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The CP problem The equations

Let us consider the relative motion of a hydrogen atom subjected to a
circularly polarized (CP) microwave. In the simplest case (assuming
planar motion for the electron) the classical motion is governed by a
system of 2 2nd-order ODE

Ẍ = − X
R3 − F cos (ωs) , R2 = X 2 + Y 2,

Ÿ = − Y
R3 − F sin (ωs) , ˙ =

d
ds
,

where ω > 0 is the angular frequency of the microwave field and F > 0
is the field strength.
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The CP problem The equations

This system can be written as a periodic in time 2 d.o.f Hamiltonian

H(X ,Y ,PX ,PY ) =
1
2

(
P2

X + P2
Y

)
− 1

R
+ F (X cos (ωs) + Y sin (ωs)) .

As in the R3BP, one cat get rid of the time dependence introducing
rotating coordinates (x , y ,px ,py ) plus some scaling in time:
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The CP problem The equations

H =
1
2

(p2
x + p2

y )− (xpy − ypx )− 1
r

+ K x , r =
√

x2 + y2,

where K = F/ω4/3 > 0, with associated Hamiltonian equations

ẋ = px + y , ṗx = py −
x
r3 − K ,

ẏ = py − x , ṗx = −px +
y
r3 ,

invariant under the reversibility (t , x , y ,px ,py )→ (−t , x ,−y ,−px ,py ).

Remark: When K = 0 we obtain the rotating Kepler problem. We will
be playing with the parameter K and the energy h, the value of the
Hamiltonian H.
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The CP problem Equilibrium points L1 and L2

L1 and L2 (located on the x axis, their location varies with K )

L1 is a center×saddle for all K , with characteristic exponents

±i
√

1 + K (1 +O (K )), ±
√

3K (1 +O (K )).

1-d invariant manifolds, W u(L1),W s(L1) for h = h(L1) = h1
saddle Lyapunov periodic orbits OPL1(h) around L1 for h > h1
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The CP problem Equilibrium points L1 and L2
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The CP problem Compared with the R3BP

Equilibrium points L1, . . . ,L5; L1,2,3 are center×saddle. L4,5 have a
transition from center×center to a complex saddle for the mass
parameter µR. Also a Hopf bifurcation.
There are two singularities on the equations (collisions with the
primaries), for the R3BP←→ Just collision at the origin (for the CP
problem).

So:

L1 for the CP problem←→ L3 for the R3BP
L2 for the CP problem←→ L4,5 for the R3BP
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The CP problem Invariant objects close to L1

For h1 < h < h∗1 there exists a (saddle) Lyapunov orbit OPL1(h).

Λ =
⋃

h1<h<h∗
1

OPL1(h) is a NHIM (normally hyperbolic invariant

manifold).
Any Lyapunov orbit OPL1(h) possesses 2D whiskers
W s,uOPL1(h).
Any trajectory γ(h) contained in W sOPL1(h) ∩W uOPL1(h) is a
homoclinic orbit to OPL1(h).
If W sOPL1(h), W uOPL1(h) intersect transversally on γ(h) for
some h, γ(h) is called a transverse homoclinic orbit. The same
happens for nearby h.
For every Z ∈ γ(h) there exist unique X−, X+ in OPL1(h) such
that Φ(t ,Z )−Φ(t ,X±)→ 0 as t → ±∞, where Φ(t ,Z ) denotes the
flow of the Hamiltonian system.
Notice that if Z ′ := Φ(τ,Z ), X ′± := Φ(τ,X±), then
Φ(t ,Z ′)− Φ(t ,X ′±)→ 0 as t → ±∞.
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The CP problem Scattering maps

For any transverse γ(h), the associated scattering map is simply
X− ∈ OPL1(h) 7→ X+ ∈ OPL1(h).
In an adequate parameterization X = X (θ) such that θ̇ = 1, the
scattering maps is simply a translation θ 7→ θ + ∆(h) by a phase
shift ∆(h).
Such scattering maps are also defined on the corresponding
NHIM Λ =

⋃
h1<h<h∗

1

OPL1(h) and take the simple form

(θ,h) 7→ (θ + ∆(h),h) of an integrable twist map, with a “real twist”
as long as ∆′(h) 6= 0.
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The CP problem Numerical issues

Analytical/numerical analysis: For K > 0 small, the real
characteristic exponent

√
3K (1 +O (K )) is small, which makes

difficult the computation of the invariant manifolds W s,uOPL1(h)
associated to the Lyapunov orbits OPL1(h) and even more difficult
the computation of their intersection (homoclinic orbits), since the
splitting angle is exponentially small in K .
2D. And 3D?
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The CP problem Result

Theorem (Main result)

For h?1 < h < h∗1, Each Lyapunov orbit OPL1(h) has exactly two
transverse primary homoclinic orbits, giving rise to two different
scattering maps defined on the NHIM, which are integrable twist maps.

Remark: by primary homoclinic orbits we mean that we consider just
the first intersection of the invariant manifolds with the cross section
y = 0.
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Numerical computations Projection of W u,e,i(L1)
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Numerical computations Projection of W u,e,i(L1)
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Numerical computations Projection of W u,e,i(L1)
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Numerical computations Projection of W u,e,iOPL1(h)

-2

-1

 0

 1

 2

-2 -1  0  1  2  3

Wu,e(OPL1)

Ws,e(OPL1)

y

x

K=0.05, h=-1.505

Figure: W u,iOPL1(h) in orange and W s,iOPL1(h) in dark blue.
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Numerical computations Projection of W u,e,iOPL1(h)
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Figure: W u,iOPL1(h) in orange and W s,iOPL1(h) in dark blue.
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Numerical computations W u,e,iOPL1(h) ∩ {y = 0}
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Figure: the orange asterisk is W u,e(L1) and the dark blue square is W s,e(L1).
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Numerical computations W u,e,iOPL1(h) ∩ {y = 0}
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Figure: the orange asterisk is W u,i(L1) and the dark blue square is W s,i(L1).
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Numerical computations W u,e,iOPL1(h) ∩ {y = 0}
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Figure: W u,s,eOPL1(h) for four different values of h and K = 0.01
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Numerical computations W u,e,iOPL1(h) ∩ {y = 0}
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Figure: W u,s,iOPL1(h) for four different values of h and K = 0.01
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Numerical computations W u,e,iOPL1(h) ∩ {y = 0}

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 1.24  1.26  1.28  1.3  1.32

x’

x

K=0.01, aproximating ellipses

Figure: For small K , approximation of W u,s,eOPL1(h) by ellipses
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Numerical computations W u,e,iOPL1(h) ∩ {y = 0}
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Figure: First cuts of Cu,s,e(h) := W u,s,eOPL1(h) ∩ {y = 0} in the variables
(x , x ′) for K = 0.16 and h = −1.4. The angles in radians between Cu,e(h) and
Cs,e(h) are 2 · 1.2694 and 2 · −0.036.
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Numerical computations Phase shifts ∆(h)

Figure: phase shift θ 7→ θ + ∆(h) in the first external scattering map for
K = 0.16 and h = −1.4 (with two different fits).
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Numerical computations Phase shifts ∆(h)

Figure: phase shift θ 7→ θ + ∆(h) in the first external scattering map for
K = 0.16 and h = −1.4 (with two different fits).
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Analytical computations Canonical changes

H =
1
2

(p2
x + p2

y )− (xpy − ypx )− 1
r

+ K x , r =
√

x2 + y2,

in canonical polar coordinates (r , θ, pr ,pθ) takes the form

H =
1
2

(
p2

r +
p2
θ

2

)
− pθ −

1
r

+ Kr cos θ = HK − pθ + Kr cos θ.

In the canonical Delaunay variables (`,g,L,G), which are the
action-angle variables for the Kepler Hamiltonian HK we have

H = − 1
2L2 −G + K

(
L2 cos E cos g − LG sin E sin g − L2e cos g

)
,

where e =

√
1− G2

L2 is the eccentricity and E is the eccentric
anomaly: ` = E − e sin E .
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Analytical computations scaling with ε

The equilibrium point L1 satisfies L = G = 1. Changing again and
scaling

` = x + π + g, g = −ϕ,L = 1 + ε2y , G = 1 + ε2y − ε2I,

where ε =

(
K
3

)1/4

we get the singular a priori unstable Hamiltonian

H = ωI + P(x , y) + εh(ϕ, x , I, y ; ε),

with ω = − 1
3ε2 and

P(x , y) =
y2

2
+ cos x − 1,

h(ϕ, x , I, y ; ε) =
3
2

√
2I cosϕ− 1

2

√
2I cos(2x + ϕ) + O(ε).
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Analytical computations Poincaré-Melnikov prediction

For ε = 0, the equilibrium point L1 (x = y = I = 0) has the separatrices
of the pendulum

x0(t) = 4 arctan
(
e±t) , y0(t) = ẋ0(t) = ± 2

cosh t
.

The Melnikov potential associated to a periodic orbit x = y = 0 with
action I is

L(θ, I) = −
∫ ∞
∞

(h(θ + ωσ, x0(σ), I, y0(σ); 0)− h(θ + ωσ,0, I,0; 0)) dσ

=
8π
3

√
2I ω3

(
1− 2

ω3

)
ecπω/2

1− e2πω cos θ,

where c =

{
1 for y0(t) > 0 (external)
3 for y0(t) < 0 (internal)

, ω = − 1
3ε2 .
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The CP problem Last comments on June 7, 2021

The analytical computations for the splitting of the separatrices of
the Lyapunov orbits provided by the Poincaré-Melnikov method
(more or less) agree with the numerical computations.
Analogously for the splitting of the separatrices of L1.
Since the order ` of the singularity of the perturbation
τ 7→ h(ϕ, x0(τ), I, y0(τ); ε) (D-Seara97) is 4, greater than r = 2,
the order of the singularity of the unperturbed Hamiltonian P(x , y),
we expect (Baldomá06) that the Melnikov potential will give the
dominant part of the splitting.
There is still no complete proof.
The more interesting case is the spatial CP problem, where
Arnold diffusion takes place.
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Bon anniversaire, Jean-Pierre!!

Happy birthday, Jean-Pierre!!

Per molt anys, Jean-Pierre!!
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