Entropy and isotropy

Marie-Claude Arnaud & Jacques Fejoz

9 juin 2020

Marie-Claude Arnaud & Jacques Fejoz

Entropy and isotropy

9 juin 2020 1 / 25

< 47 > < 3

Conservative and non conservative

- Conservative (i.e. symplectic) dynamics model systems without friction.
- Conformal symplectic dynamics model systems with friction. They may have attractors.
- The conformally symplectic dynamics (CS) on a symplectic manifold alter the symplectic form only up to a scaling factor. This class contains mechanical systems whose friction forces are proportional to the velocity

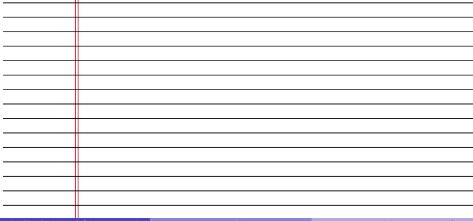
Review of results in the conformally symplectic setting (CS)

- In dimension 2, every smooth invertible system is CS; there are many results in the dissipative setting, e.g. the study of the 2-dimensional dissipative twist maps of the annulus, that may have wild attractors, which was initiated by Birkhoff.
- In dimension at least 4, the conformal factor has to be constant (Liebermann 1958).

d & Jacques Feioz	Entropy and isotr	9 juin 2020	3 / 25

Review of results in the conformally symplectic setting (CS)

- In higher dimension, several works extend KAM results for families with parameters (Calleja, Celletti, de la Llave 2013, Massetti 2019).
- Discounted Tonelli Hamiltonians were studied from the point of view of weak K.A.M. theory (Davini, Fathi, Iturriaga, Zavidovique 2016) and Aubry-Mather theory (Maro-Sorrentino 2017).



Definitions

Let $(\mathcal{M}^{2d},\omega)$ be a symplectic manifold. By a conformal symplectic dynamics, we mean

- a diffeomorphism $f : \mathcal{M} \mathfrak{S}$ such that $f^* \omega = a \omega$ with a > 0.
- or a complete vector field X such that $L_X \omega = \alpha \omega$, where L_X is the Lie derivative, for some real number α . In this case, the flow (φ_t) of X is conformally symplectic and $\varphi_t^* \omega = e^{\alpha t} \omega$.

The case a < 1 or $\alpha < 0$ corresponds to systems with friction.

Examples

Consider $(\mathcal{M} = T^*\mathcal{Q}, -d\lambda)$, where $T^*\mathcal{Q}$ is the cotangent bundle of a manifold \mathcal{Q} and λ is the Liouville 1-form on $T^*\mathcal{Q}$.

- A continuous-time example is the Liouville vector field Z_{λ} that is defined by $i_{Z_{\lambda}}(-d\lambda) = \lambda$ and a discrete-time example is $f = \exp Z_{\lambda} : (q, p) \mapsto (q, ap), a = \frac{1}{e}.$
- An extension of the so-called Mañé example, which exists in the conservative setting, makes possible to embed all time-continuous dynamics of a closed manifold as the restriction to the zero-section of *T***Q* of a discounted Tonelli flow.

-								

Discounted Tonelli case

Definition

A discounted Hamiltonian Tonelli vector field X on $(T^*Q, \Omega = -d\lambda)$ is defined by

$$i_X \Omega = dH - \alpha . \lambda$$

where

• $H: T^*Q \to \mathbb{R}$ is Tonelli, i.e. C^2 , superlinear and with positive Hessian in the fiber direction;

α > 0.

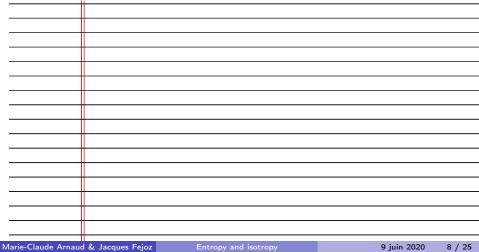
	1				
Maria Clauda Arnaus	d Pullacques Esian	Entropy	and icotropy	0 iuin 2020	7 / 25

Attractors

In this case, if we denote by (φ_t) the flow of X, we have

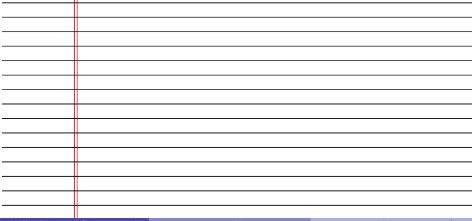
- $\varphi_t^*\Omega = e^{-\alpha t}\Omega$;
- for $p \in T^*Q$ outside some fixed compact set, $\frac{dH \circ \varphi_t(p)}{dt} < 0$.

Hence there exists an attractor, and this attractor has 0 Lebesgue measure.



Open questions on attractors

- Does any conformal flow (resp. diffeomorphism) that is defined on the cotangent bundle of a closed manifold admit a global (compact) attractor?
- For a Tonelli flow or other dynamics, how can be the attractor (e.g. its size in any sense)? And the dynamics on it?

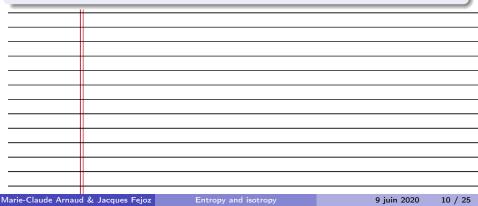


Our focus: invariant submanifolds

Knowing that when existing, the attractor has zero Lebesgue measure and that Mañé example involves invariant Lagrangian submanifolds, a natural question concerns the isotropy of invariant submanifolds.

Proposition

If a closed C^1 surface \mathcal{L} is invariant by a conformal and non symplectic C^1 diffeomorphism of (\mathcal{M}, ω) , \mathcal{L} is ω -isotropic.

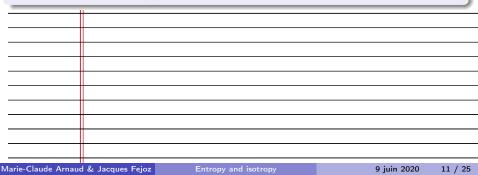


A non-isotropic example

Proposition

There exists a conformal vector field X on a 4-dimensional symplectic manifold (\mathcal{M}, ω) , with a 3-dimensional invariant submanifold \mathcal{L} (hence \mathcal{L} is not isotropic).

Moreover, the submanifold \mathcal{L} is the global attractor for the flow (φ_t) of X, $(\varphi_{t|\mathcal{L}})$ is conjugated to the suspension of an Anosov automorphism of \mathbb{T}^2 with 2-dimensional stable and unstable foliations, and $(\varphi_{t|\mathcal{L}})$ is transitive with entropy equal to $|\alpha|$ where $L_X \omega = \alpha \omega$.



Some remarks and a question

- In the later example the invariant submanifold is an hypersurface of a manifold N × ℝ.
- For a Tonelli flow of a cotangent bundle, the attractor cannot separate.
- Question. Is it possible that a Tonelli flow has an invariant closed submanifold that is not isotropic?

Yomdin theory

Let \mathcal{L} be a a compact Riemannian C^r manifold, $\mathcal{S} \subset \mathcal{L}$ be a compact C^r submanifold of dimension s and f be a C^r self-map of \mathcal{L} ($r \ge 1$). Denote by vol the s-dimensional Riemannian volume. Define the logarithmic volume growth of $f_{|\mathcal{S}}$ as

$$\operatorname{logvol}(f_{|\mathcal{S}}) = \limsup_{n \to +\infty} \frac{1}{n} \log |\operatorname{vol}(f^{n}(\mathcal{S})|,$$

and

$$\operatorname{rad}(Df) = \limsup_{n \to +\infty} \|Df^n\|^{1/n}, \quad \|Df\| = \sup_{x} \|Df_x\|.$$

Theorem (Yomdin 1987)

$$\operatorname{logvol}(f_{|\mathcal{S}}) \leq \operatorname{ent}(f) + \operatorname{log}^{+}(\operatorname{rad}(Df)^{s/r}).$$

In particular, if L, S and f are smooth,

 $\operatorname{logvol}\left(f_{\mid \mathcal{S}}\right) \leqslant \operatorname{ent}\left(f\right).$

Marie-Claude Arnaud & Jacques Fejoz

A result of Yomdin theorem

Proposition

Let f be a conformal diffeomorphism of a symplectic manifold (\mathcal{M}, ω) , i.e. such that $f^*\omega = a\omega$ with $a \in]0,1[$. Let \mathcal{L} be an ℓ -dimensional invariant closed submanifold. Assume one of the following hypothesis.

 $\textbf{0} \quad The \ diffeomorphism \ f \ is \ smooth, \ \mathcal{L} \ is \ smooth \ and$

$$\operatorname{ent}(f_{|\mathcal{L}}) < -\log(a);$$

2 The diffeomorphism f is C^r , \mathcal{L} is C^r for some $r \ge 1$ and

$$\mathrm{ent}\,(f_{|\mathcal{L}}) + \mathsf{log}^+\left(\mathrm{Rad}(Df_{|\mathcal{L}}^{-1})^{\ell/r}\right) < - \mathsf{log}(\textit{a}).$$

Then \mathcal{L} is ω -isotropic.

		1			
Μ	arie-Claude Arnauc	d & Jacques Fejoz	Entropy and isotropy	9 juin 2020	14 / 25

An improvement of regularity hypothesis in a particular case

Let

- $\mathcal{M}^{(n)}$ be a compact Riemannian manifold
- ${\mathcal F}$ be a foliation induced by a subbundle F of $T{\mathcal M}$ of rank $p{\leqslant}$ n-1
- Ω be an (n-p)-form on $\mathcal M$ which induces a volume on submanifolds transverse to $\mathcal F$
- f be a C^1 -diffeomorphism of $\mathcal M$ preserving $\mathcal F$ and such that

$$f^*\Omega = \beta \, \Omega$$

for some $\beta > 1$.

Theorem

The topological entropy of f satisfies

ent $f \ge \ln \beta$.

Marie-Claude Arnaud & Jacques Fejoz

An improvement of regularity hypothesis in a particular case Assume that ω is a pre-symplectic form of (even) rank $2\ell \ge 2$ and

$$f^*\omega = \alpha \,\omega, \quad \alpha > 1.$$

The kernel of ω is a uniquely integrable subbundle F of even corank 2ℓ .

Corollary

The topological entropy of f satisfies

ent
$$f \ge \frac{\operatorname{rank}(\omega)}{2} \ln \alpha$$
.

	-	 _	

Marie-Claude Arnaud & Jacques Fejoz

An improvement of regularity hypothesis in a particular case

Corollary

Let $f : \mathcal{M} \bigcirc$ be a C^2 conformal symplectic diffeomorphism such that $f^*\omega = a\omega$. Suppose that \mathcal{N} is an invariant C^2 submanifold such that $\omega_{|\mathcal{N}|}$ has constant rank and

$$\operatorname{ent} f_{|\mathcal{N}|} < \frac{\operatorname{rank}\left(\omega_{|\mathcal{N}|}\right)}{2} \ln a.$$

Then \mathcal{N} is isotropic. This result applies e.g. to an invariant submanifold on which the dynamics is minimal (every orbit is dense) and the entropy vanishes.

1			
1.0.1	Enderson and the second	0 1.1. 0000	10 / 25

Statement to be proved

We assume that $\mathcal{M}^{(n)}$ is a compact Riemannian manifold with distance d, that Ω is a (n-p)-form on \mathcal{M} that induces a volume form transversally to the p foliation \mathcal{F} whose tangent subspace is the kernel of Ω . We assume that f be a C^1 -diffeomorphism of \mathcal{M} preserving \mathcal{F} and such that

$$f^*\Omega = \beta \Omega$$

for some $\beta > 1$.

Then the topological entropy of f satisfies

ent $f \ge \ln \beta$.

	d				
Marie-Claude Arnaud	& Jacques Feioz	Entropy and i	sotropy	9 iuin 1	2020 19 / 25