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Introduction



We will assume that X is a Ck vector field, with k ≥ 1, on the
smooth connected but not necessarily compact manifold M . We
will also assume that the vector field is complete, i.e. it defines a
flow φt, t ∈ R. The flow φt is Ck on M × R.

We propose to give a “common” proof of three well-known
theorems using a generalisation of a work of Wilson and Yorke:
F. Wesley Wilson, Jr. & James A. Yorke, Lyapunov
Functions and Isolating Blocks, J. Diff. Eq. 13 (1973) 106–123.

The first theorem was obtained in:
José Luis Massera, Contributions to stability theory, Annals of
Math., 64 (1956) 182–206.

Theorem 1 (Massera’s converse to Lyapunov Theorem)

Suppose that A is a non-empty compact subset of M which is
invariant under the flow φt and Lyapunov asymptotically stable,
then there exists a C∞function g : M → [0,+∞[ such that
g−1(0) = A and X · g < 0 on V \A, where V is a neighborhood of
A in M .



Recall that an invariant set A for the flow φt is said to be Lyapunov
asymptotically stable if it satisfies the following two conditions:

(a) for every neighborhood V of A (in M), we can find a
neighborhood V ′ of A such that

⋃
t≥0 φt(V

′) ⊂ V ;

(b) there exists a neighborhood V0 of A, such that, for every
x ∈ V0, we have d(φt(x), A)→ 0 as t→ +∞.

The second Theorem is from:
Dennis Sullivan, Cycles for the dynamical study of foliated
manifolds and complex manifolds, Inv. math., 36 (1976) 225–255.

Theorem 2 (Sullivan)

Assume A ⊂M is a compact subset that contains no full
(two-sided) orbit of the flow φt, then there exists a C∞function
f : M → [0,+∞[ such that X · f > 0 on A.

It is in fact a small corollary from a much deeper theory.
A simpler proof was proposed by Marc Chaperon. You can find it
in the appendix of: François Laudenbach & Jean-Claude
Sikorav, Hamiltonian Disjunction and Limits of Lagrangian
Submanifolds, Int. Math. Res. Notices, 4 (1994) 161–168.



The third theorem is from: Charles Conley & Robert
Easton, Isolated invariant sets and isolating blocks, Trans.
Amer. Math. Soc., 158 (1983) 35–61.

Theorem 3 (Conley-Easton Isolating Block)

Suppose A is a compact subset of M which is an isolated invariant
set of the flow φt, then there exists a smooth submanifold with
boundary N of M which is an isolating block for A.

Recall that an invariant A of φt is said to be isolated if there exists
a neighborhood V of A such that A =

⋂
t∈R φt(V ). Such a

neighborhood V is said to be an isolating neighborhood of A.
An isolating block for the isolated invariant set A is a codimension
0 compact submanifold N of M , which is an isolating
neighborhood of A, such that at a point x ∈ ∂N , where the vector
field is tangent to ∂N , the local orbit of x lies outside N except
for the point x.



This isolating block looks like
N

A

It is important to note that such tangencies of orbits to ∂N with
exactly (locally) one point x of intersection with N are automatic
if ∂N is more curved toward N at x than the absolute value of the
curvature of the orbit at x, like at the green point.



Main Theorem



We will deduce the three theorems from the following one:

Theorem 4 (Main Theorem)

Assume C is a closed subset of M , we can find two C∞ functions
f, g : M → [0,+∞[ such that:

(i) f−1(0) = ∩t≥0φ−t(C). (Therefore dxf = 0 for every
x ∈ ∩t≥0φ−t(C).)

(ii) X · f(x) > 0 for every x ∈ C \ ∩t≥0φ−t(C).

(iii) g−1(0) = ∩t≥0φt(C). (Therefore dxg = 0 for every
x ∈ ∩t≥0φt(C).)

(iv) X · g(x) < 0 for every x ∈ C \ ∩t≥0φt(C).

Note that ∩t≥0φ−t(C) is the set of points x ∈ C whose whole
forward orbit remains in C and ∩t≥0φt(C) is the set of points
x ∈ C whose whole backward orbit remains in C.
As we said, a version of this theorem is contained in:
F. Wesley Wilson, Jr. & James A. Yorke, Lyapunov
Functions and Isolating Blocks, J. Diff. Eq. 13 (1973) 106–123.



To get a picture of the Theorem, consider the map F : M → R2

defined by F (x) = (f(x), g(x)). Note that
X · F (x) = (X · f(x), X · g(x)) is in the fourth quadrant
Q+,− = {(x, y) | x ≥ 0, y ≥ 0} of R2, for x ∈ C, and is in the
interior of Q+,− for x ∈ C \ (∩t≥0φ−t(C) ∪ ∩t≥0φt(C)).

F (C)

F
(⋂

t≥0 φ−t(C)
)

F
(⋂

t≥0 φt(C)
)

F
(⋂

t∈R φt(C)
)
={(0, 0)}

Figure: In red images by F of pieces of orbits of φt



In the work of Wilson and Yorke, the closed set C is not as
general. It is an isolating neighborhood (of some invariant compact
subset). They do not prove the smoothness of the functions f and
g everywhere but only on the sets C \ ∩t≥0φ−t(C) and
C \ ∩t≥0φt(C) respectively.
They apply their work to find isolating blocks. Their proof of their
version of the theorem above, like the Conley-Easton proof of
existence of isolating blocks uses the exit time function from an
isolating neighborhood. There are complications due to the fact
that this exit function is not continuous. We go around that
difficulty by not using any exit time function. In fact, by proving
this more general version, with C not necessarily an isolating
neighborhood, we cannot rely on exit times functions since for
example C could have no interior. As often happens, the more
general version has a neater proof than the particular one.
Note that an important by-product of isolating blocks is providing
a“smooth” exit function defined on the interior of the isolating
block (minus the subset of points whose positive orbits are
contained in that interior).



We will prove the Main Theorem 4 after deducing Sullivan’s
Theorem 2 and Massera’s converse to Lyapunov Theorem 1 from
it.
We will deduce the Conley-Easton Isolating neighborhood Theorem
3 after proving the Main Theorem 4

Proof of Sullivan’s Theorem 2.
By the Main Theorem 4, with C = A, we can find a C∞ function
f such that X · f is > 0 on A \ ∩t≥0φ−t(A). Therefore, it suffices
to show that ∩t≥0φ−t(A), the set of points x ∈ A whose whole
forward orbit remains in A, is empty. This follows from the
compactness of A. In fact, there existed an x ∈ with φt(x) ∈ A,
for all t ≥ 0, then, by compactness of A, the φt-omega limit set
ω(x) would not be empty and would be contained entirely in A.
Since ω(x) consists of full (two-sided) orbits of the flow φt, we
obtain a contradiction.



Proof of Massera’s converse to Lyapunov Theorem 1.

By the fact that A is Lyapunov asymptotically stable, we can find
a neighborhood V0 of A, such that for every x ∈ V0, we have
d(φt(x), A)→ 0 as t→ +∞. Since A is compact, we can without
loss of generality assume that V0 is a compact neighborhood of A.
As is well-known we will show that A =

⋂
t≥0 φt(V0). Once this

fact established, the Main theorem applied with C = V0 provides
us with a C∞ function g : M → [0,+∞[ such that
g−1(0) = ∩t≥0φt(V0) = A and X · g < 0 on
V0 \ ∩t≥0φt(V0) = V0 \A, which proves Massera’s converse to
Lyapunov,.
It remains to show that A =

⋂
t≥0 φt(V0). Since A is invariant by

the flow φt, we have A ⊂
⋂
t≥0 φt(V0). Therefore, using that the

closed set A is the intersection of its neighbourhoods, it suffices to
show that for every neighborhood V , we can find tV ≥ 0 such that
φtV (V0) ⊂ V .
Fix a neighbohood V of A. Using again that that A is Lyapunov
asymptotically stable, we can find a open neighborhood V ′ of A
such that

⋃
t≥0 φt(V

′) ⊂ V .



Since d(φt(x), A)→ 0 as t→ +∞, for every x ∈ V0, every orbit
starting in V0 enter the neighborhood V ′ of A in positive time. In
other words V0 ⊂

⋃
s≥0 φ−s(V

′). By compactness of V0, we can
cover V0 by a finite subfamily of the open sets φ−s(V

′), s ≥ 0.
Hence, we can find tV ≥ 0 such that V0 ⊂

⋃
s∈[0,tV ] φ−s(V

′).
Therefore

φtV (V0) ⊂
⋃

s∈[0,tV ]

φtV −s(V
′) ⊂

⋃
t≥0

φt(V
′) ⊂ V.



Constructing smooth functions



We will need a way to construct smooth functions as infinite series.
To do that, we will use an abstract Lemma on Fréchet space.
Recall that a Fréchet space E is a complete Hausdorff topological
vector space whose topology is defined by a countable family
pn, n ∈ N of semi-norms.

Example 5 (Typical example) For r ∈ N ∪ {∞}, the vector
space E = Cr(M,R), endowed with the topology of uniform
convergence on compact subsets for all derivatives up to order, is a
Fréchet space. Of course, when M is compact and r is finite, the
space E = Cr(M,R) is in fact a Banach space.

Lemma 6 Suppose E is a Fréchet space and xn, n ∈ N is a
sequence in E, there exists a sequence εn > 0 of positive numbers
such that for every sequence δn, with |δn| ≤ εn, the series∑

n≥0 δnxn converges in E.

The proof is standard, see for example:
Albert Fathi, Partitions of Unity for Countable Covers, Amer.
Math. Monthly, 104 (1997) 720–723.
Since it is short, we give it.



Proof. The Fréchet space E has a topology defined by the
countable family pn, n ∈ N of semi-norms. We can assume
p`+1 ≥ p` (replace p` by

∑`
i=0 pi). The fact that E is complete

means that a sequence yn, n ∈ N in E, which is Cauchy for every
semi-norm p`, converges.
For every ` ∈ N, choose ε` > 0 such that

ε`p`(x`) ≤
1

2`
.

If |δ`| ≤ ε`, then for n ≥ `, we have

p`(δnxn) ≤ pn(δnxn) = |δn|pn(xn) ≤ εnpn(xn) ≤ 1

2n
.

Hence ∑
n≥`

p`(δnxn) ≤
∑
n≥`

1

2n
=

1

2`−1

and the series
∑

n≥0 δnxn is Cauchy for every semi-norm p`.
Therefore

∑
n≥0 δnxn converges.



A first application of this Lemma is the well-known:

Proposition 7

If A is a closed subset of M , we can find a C∞ function
θ : M → [0,+∞[ such that θ−1(0) = A.

Proof.
Set

Vn = {x ∈M | d(x,A) <
1

n
}.

For each n ≥ 1, we can find a C∞ function θn : M → [0,+∞[
such that θn|A ≡ 0 and θn|M \ Vn ≡ 1.
By Lemma 6, we can find a sequence εn > 0 of positive numbers
such that the series

∑
n≥1 εnθn converges to a C∞ function

θ : M → [0,+∞[. We have θ|A ≡ 0, θn ≥ 0, εn > 0 and
θn|M \ Vn ≥ 1 > 0, for all n ≥ 1.Hence θ−1(0) = A, since
M \A = ∪n≥1M \ Vn.



Proof of the Main Theorem 4



Recall the Main Theorem

Theorem 4 (Main Theorem)

Assume C is a closed subset of M , we can find two C∞ functions
f, g : M → [0,+∞[ such that:

(i) f−1(0) = ∩t≥0φ−t(C). (Therefore dxf = 0 for every
x ∈ ∩t≥0φ−t(C).)

(ii) X · f(x) > 0 for every x ∈ C \ ∩t≥0φ−t(C).

(iii) g−1(0) = ∩t≥0φt(C). (Therefore dxg = 0 for every
x ∈ ∩t≥0φt(C).)

(iv) X · g(x) < 0 for every x ∈ C \ ∩t≥0φt(C).

Proof.
We start with a a C∞ function θ : M → [0,+∞[ such that
θ−1(0) = C, as given by Proposition 7.



For t > 0, we define θt : M → [0,+∞[ by

θt(x) =

∫ t

0
θ(φs(x)) ds.

Since both θ and the flow φt are C1, so is θt.
Note also that θt ≥ 0 and (t, x) 7→ θt(0) is continuous on R×M .
Since θ ≥ 0 and θ−1(0) = C, for a given x ∈M , we have

θt(x) = 0 ⇐⇒ x ∈
⋂

0≤s≤t
φ−s(C),

since

θt(x) = 0 ⇐⇒ θ(φs(x)) = 0 for all s ∈ [0, t]

⇐⇒ φs(x) ∈ C for all s ∈ [0, t]

⇐⇒ x ∈
⋂

0≤s≤t
φ−s(C).

Moreover, for every x ∈M , we have

X · θt(x) = θ(φt(x))− θ(x).



In fact, to prove X · θt(x) = θ(φt(x))− θ(x), we compute

X · θt(x) = lim
ε→0

1

s
[θt(φε(x))− θ(x)]

= lim
ε→0

1

ε

[∫ t

0
θ(φs(φε(x))) ds−

∫ t

0
θ(φs(x)) ds

]
= lim

ε→0

1

ε

[∫ t

0
θ(φs+ε(x)) ds−

∫ t

0
θ(φs(x)) ds

]
= lim

ε→0

1

ε

[∫ t+ε

ε
θ(φs(x)) ds−

∫ t

0
θ(φs(x)) ds

]
= lim

ε→0

1

ε

[∫ t+ε

t
θ(φs(x)) ds−

∫ ε

0
θ(φs(x)) ds

]
= θ(φt(x))− θ(x).

Hence, since θ|C ≡ 0, for all x ∈ C, we obtain that

X · θt(x) = θ(φt(x)) ≥ 0 and X · θt(x) = 0 ⇐⇒ θ(φt(x)) = 0,

therefore

∀x ∈ C,X · θt(x) = 0 ⇐⇒ x ∈ φ−t(C).



Choose a sequence tn ∈ [0,∞[ dense in [0,∞[. By Lemma 6, we
can find a sequence εn > 0 such that the series

∑∞
n=0 εnθtn

converges in the C1 compact open topology to a C1 function
f̂ : M → [0,+∞[. Since the convergence is C1, we also have

X · f̂ =

∞∑
n=0

εnX · θtn .

Since εn>0 and θtn≥0, we have f̂(x)=0⇐⇒ θtn(x)= 0 for all n.
By density of tn in [0,+∞[ and the continuity of (t, x) 7→ θt(x),
we obtain f̂(x)=0⇐⇒ θt(x)= 0, for all t≥0. But
θt(x) = 0 ⇐⇒ x ∈

⋂
0≤s≤t φ−s(C), as we already observed.

Hence

f̂(x) = 0 ⇐⇒ θt(x) = 0 for all t ≥ 0 ⇐⇒ x ∈
⋂
t≥0

φ−t(C).

This precisely shows that f̂ satisfies condition (i) of the Main
Theorem 4.
Since X · f̂ =

∑∞
n=0 εnX · θtn and, as we showed,

X · θt(x) = θ(φt(x)) ≥ 0 for x ∈ C, we obtain

X · f̂(x) ≥ 0, for all x ∈ C.



By X · f̂(x) =
∑∞

n=0 εnX · θtn(x) and X · θt(x) = θ(φt(x)) ≥ 0 for
x ∈ C, we obtain

∀x ∈ C,X ·f̂(x) = 0 ⇐⇒ X · θtn(x) = 0 for all n

⇐⇒ θ(φtn(x)) = 0 for all n.

Since tn is dense in [0,+∞[, we obtain

∀x ∈ C,X ·f̂(x) = 0 ⇐⇒ θt(x) = θ(φt(x)) = 0, for all t ≥ 0.

But we already obtained
θt(x) = 0 for all t ≥ 0 ⇐⇒ x ∈

⋂
t≥0 φ−t(C), hence

∀x ∈ C,X ·f̂(x) = 0 ⇐⇒ x ∈
⋂
t≥0

φ−t(C).

Taken together with X · f̂(x) ≥ 0, for all x ∈ C, we obtain

∀x ∈ C \
⋂
t≥0

φ−t(C), X ·f̂(x) > 0.

This means that f̂ satisfies condition (ii) of the Main Theorem 4.
The function f̂ is only C1, we now proceed to show how to obtain
from it a C∞ function.



We know that f̂ is C1, with f̂ > 0 on M \
⋂
t≥0 φ−t(C) and

X · f̂ > 0 on C \
⋂
t≥0 φ−t(C). By the density of the C∞ functions

in the C1 Whitney topology, we can find
f̃ : M \

⋂
t≥0 φ−t(C)→]0,+∞[ such that

|f̃(x)− f̂(x)| < f̂(x), for all x ∈M \
⋂
t≥0

φ−t(C) (1)

and

|X · f̃(x)−X · f̂(x)| < X · f̂(x), for all x ∈ C \
⋂
t≥0

φ−t(C). (2)

From (1), we can extend f̃ to a continuous function
f̃ : M → (0,+∞[ such that f̃−1(0) =

⋂
t≥0 φ−t(C). Note that by

(2), we have X · f̃ > 0 on C \
⋂
t≥0 φ−t(C).

We should still smooth f̃ on C \
⋂
t≥0 φ−t(C).

For each integer n ≥ 1, we choose a C∞ non-decreasing function
ρn : [0,+∞[→ [0,+∞[ such that

ρ−1n (0) = [0, 1/n] and ρ′n(t) > 0, for all t > 1/n.



For every n ≥ 1, we define the function fn : M → [0,+∞[ by
fn = ρn ◦ f̃ .

Since ρn = 0 on [0, 1/n] and f̃ is C∞ outside f̃−1(0), the function
fn is C∞ on M .
By Lemma 6, we can find a sequence εn > 0 such that both series∑∞

n=1 εnfn and
∑∞

n=1 εnρn converge respectively in the C∞

compact open topology to the C∞ functions f : M → [0,+∞[
and ρ : M → [0,+∞[.
We now check that the C∞ function f satisfies both properties (i)
and (ii) of the Main Theorem 4.
To check (i), namely f(x) = 0 ⇐⇒ x ∈

⋂
t≥0 φ−t(C), we note

that, for x ∈M , we have

f(x) = 0 ⇐⇒
∞∑
n=1

εnfn(x) = 0

⇐⇒ fn(x) = ρn(f̃(x)) = 0, for all n ≥ 1

⇐⇒ f̃(x) ∈ [0, 1/n], for all n ≥ 1 ⇐⇒ f̃(x) = 0

⇐⇒ x ∈
⋂
t≥0

φ−t(C).



To check (ii), namely X · f > 0 on C \
⋂
t≥0 φ−t(C), we first note

that

f =

∞∑
n=1

εnfn =

∞∑
n=1

εnρn ◦ f̃ =

( ∞∑
n=1

εnρn

)
◦ f̃ = ρ ◦ f̃ .

Using that ρ is C∞ on [0,+∞[ and f̃ is C∞ on M \
⋂
t≥0 φ−t(C),

we have
X · f(x) = ρ′(f̃(x))X · f̃(x), for all x ∈M \

⋂
t≥0

φ−t(C).

But ρ′ =
∑∞

n=1 εnρ
′
n > 0 on ]0,+∞[, since εn > 0 and ρ′n > 0 on

]1/n,+∞[, and f̃ , X · f̃ are both > 0 on C \
⋂
t≥0 φ−t(C).

Hence X · f(x) > 0, for all x ∈ C \
⋂
t≥0 φ−t(C).

To obtain the function g satisfying properties (iii) and (iv) of Main
Theorem 4, we consider the flow φ̌t = φ−t, whose vector field is
−X. By what we showed above, we can find a C∞

functiong : M → [0,+∞[ such that g−1(0) = ∩t≥0φ̌−t(C) and
−X · g(x) > 0 for every x ∈ C \ ∩t≥0φ̌−t(C). This finishes the
proof of the Main Theorem since ∩t≥0φ̌−t(C) = ∩t≥0φt(C).



Isolated Invariant Set and Isolating Block



Again we suppose that the flow φt on M is given by the Cr vector
field (with r ≥ 1).
Recall that an invariant set A of the flow φt is said to be isolated if
we can find a neighborhood V of A such that A =

⋂
t∈R φt(V ).

Such a V is called an isolating neighborhood for A.
We give more precisely the definition of an isolating block.
An isolating block for the isolated invariant subset A is a smooth
codimension 0 submanifold N , of class C∞, with boundary ∂N of
M , which is an isolating neighborhood for A , such that

∂N t = {x ∈ ∂N | X(x) is tangent to ∂N},
is a codimension 1 submanifold (without boundary) of ∂N , of class
Cr, which is the common boundary in ∂N of the closure of the two
open subsets

∂No = {x ∈ ∂N | X(x) points out of N}
∂N i = {x ∈ ∂N X(x) points in N}

and for every x ∈ ∂N t, we can find ε > 0 such that φs(x) /∈ N for
0 < |s| < ε.



Again an isolating block looks like

N

A

Figure: N t is represented by the four green points



Note that if V is an isolating neighborhood of the compact
invariant set A, we can always cut it down to a codimension 0
compact submanifold with boundary N of M , which is still a
neighborhood of A. Of course N is also an isolating neighborhood
of A. The challenge is to make

∂N t = {x ∈ ∂N | X(x) is tangent to ∂N}

a codimension 1 submanifold of ∂N , which is the common
boundary in ∂N of the closures of

∂No = {x ∈ ∂N | X(x) points out of N}
∂N i = {x ∈ ∂N X(x) points in N}.

together with the existence for every x ∈ ∂N t of an ε > 0 such
that φs(x) /∈ N for 0 < |s| < ε.
We now give a criterion to achieve the challenge.



Lemma 8 Suppose that the smooth codimension 0 submanifold,
with boundary N of M is an isolating neighborhood of the
invariant set A. If for every x0 ∈ N t, we can find a C∞ function
θ : V → R, where V is an open neighborhood V of x0, and a
regular value c of f such that N ∩ V = θ−1(]−∞, c]) and
X · (X · θ)(x0) > 0, then N is an isolating block for A.

Proof. Since c is a regular value ∂N ∩ V = θ−1(c), we have

∂N ∩ V = θ−1(c) = {x ∈ V ∩ ∂N | θ(x) = c},

and
∂N t ∩ V = {x ∈ V ∩ ∂N | X · θ(x) = 0}.

Since X · (X · θ)(x0) > 0, cutting down the neighborhood V of x0,
we can assume that X · (X · θ) > 0 on all of V . This implies that 0
is a regular value of µ = X · θ|(V ∩ ∂N), the restriction of the Cr

function X · θ to V ∩N .



In fact, if x ∈ V ∩ ∂N is such that µ(x) = 0, then x ∈ ∂N t and
X(x) ∈ Tx∂N = ker dxθ. But dxµ(X(x)) = X · (X · θ)(x) > 0,
which implies dxµ 6= 0. Therefore ∂N t = µ−1(0) is a Cr

submanifold of ∂N (since µ is Cr) and the two-sides in ∂N ∩ V of
the submanifold ∂N t ∩ V = µ−1(0) are

{x ∈ V ∩∂N |X·θ(x)>0}⊂∂Noand {x ∈ V ∩∂N |X·θ(x)<0}⊂∂N i.

It remains to show that for every x ∈ ∂N t ∩ V , we can find ε > 0
such that φs(x) /∈ N for 0 < |s| < ε.
In fact, if x ∈ ∂N t ∩ V , the function s 7→ θ(φs(x)) satisfies

d

ds
θ(φs(x))s=0 = X·θ(x) = 0 and

d2

ds2
θ(φs(x))s=0 = X·(X·θ)(x) > 0.

Since θ(φ0(x)) = θ(x) = c, we can find ε > 0 such that φs(x) ∈ V
and θ(φs(x)) > c, for all 0 < |s| < ε. Therefore φs(x) /∈ N for
0 < |s| < ε, because N ∩ V = θ−1(]−∞, c]).
This finishes the proof of the criterion Lemma 8.



Finding the Isolating Block
Suppose now that A is an isolated invariant set, call V a compact
neighborhood of A such that A =

⋂
t∈R φt(V ). We proceed to

show that A has an isolating block contained in V .
We can apply the main Theorem to the compact set C = V to
obtain two C∞ functions f, g : M → [0,+∞[ such that:

(i) f−1(0) = ∩t≥0φ−t(V ) and X · f(x) > 0 for every
x ∈ V \ ∩t≥0φ−t(V ).

(ii) g−1(0) = ∩t≥0φt(V ) and X · g(x) < 0 for every
x ∈ V \ ∩t≥0φt(V ).

As before, we define the C∞ function F : M → R2 by

F (x) = (f(x), g(x)).

Note that F (M) ⊂ [0,+∞[×[0,+∞[ and F−1(0, 0) = A from the
first parts of (i) and (ii).
Hence, we can find r0 > 0 such that F (∂V ) ∩ [0, r0]× [0, r0] = ∅.
From (i) and (ii), the restriction F |V is transversal to every
horizontal {r} × R and every vertical R× {r}, with r 6= 0.



Since F is C∞, we can apply Sard’s theorem to find
(r1, r2) ∈]0, r0[×]0, r0[, which is a regular value of F .

F (∂V )

r2

r1

F (
⋂
t≥0 φ−t(V ))

F (
⋂
t≥0 φt(V ))F (A)={(0, 0)}

Since F is C∞, transversal to both {r1} × R and R× {r2} and
(r1, r2) is a regular value of F , the intersection
N̂ = V ∩F−1([0, r1]× [0, r2]) = V ∩F−1(]−∞, r1]× (]−∞, r2])
is a compact C∞ manifold with corners contained in the interior of
V and containing A in its interior. The corner of N̂ is
V ∩ F−1(r1, r2).



The boundary ∂N̂ of N̂ is the union of the two submanifolds with
boundaries ∂N̂ i=V ∩F−1([0, r1]× {r2}) and
∂N̂o=V ∩F−1({r1} × [0, r2]). Therefore, we can consider that N̂
is an isolating block. However we want an isolating block which
has no corners.
To obtain an isolating block which has no corners we replace the
corner of N̂ on the inside with a quarter of a circle of small radius
tangent to the sides.
More precisely, setting

R̂ = [0, r1]× [0, r2] and Γ = [0, r1]× {r2} ∪ {r1} × [0, r2],

we have N̂ = V ∩ F−1(R̂) and ∂N̂ = V ∩ F−1(Γ̂).

F (∂V )

r2

r1

F (
⋂
t≥0 φ−t(V ))

F (
⋂
t≥0 φt(V ))F (A)={(0, 0)}

F (N̂)

F (∂N̂) = Γ̂



We change the rectangle R̂ into a region R by changing the part Γ̂
to Γ where the corner is replaced by a quarter circle.
More precisely we replace Γ̂ by

Γ = [0, r1 − ρ]× {r2} ∪ C++ ∪ {r1} × [0, r2 − ρ],

where C++ is the quarter circle

C++ = (r1 − ρ, r2 − ρ) + {(x, y) | x2 + y2 = ρ2, x ≥ 0, y ≥ 0}.

r2

r1

Γ(r1 − ρ, r2)

(r1 − ρ, r2 − ρ)
(r1, r2 − ρ)

Note that Γ̂ is a piecewise C∞ curve and Γ is C1.



The rectangle R̂ = [0, r1]× [0, r2] is replaced by the region R
bounded by Γ and [0, r1]× {0} ∪ {0} × [0, r2]. We take
N = V ∩ F−1(R). Its boundary is ∂N = V ∩ F−1(Γ).
Of course, since Γ is only C1, the boundary N is only C1.

F (∂V )

r2

r1

F (
⋂
t≥0 φ−t(V ))

F (
⋂
t≥0 φt(V ))F (A)={(0, 0)}

F (N)

F (∂N) = Γ

We now note that the images of the orbit of φt are transversal to
the part [0, r1 − ρ]× {r2} ∪ {r1} × [0, r2 − ρ] of
Γ = [0, r1 − ρ]× {r2} ∪ C++ ∪ {r1} × [0, r2 − ρ]. Hence the only
tangency points of the vector field X with ∂N = F−1(Γ) will be
coming from the quarter circle C++ away from its end points.



Therefore, if we approximate the curve Γ in the C1 by a smooth
C∞ curve, changing Γ only in the neighborhood of the end points
of C++, we will not change the tangency set. This allow us to
have to just check that N is an isolated block for ρ small.

F (∂V )

r2

r1

F (
⋂
t≥0 φ−t(V ))

F (
⋂
t≥0 φt(V ))F (A)={(0, 0)}

F (N)

F (∂N) = Γ

Since the curvature of the circle is 1/ρ (in absolute value), taking
ρ small enough, the curvature of the circle will be strictly bigger
than the curvature of any image by F of an orbit. This implies
that the orbits tangent to ∂N will have images under F locally
outside R (except for the tangency) point.



Hence the orbit of a point x ∈ ∂N t must be locally outside N
except for x itself. That should convince you that N is an isolating
block.

The rigorous argument is based on the fact that we can apply
Lemma 8 for the radius ρ small enough we can apply.
Since (r1, r2) is a regular value of F : V → R2 and V is compact,
we can find δ > 0 such that the square
S = [r1 − δ, r1 + δ]× [r2 − δ, r2 + δ] is contained in
]0,+∞[×]0,+∞[ and every point in the square
S = [r1 − δ, r1 + δ]× [r2 − δ, r2 + δ] is a regular value of
F : V → R2. Since S ⊂]0,+∞[×]0,+∞[, imply that
X · F (x) = TxF (X(x)) never vanishes for x in the compact subset
V ∩ F−1(S). Therefore

κ = infx∈V ∩F−1(S)‖X · F (x)‖ > 0,

where ‖·‖ is the Euclidean norm on R2. Moreover, since F is C∞

and X is at least C1, the function X · (X ·F ) is C1 on the compact
subset V , therefore

K = sup∈V ‖X · (X · F )(x)‖ < +∞.



With
κ = infx∈V ∩F−1(S)‖X · F (x)‖ > 0

and
K = sup∈V ‖X · (X · F )(x)‖ < +∞,

Choose now ρ > 0 such that ρ < δ and

κ2 − ρ
√

2K > 0.

Note that O =]r1 − δ, r1[×]r2 − δ, r2[ is a neighborhood of
C++ \ {(r1 − ρ, r2), (r1, r2 − ρ))}, since (r1 − ρ, r2), (r1, r2 − ρ)
are the end point of C++.

r2

r1

F (A)={(0, 0)}

F (N)

Γ (r1 − ρ, r2)

(r1, r2 − ρ)

O



Therefore W = F−1(O) is an open neighborhood of ∂N t. Define
θ : F−1(O) ∩ V → R by

θ(x) = ‖F (x)− (r1 − ρ, r1 − ρ)‖2.
Note that

∂N∩O∩V = V ∩F−1(C++\{(r1−ρ, r2), (r1, r2−ρ))}) = θ−1(ρ2).

Moreover, since every point in
O ⊂ S = [r1 − δ, r1 + δ]× [r2 − δ, r2 + δ] is a regular value of
F : V → R2, the positive number ρ2 is a regular value of θ.
Therefore, by Lemma 8, to finish proving that N is an isolating
neighbourhood, it suffices to show we need to show that
X · (X · θ) > 0 on F−1(O) ∩ V .
We have

X · θ(x) = 2〈F (x)− (r1 − ρ, r2 − ρ), X · F (x)〉
and

X · (X · θ)(x) =

= 2 (〈X · F (x), X · F (x)〉+ 〈F (x)− (r1 − ρ, r2 − ρ), X · (X · F )(x)〉)



Note that F (x) and (r1 − ρ, r2 − ρ) are both in
[r1− δ, r1]× [r2− δ, r2], which is of Euclidean diameter ρ

√
2, hence

X · (X · θ)(x) =

= 2 (〈X · F (x), X · F (x)〉+ 〈F (x)− (r1 − ρ, r2 − ρ), X · (X · F )(x)〉)
≥ 2

(
‖X · F (x)‖2 − ‖F (x)− (r1 − ρ, r2 − ρ)‖‖X · (X · F )(x)‖

)
≥ 2

(
κ2 − ρ

√
2K
)
> 0,

where the last strict inequality follows from the fact that ρ small
enough to satisfy the definition κ2 − ρ

√
2K > 0.


