Scattering maps for the hydrogen atom in a circularly polarized microwave field

Hamiltonian Dynamical Systems in Honor of Jean-Pierre Marco, Paris, June 7–10, 2021

> Amadeu Delshams (joint work with Mercè Ollé and Juan R. Pacha)

> > Universitat Politècnica de Catalunya

June 7th, 2021

Let us consider the relative motion of a hydrogen atom subjected to a circularly polarized (CP) microwave. In the simplest case (assuming planar motion for the electron) the *classical* motion is governed by a system of 2 2nd-order ODE

$$\begin{split} \ddot{X} &= -\frac{X}{R^3} - F\cos\left(\omega s\right), \qquad R^2 = X^2 + Y^2, \\ \ddot{Y} &= -\frac{Y}{R^3} - F\sin\left(\omega s\right), \qquad \dot{} = \frac{d}{ds}, \end{split}$$

where $\omega > 0$ is the angular frequency of the microwave field and F > 0 is the field strength.

This system can be written as a periodic in time 2 d.o.f Hamiltonian

$$H(X, Y, P_X, P_Y) = \frac{1}{2} \left(P_X^2 + P_Y^2 \right) - \frac{1}{R} + F \left(X \cos \left(\omega s \right) + Y \sin \left(\omega s \right) \right).$$

As in the R3BP, one cat get rid of the time dependence introducing rotating coordinates (x, y, p_x, p_y) plus some scaling in time:

The CP problem The equations

$$H = \frac{1}{2}(p_x^2 + p_y^2) - (xp_y - yp_x) - \frac{1}{r} + Kx, \qquad r = \sqrt{x^2 + y^2},$$

where $K = F/\omega^{4/3} > 0$, with associated Hamiltonian equations

$$\dot{x} = p_x + y,$$
 $\dot{p_x} = p_y - \frac{x}{r^3} - K,$
 $\dot{y} = p_y - x,$ $\dot{p_x} = -p_x + \frac{y}{r^3},$

invariant under the reversibility $(t, x, y, p_x, p_y) \rightarrow (-t, x, -y, -p_x, p_y)$.

Remark: When K = 0 we obtain the rotating Kepler problem. We will be playing with the parameter *K* and the energy *h*, the value of the Hamiltonian *H*.

 L_1 and L_2 (located on the x axis, their location varies with K)

• L_1 is a center×saddle for all K, with characteristic exponents

$$\pm i\sqrt{1+K}(1+\mathcal{O}(K)), \quad \pm \sqrt{3K}(1+\mathcal{O}(K)).$$

- 1-d invariant manifolds, $W^u(L_1), W^s(L_1)$ for $h = h(L_1) = h_1$
- saddle Lyapunov periodic orbits OPL₁(h) around L₁ for h > h₁

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 L_2 is a center×center for $K < K_{crit} = \frac{1}{6\sqrt[3]{3}} = 0.11556...$:

- elliptic PO
- 2-d tori

- Equilibrium points L₁,..., L₅; L_{1,2,3} are center×saddle. L_{4,5} have a transition from center×center to a complex saddle for the mass parameter μ_R. Also a Hopf bifurcation.
- There are two singularities on the equations (collisions with the primaries), for the R3BP ↔ Just collision at the origin (for the CP problem).

So:

 L_1 for the CP problem $\longleftrightarrow L_3$ for the R3BP L_2 for the CP problem $\longleftrightarrow L_{4,5}$ for the R3BP

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The CP problem Invariant objects close to L_1

- For $h_1 < h < h_1^*$ there exists a (saddle) Lyapunov orbit $OPL_1(h)$.
- $\Lambda = \bigcup_{\substack{h_1 < h < h_1^* \\ manifold}} OPL_1(h)$ is a NHIM (normally hyperbolic invariant manifold).
- Any Lyapunov orbit OPL₁(h) possesses 2D whiskers W^{s,u}OPL₁(h).
- Any trajectory γ(h) contained in W^sOPL₁(h) ∩ W^uOPL₁(h) is a homoclinic orbit to OPL₁(h).
- If W^sOPL₁(h), W^uOPL₁(h) intersect transversally on γ(h) for some h, γ(h) is called a *transverse homoclinic orbit*. The same happens for nearby h.
- For every $Z \in \gamma(h)$ there exist unique X_- , X_+ in $OPL_1(h)$ such that $\Phi(t, Z) \Phi(t, X_{\pm}) \rightarrow 0$ as $t \rightarrow \pm \infty$, where $\Phi(t, Z)$ denotes the flow of the Hamiltonian system.
- Notice that if $Z' := \Phi(\tau, Z)$, $X'_{\pm} := \Phi(\tau, X_{\pm})$, then $\Phi(t, Z') \Phi(t, X'_{\pm}) \to 0$ as $t \to \pm \infty$.

The CP problem Scattering maps

- For any transverse γ(h), the associated scattering map is simply X_− ∈ OPL₁(h) ↦ X₊ ∈ OPL₁(h).
- In an adequate parameterization X = X(θ) such that θ
 = 1, the scattering maps is simply a translation θ → θ + Δ(h) by a phase shift Δ(h).
- Such scattering maps are also defined on the corresponding NHIM Λ = ⋃ OPL₁(h) and take the simple form
 (θ, h) → (θ + Δ(h), h) of an *integrable twist map*, with a "real twist" as long as Δ'(h) ≠ 0.

- Analytical/numerical analysis: For K > 0 small, the real characteristic exponent $\sqrt{3K}(1 + \mathcal{O}(K))$ is small, which makes difficult the computation of the invariant manifolds $W^{s,u}OPL_1(h)$ associated to the Lyapunov orbits $OPL_1(h)$ and even more difficult the computation of their intersection (homoclinic orbits), since the splitting angle is exponentially small in K.
- 2D. And 3D?

< 日 > < 同 > < 回 > < 回 > < 回 > <

Theorem (Main result)

For $h_1^* < h < h_1^*$, Each Lyapunov orbit $OPL_1(h)$ has exactly two transverse primary homoclinic orbits, giving rise to two different scattering maps defined on the NHIM, which are integrable twist maps.

Remark: by primary homoclinic orbits we mean that we consider just the *first* intersection of the invariant manifolds with the cross section y = 0.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Projection of $W^{u,e,i}(L_1)$

June 7th, 2021

Projection of $W^{u,e,i}(L_1)$

June 7th, 2021

< E

э

13/29

< 6 b

Projection of $W^{u,e,i}(L_1)$

value of x' at 1st crossing of W^{u,e,i} with y=0 0.45 0.4 0.35 $W^{u,e}(L_1)$ 0.3 0.25 0.2 0.15 0.1 $W^{u,i}(L_1)$ 0.05 0 0.04 0.08 0.12 0.16 Κ

Amadeu Delshams (UPC)

Γ×

Scattering maps for the CP problem

June 7th, 2021

Projection of $W^{u,e,i}OPL_1(h)$

K=0.05, h=-1.505

Figure: $W^{u,i}OPL_1(h)$ in orange and $W^{s,i}OPL_1(h)$ in dark blue.

Amadeu Delshams (UPC)

Scattering maps for the CP problem

June 7th, 2021

3) 3

Projection of $W^{u,e,i}OPL_1(h)$

Figure: $W^{u,i}OPL_1(h)$ in orange and $W^{s,i}OPL_1(h)$ in dark blue.

Scattering maps for the CP problem

June 7th, 2021

 $W^{\mathrm{u,e,i}}OPL_1(h) \cap \{y=0\}$

Figure: the orange asterisk is $W^{u,e}(L_1)$ and the dark blue square is $W^{s,e}(L_1)$.

June 7th, 2021 17/29

 $W^{\mathrm{u,e,i}}OPL_1(h) \cap \{y = 0\}$

K=0.05, h=-1.505. Intersection W(OPL₁) with y=0

Figure: the orange asterisk is $W^{u,i}(L_1)$ and the dark blue square is $W^{s,i}(L_1)$.

 $W^{\mathrm{u,e,i}}OPL_1(h) \cap \{y = 0\}$

Figure: $W^{u,s,e}OPL_1(h)$ for four different values of h and K = 0.01

June 7th, 2021 19/29

< 3

< 6 b

 $W^{\mathrm{u,e,i}}OPL_1(h) \cap \{y = 0\}$

Figure: $W^{u,s,i}OPL_1(h)$ for four different values of h and K = 0.01

June 7th, 2021

20/29

э

$W^{\mathrm{u,e,i}}OPL_1(h) \cap \{y = 0\}$

Figure: For small *K*, approximation of $W^{u,s,e}OPL_1(h)$ by ellipses

Scattering maps for the CP problem

June 7th, 2021 21/29

 $W^{\mathrm{u,e,i}}OPL_1(h) \cap \{y=0\}$

Figure: First cuts of $C^{u,s,e}(h) := W^{u,s,e}OPL_1(h) \cap \{y = 0\}$ in the variables (x, x') for K = 0.16 and h = -1.4. The angles in radians between $C^{u,e}(h)$ and $C^{s,e}(h)$ are $2 \cdot 1.2694$ and $2 \cdot -0.036$.

June 7th, 2021 22/29

Phase shifts $\Delta(h)$

Figure: phase shift $\theta \mapsto \theta + \Delta(h)$ in the first external scattering map for K = 0.16 and h = -1.4 (with two different fits).

June 7th, 2021 23/29

Phase shifts $\Delta(h)$

Figure: phase shift $\theta \mapsto \theta + \Delta(h)$ in the first external scattering map for K = 0.16 and h = -1.4 (with two different fits).

June 7th, 2021 24/29

Analytical computations

$$H = \frac{1}{2}(p_x^2 + p_y^2) - (xp_y - yp_x) - \frac{1}{r} + \frac{\kappa}{r}x, \qquad r = \sqrt{x^2 + y^2},$$

in canonical polar coordinates $(r, \theta, p_r, p_{\theta})$ takes the form

$$H = rac{1}{2}\left(p_r^2 + rac{p_{ heta}^2}{2}
ight) - p_ heta - rac{1}{r} + Kr\cos heta = H_{\mathrm{K}} - p_ heta + Kr\cos heta.$$

In the *canonical Delaunay variables* (ℓ , g, L, G), which are the action-angle variables for the Kepler Hamiltonian H_K we have

$$H = -\frac{1}{2L^2} - G + K\left(L^2 \cos E \cos g - LG \sin E \sin g - L^2 e \cos g\right),$$

where $e = \sqrt{1 - \frac{G^2}{L^2}}$ is the *eccentricity* and *E* is the *eccentric* anomaly: $\ell = E - e \sin E$.

June 7th, 2021 25/29

Analytical computations

scaling with ε

The equilibrium point L_1 satisfies L = G = 1. Changing again and scaling

$$\ell = \mathbf{x} + \pi + \mathbf{g}, \quad \mathbf{g} = -\varphi, \mathbf{L} = \mathbf{1} + \varepsilon^2 \mathbf{y}, \quad \mathbf{G} = \mathbf{1} + \varepsilon^2 \mathbf{y} - \varepsilon^2 \mathbf{I},$$

where $\varepsilon = \left(\frac{K}{3}\right)^{1/4}$ we get the singular a priori unstable Hamiltonian $H = \omega I + P(x, y) + \varepsilon h(\varphi, x, I, y; \varepsilon),$ with $\omega = -\frac{1}{3\varepsilon^2}$ and $P(x, y) = \frac{y^2}{2} + \cos x - 1$

$$h(\varphi, x, l, y; \varepsilon) = \frac{3}{2}\sqrt{2l}\cos\varphi - \frac{1}{2}\sqrt{2l}\cos(2x + \varphi) + O(\varepsilon).$$

For $\varepsilon = 0$, the equilibrium point L_1 (x = y = l = 0) has the separatrices of the pendulum

$$x_0(t) = 4 \arctan\left(e^{\pm t}\right), \quad y_0(t) = \dot{x}_0(t) = \pm \frac{2}{\cosh t}.$$

The *Melnikov potential* associated to a periodic orbit x = y = 0 with action *I* is

$$\begin{split} \mathcal{L}(\theta, I) &= -\int_{\infty}^{\infty} \left(h(\theta + \omega\sigma, x_0(\sigma), I, y_0(\sigma); 0) - h(\theta + \omega\sigma, 0, I, 0; 0) \right) \mathrm{d}\sigma \\ &= \frac{8\pi}{3} \sqrt{2I} \, \omega^3 \left(1 - \frac{2}{\omega^3} \right) \frac{\mathrm{e}^{c\pi\omega/2}}{1 - \mathrm{e}^{2\pi\omega}} \cos\theta, \\ \text{where } c &= \begin{cases} 1 \text{ for } y_0(t) > 0 \text{ (external)} \\ 3 \text{ for } y_0(t) < 0 \text{ (internal)} \end{cases}, \, \omega = -\frac{1}{3\varepsilon^2}. \end{split}$$

BA 4 BA

- The analytical computations for the splitting of the separatrices of the Lyapunov orbits provided by the Poincaré-Melnikov method (more or less) agree with the numerical computations.
- Analogously for the splitting of the separatrices of *L*₁.
- Since the order ℓ of the singularity of the perturbation
 τ → h(φ, x₀(τ), I, y₀(τ); ε) (D-Seara97) is 4, greater than r = 2,
 the order of the singularity of the unperturbed Hamiltonian P(x, y),
 we expect (Baldomá06) that the Melnikov potential will give the
 dominant part of the splitting.
- There is still no complete proof.
- The more interesting case is the spatial CP problem, where Arnold diffusion takes place.

イロト 不得 トイヨト イヨト

Bon anniversaire, Jean-Pierre!!

Happy birthday, Jean-Pierre!!

Per molt anys, Jean-Pierre!!

▲ロト ▲御ト ▲注ト ▲注ト 三注 めへぐ