=v, -slowly varying parameter
G(x)= ek’u(x), L(x)=1kQb'(x)

Phase portraits of the pendulum for frozen x:

separatrix

dd/dt

i

O<L<lGl




llib. Capture and scattering

The area A surrounded by the
trajectory is an adiabatic
7\ invariant: its value is

) @ approximately conserved in the
//N evolution.
2 —
]
2 4

S(x) - the area of the oscillatory
domain, capture is possible
for x such that S'(x)>0.

S(xyv, 1
2a 1 L(x)l k

T | T
-2 0
v

Probability of capture: TI=

IR

In-out function:
S('xout) = S('xin)




Scattering in values of the averaged Hamiltonian: Ah

Mean value of scattering: <Ah>

v, |
<Ah>= —z—nksgn(L(x))S (x) ﬁ

IR



: ¥ Probability of capture
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. " = ¢
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Assume that the particles interact with the wave
only for x>0 (i.e. u(x) =0 for x<0). So we can
consider only part of the resonant line with x>0.
We use h as a coordinate instead of x.

P

- resonant line




Denote:

S(h) — the area of the oscillatory domain,

[1(h) —probability of capture into resonance

Ah(h, ¢) — change of h for one passage through
resonance (¢ characterises the phase for

this passage, it is considered as a random value

with the uniform distribution on [0,1]),

< Ah > - mean value of Ah

separatrix
<(Ah)?> - mean value of (Ah)?
T(h) - the period of the averaged motion /m

dd/dt

U
V(h)=<Ah >/T(h), D(h)=< (Ah)? > /T(h) M |




V¢dS / dh v,S
[1(h) = (for dS/dh>0), <Ah>=-——
2k )k

= [I=-d<Ah>/dh (for dS/dh>0)
We assume that the function S has a unique maximum
at h=h_ Thus, phase points captured at h.<h_ fly to

the right along resonant line and escape from the
resonance at h,<h,, such that S(h,)=S(h.).

-------------------------------

m .

- — h
For not Captured phase pomts the energy drifts slowly
to the left with the velocity V(h)=<Ah>/T(h).




. 3: Probability of trapping: numerical (dots) and analytical (curves) results.
Vg 220.5,b0 = 0.1.

Ah

Numerical check for capture
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4: Energies gained by trapped particles: numerical (dots) and analytical (curves) results. System parameters

are: (I, =1, vy = 0.9, by = 0.1.



Numerical check for scattering
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7: Energies gained by scattered particles: numerical (dots) and analytical (curves) results. System parameters

are:

Qb = 1, Vgp = 0.5, b() =0.1.



llic. Kinetic equation

Let f(t,h) be the distribution function of particles,
where h+v,%/2 is the averaged Hamiltonian. We

would like to describe approximately evolution of
this distribution.
P Trajectories of the averaged system

p=V¢

)h - resonant line

X



Kinetic equation:

%—Lf+Lf

ot

where operators L, and L, are related to scattering
and capture/escape, respectively.

Scattering part has a standard form

__avH 1o, of
Lt = oh +2ah( ah)+LS’"f

Here L f is a small (=D ) additional drift term which
appear because V is calculated in the principal order
in 1/k"2. This term is omitted in formulas below.




The capture/escape part has different forms for
h<h_ (capture) and h>h _ (escape)

For the capture, h<h,:
ch=_Hf _ 1 d<Ah>
T T dh
For the escape, h>h,
Denote 1L =II(A.),

Y:k = T(h*)9 f*(h?t) = f(h*9t) Then

Lf- 1. 7. |dh. H(h*)dh*f _ TI(h.) dS(h)/dh
‘ T. |dh| T dan’’ T. dS(h.)/dh,

f

wn

f:

d<Ah>f,

_ Yy dS(h.)/dh. dS(h)/dh foe v, dS(h)/dhf
T, 2ak  dSCh)/dh” T 2mk dh T,



Finally, the kinetic equation takes the following form

For h=h,:

%——V i +1£Vf+——( i)

ot  oh T oh 2 0h\ " ok

For h>h, :

%=_ af_av T ig 19 i
It Vah ah(f f)+T Vf+2ah( ah)

<Ah> D=<(Ah)2>

Here vy - ,
T T




One can rewrite this equation using action of the
averaged system / instead of h. Denote
corresponding values 7. v,D. We have

f = JT Y- 27V 4x°D

, D= 2
o T T

(we use here that or _ 1
oh 2m

T ).



The kinetic equation takes the following form
(tildes are omitted):

For h=h,

%=—Vaf+l a(D%)
ot of 29I\ oI

For h>h, :

o __yo_9V 1oy
ot Val al(f f)+2<91( al)



Numerical check for the kinetic eqation

run #1, k=100 run #2, k=250 run #3, k=100
0.7 3
S £9° E2s
= = =
S E 0.5 = >
~E £ o4 =
8 8 S1s
E 50 s
= = 0.2 = 1
j == i 0. b =
a = =
= = 0.1 = 0.5
T 1 Ol T T T T T T T 1 0% T T .
5 6 0 2 4 10 12 14 16 0 H 5 &
0.7 3
s = 0.6
£ g 525
=2 S 0.5 =
= = (=]
= =5 = 2
= = 04 =
= — ' )
2 S S1is -
= = 0.3 B [ |
= = = | B
= = = |
= 'S 0.2 =2 1 |
- L= —
= ] £
= = 0.1 = 0.5
T 1 iy T T T T T T T o r s
5 6 2 4 6 8 10 12 14 16 ! e
3
=
= s S2s
=1 = S
= = g >
= = =
s 5 =
= S S 15
= = =
= = =1 1
= s =
=2 =2 =
= = %5 0.5
Y - . —————— W 0 ~ r 2 y r .
6 8 10 12 14 16 0 1 2 3 3 5 6
3 3
=
S 2.5 E g 2.5
S
g 2 = £ >
= = =
= =
815 S S1s
= = =
2 1 = =2 1
= =z 2
5 0.5 £ &5 0.5
o T T T T T 1 T S L ——— 0% T T
o 1 2 3 4 5 6 8 10 iz 19 16 0 1 2
h h

FIG. 9: Particle distributions obtained as a solution of Eq. (19) are shown in black, whereas results of test particle

simulations are shown in red. The initial distribution is shown in grey. Time evolution from top to bottom. System

parameters are: Q2 = 1, vy = 0.5, bg = 0.1, € = 0.05. Four time moments are displayed: ¢, = {1,3,5,10} for runs
#1 & #2 and tQ2, = {3,5,10, 25} for run #3.



llid. Some properties of the kinetic equation
(work in progress)

I <I<I %——V(I)af 18(D(1)8f)

o ot al 20l
of of V() a( of )
[ <I<I, : —=—VI——— D(I)-~|.
- ! ! I "’—I
L I | I, liignt
| 2

1
V() N 11-1 ", D)« B T =1, i



1 right

Number of particles is conserved: f f(t,1)dl =const.

L}os

D(I)oclll—l °

k left, right
The only smooth on (Ileft91right) stationary solutions are f = const.

/

Ileft I-- / /+

right



1 1
LS Ve —, D(I)x—, k>>1.
Neglect diffusion term as N/ ’ Then

I <I=<I : %_—V(I)af
ot
[ <I<I, : 2—{=—V(1)i—w(f f.)-

The first equation is a linear first order PDE.

After solving the first equation, the second equation takes the
form of a linear first order non-homogeneous PDE.

Thus one can write explicit formulas for the general solution.
All smooth solutions of Cauchy problem tend to the uniform
distribution as ¢ — o
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