Scattering maps for the hydrogen atom in a circularly polarized microwave field

Hamiltonian Dynamical Systems in Honor of Jean-Pierre Marco, Paris, June 7-10, 2021

Amadeu Delshams
(joint work with Mercè Ollé and Juan R. Pacha)

Universitat Politècnica de Catalunya

$$
\text { June } 7^{\text {th }}, 2021
$$

The equations

Let us consider the relative motion of a hydrogen atom subjected to a circularly polarized (CP) microwave. In the simplest case (assuming planar motion for the electron) the classical motion is governed by a system of 2 2nd-order ODE

$$
\begin{array}{ll}
\ddot{X}=-\frac{X}{R^{3}}-F \cos (\omega s), & R^{2}=X^{2}+Y^{2} \\
\ddot{Y}=-\frac{Y}{R^{3}}-F \sin (\omega s), & =\frac{\mathrm{d}}{\mathrm{~d} s}
\end{array}
$$

where $\omega>0$ is the angular frequency of the microwave field and $F>0$ is the field strength.

The equations

This system can be written as a periodic in time 2 d.o.f Hamiltonian

$$
H\left(X, Y, P_{X}, P_{Y}\right)=\frac{1}{2}\left(P_{X}^{2}+P_{Y}^{2}\right)-\frac{1}{R}+F(X \cos (\omega s)+Y \sin (\omega s)) .
$$

As in the R3BP, one cat get rid of the time dependence introducing rotating coordinates (x, y, p_{x}, p_{y}) plus some scaling in time:

The equations

$$
H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)-\left(x p_{y}-y p_{x}\right)-\frac{1}{r}+K x, \quad r=\sqrt{x^{2}+y^{2}}
$$

where $K=F / \omega^{4 / 3}>0$, with associated Hamiltonian equations

$$
\begin{array}{ll}
\dot{x}=p_{x}+y, & \dot{p_{x}}=p_{y}-\frac{x}{r^{3}}-K, \\
\dot{y}=p_{y}-x, & \dot{p_{x}}=-p_{x}+\frac{y}{r^{3}},
\end{array}
$$

invariant under the reversibility $\left(t, x, y, p_{x}, p_{y}\right) \rightarrow\left(-t, x,-y,-p_{x}, p_{y}\right)$.

Remark: When $K=0$ we obtain the rotating Kepler problem. We will be playing with the parameter K and the energy h, the value of the Hamiltonian H.

Equilibrium points L_{1} and L_{2}

L_{1} and L_{2} (located on the x axis, their location varies with K)

- L_{1} is a center \times saddle for all K, with characteristic exponents

$$
\pm \mathrm{i} \sqrt{1+K}(1+\mathcal{O}(K)), \quad \pm \sqrt{3 K}(1+\mathcal{O}(K))
$$

- 1-d invariant manifolds, $W^{u}\left(L_{1}\right), W^{s}\left(L_{1}\right)$ for $h=h\left(L_{1}\right)=h_{1}$
- saddle Lyapunov periodic orbits $O P L_{1}(h)$ around L_{1} for $h>h_{1}$

Equilibrium points L_{1} and L_{2}

L_{2} is a center \times center for $K<K_{\text {crit }}=\frac{1}{6 \sqrt[3]{3}}=0.11556 \ldots$:

- elliptic PO
- 2-d tori

Compared with the R3BP

- Equilibrium points $L_{1}, \ldots, L_{5} ; L_{1,2,3}$ are center \times saddle. $L_{4,5}$ have a transition from center \times center to a complex saddle for the mass parameter μ_{R}. Also a Hopf bifurcation.
- There are two singularities on the equations (collisions with the primaries), for the R3BP \longleftrightarrow Just collision at the origin (for the CP problem).
So:
L_{1} for the CP problem $\longleftrightarrow L_{3}$ for the R3BP
L_{2} for the CP problem $\longleftrightarrow L_{4,5}$ for the R3BP

Invariant objects close to L_{1}

- For $h_{1}<h<h_{1}^{*}$ there exists a (saddle) Lyapunov orbit $O P L_{1}(h)$.
- $\Lambda=\bigcup O P L_{1}(h)$ is a NHIM (normally hyperbolic invariant manifold).
- Any Lyapunov orbit $O P L_{1}(h)$ possesses 2D whiskers $W^{\mathrm{s}, \mathrm{u}} O P L_{1}(h)$.
- Any trajectory $\gamma(h)$ contained in $W^{s} O P L_{1}(h) \cap W^{u} O P L_{1}(h)$ is a homoclinic orbit to $O P L_{1}(h)$.
- If $W^{s} O P L_{1}(h), W^{u} O P L_{1}(h)$ intersect transversally on $\gamma(h)$ for some $h, \gamma(h)$ is called a transverse homoclinic orbit. The same happens for nearby h.
- For every $Z \in \gamma(h)$ there exist unique X_{-}, X_{+}in $O P L_{1}(h)$ such that $\Phi(t, Z)-\Phi\left(t, X_{ \pm}\right) \rightarrow 0$ as $t \rightarrow \pm \infty$, where $\Phi(t, Z)$ denotes the flow of the Hamiltonian system.
- Notice that if $Z^{\prime}:=\Phi(\tau, Z), X_{ \pm}^{\prime}:=\Phi\left(\tau, X_{ \pm}\right)$, then $\Phi\left(t, Z^{\prime}\right)-\Phi\left(t, X_{ \pm}^{\prime}\right) \rightarrow 0$ as $t \rightarrow \pm \infty$.

Scattering maps

- For any transverse $\gamma(h)$, the associated scattering map is simply $X_{-} \in O P L_{1}(h) \mapsto X_{+} \in O P L_{1}(h)$.
- In an adequate parameterization $X=X(\theta)$ such that $\dot{\theta}=1$, the scattering maps is simply a translation $\theta \mapsto \theta+\Delta(h)$ by a phase shift $\Delta(h)$.
- Such scattering maps are also defined on the corresponding NHIM $\wedge=\bigcup O P L_{1}(h)$ and take the simple form

$$
h_{1}<h<h_{1}^{*}
$$

$(\theta, h) \mapsto(\theta+\Delta(h), h)$ of an integrable twist map, with a "real twist" as long as $\Delta^{\prime}(h) \neq 0$.

Numerical issues

- Analytical/numerical analysis: For $K>0$ small, the real characteristic exponent $\sqrt{3 K}(1+\mathcal{O}(K))$ is small, which makes difficult the computation of the invariant manifolds $W^{\mathrm{s}, \mathrm{u}} O P L_{1}(h)$ associated to the Lyapunov orbits $O P L_{1}(h)$ and even more difficult the computation of their intersection (homoclinic orbits), since the splitting angle is exponentially small in K.
- 2D. And 3D?

Result

```
Theorem (Main result)
For \(h_{1}^{\star}<h<h_{1}^{*}\), Each Lyapunov orbit \(O P L_{1}(h)\) has exactly two transverse primary homoclinic orbits, giving rise to two different scattering maps defined on the NHIM, which are integrable twist maps.
```

Remark: by primary homoclinic orbits we mean that we consider just the first intersection of the invariant manifolds with the cross section $y=0$.

Projection of $W^{u, e, i}\left(L_{1}\right)$

Projection of $W^{u, e, i}\left(L_{1}\right)$

value of x^{\prime} at 1 st crossing of $W^{u, e, i}$ with $y=0$

Projection of $W^{\text {ule, }} \mathrm{OPL}_{1}(h)$

$\mathrm{K}=0.05, \mathrm{~h}=-1.505$

Figure: $W^{\mathrm{u}, \mathrm{i}} O P L_{1}(h)$ in orange and $W^{s, \mathrm{i}} O P L_{1}(h)$ in dark blue.

Figure: $W^{\mathrm{u}, \mathrm{i}} O P L_{1}(h)$ in orange and $W^{\text {s,i}} O P L_{1}(h)$ in dark blue.

$W^{u, e, i} O P L_{1}(h) \cap\{y=0\}$

$\mathrm{K}=0.05, \mathrm{~h}=-1.505$. Intersection $\mathrm{W}\left(\mathrm{OPL}_{1}\right)$ with $\mathrm{y}=0$

Figure: the orange asterisk is $W^{\mathrm{u}, \mathrm{e}}\left(L_{1}\right)$ and the dark blue square is $W^{\mathrm{s}, \mathrm{e}}\left(L_{1}\right)$.

$W^{u, e, i} O P L_{1}(h) \cap\{y=0\}$

$\mathrm{K}=0.05, \mathrm{~h}=-1.505$. Intersection $\mathrm{W}\left(\mathrm{OPL}_{1}\right)$ with $\mathrm{y}=0$

Figure: the orange asterisk is $W^{,, i}\left(L_{1}\right)$ and the dark blue square is $W^{s, i}\left(L_{1}\right)$.

$$
W^{W^{u, e,}} O P L_{1}(h) \cap\{y=0\}
$$

$\mathrm{K}=0.01$. Intersection $\mathrm{W}^{\mathrm{u}, \mathrm{s}, \mathrm{e}}$ with $\mathrm{y}=0$

Figure: $W^{\mathrm{u}, \mathrm{se,}} O P L_{1}(h)$ for four different values of h and $K=0.01$

$W^{u, e, i} O P L_{1}(h) \cap\{y=0\}$

$\mathrm{K}=0.01$. Intersection $\mathrm{W}^{\mathrm{u}, \mathrm{s}, \mathrm{i}}$ with $\mathrm{y}=0$

Figure: $W^{\mathrm{u}, \mathrm{s}, \mathrm{i}} O P L_{1}(h)$ for four different values of h and $K=0.01$

$$
W^{(u, e,} O P L_{1}(h) \cap\{y=0\}
$$

$\mathrm{K}=0.01$, aproximating ellipses

Figure: For small K, approximation of $W^{\text {u,s,e }} O P L_{1}(h)$ by ellipses

$W{ }^{u, e, \mathrm{i}} O P L_{1}(h) \cap\{y=0\}$

Figure: First cuts of $C^{\mathrm{u}, \mathrm{s}, \mathrm{e}}(h):=W^{\mathrm{u}, \mathrm{s}, \mathrm{e}} O P L_{1}(h) \cap\{y=0\}$ in the variables $\left(x, x^{\prime}\right)$ for $K=0.16$ and $h=-1.4$. The angles in radians between $C^{\mathrm{u}, \mathrm{e}}(h)$ and $C^{\mathrm{s}, \mathrm{e}}(h)$ are $2 \cdot 1.2694$ and $2 \cdot-0.036$.

Phase shifts $\Delta(h)$

Figure: phase shift $\theta \mapsto \theta+\Delta(h)$ in the first external scattering map for $K=0.16$ and $h=-1.4$ (with two different fits).

Phase shifts $\Delta(h)$

Figure: phase shift $\theta \mapsto \theta+\Delta(h)$ in the first external scattering map for $K=0.16$ and $h=-1.4$ (with two different fits).

Canonical changes

$$
H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)-\left(x p_{y}-y p_{x}\right)-\frac{1}{r}+K x, \quad r=\sqrt{x^{2}+y^{2}},
$$

in canonical polar coordinates $\left(r, \theta, p_{r}, p_{\theta}\right)$ takes the form

$$
H=\frac{1}{2}\left(p_{r}^{2}+\frac{p_{\theta}^{2}}{2}\right)-p_{\theta}-\frac{1}{r}+K r \cos \theta=H_{K}-p_{\theta}+K r \cos \theta .
$$

In the canonical Delaunay variables (ℓ, g, L, G), which are the action-angle variables for the Kepler Hamiltonian H_{K} we have

$$
H=-\frac{1}{2 L^{2}}-G+K\left(L^{2} \cos E \cos g-L G \sin E \sin g-L^{2} e \cos g\right),
$$

where $e=\sqrt{1-\frac{G^{2}}{L^{2}}}$ is the eccentricity and E is the eccentric anomaly: $\ell=E-e \sin E$.

The equilibrium point L_{1} satisfies $L=G=1$. Changing again and scaling

$$
\ell=x+\pi+g, \quad g=-\varphi, L=1+\varepsilon^{2} y, \quad G=1+\varepsilon^{2} y-\varepsilon^{2} I
$$

where $\varepsilon=\left(\frac{K}{3}\right)^{1 / 4}$ we get the singular a priori unstable Hamiltonian

$$
H=\omega I+P(x, y)+\varepsilon h(\varphi, x, I, y ; \varepsilon)
$$

with $\omega=-\frac{1}{3 \varepsilon^{2}}$ and

$$
\begin{aligned}
P(x, y) & =\frac{y^{2}}{2}+\cos x-1 \\
h(\varphi, x, I, y ; \varepsilon) & =\frac{3}{2} \sqrt{2 /} \cos \varphi-\frac{1}{2} \sqrt{2 l} \cos (2 x+\varphi)+O(\varepsilon)
\end{aligned}
$$

Poincaré-Melnikov prediction

For $\varepsilon=0$, the equilibrium point $L_{1}(x=y=I=0)$ has the separatrices of the pendulum

$$
x_{0}(t)=4 \arctan \left(\mathrm{e}^{ \pm t}\right), \quad y_{0}(t)=\dot{x}_{0}(t)= \pm \frac{2}{\cosh t} .
$$

The Melnikov potential associated to a periodic orbit $x=y=0$ with action / is

$$
\begin{aligned}
\mathcal{L}(\theta, I) & =-\int_{\infty}^{\infty}\left(h\left(\theta+\omega \sigma, x_{0}(\sigma), l, y_{0}(\sigma) ; 0\right)-h(\theta+\omega \sigma, 0, I, 0 ; 0)\right) \mathrm{d} \sigma \\
& =\frac{8 \pi}{3} \sqrt{2 l} \omega^{3}\left(1-\frac{2}{\omega^{3}}\right) \frac{\mathrm{e}^{c \pi \omega / 2}}{1-\mathrm{e}^{2 \pi \omega}} \cos \theta, \\
\text { where } \boldsymbol{c} & =\left\{\begin{array}{l}
1 \text { for } y_{0}(t)>0 \text { (external) } \\
3 \text { for } y_{0}(t)<0 \text { (internal) }
\end{array}, \omega=-\frac{1}{3 \varepsilon^{2}} .\right.
\end{aligned}
$$

- The analytical computations for the splitting of the separatrices of the Lyapunov orbits provided by the Poincaré-Melnikov method (more or less) agree with the numerical computations.
- Analogously for the splitting of the separatrices of L_{1}.
- Since the order ℓ of the singularity of the perturbation $\tau \mapsto h\left(\varphi, x_{0}(\tau), I, y_{0}(\tau) ; \varepsilon\right)$ (D-Seara97) is 4, greater than $r=2$, the order of the singularity of the unperturbed Hamiltonian $P(x, y)$, we expect (Baldomá06) that the Melnikov potential will give the dominant part of the splitting.
- There is still no complete proof.
- The more interesting case is the spatial CP problem, where Arnold diffusion takes place.

Bon anniversaire，Jean－Pierre！！

Happy birthday，Jean－Pierre！！

Per molt anys，Jean－Pierre！！

