Weak Sobolev almost-periodic solutions for the NLS on the circle

J.E. Massetti
based on joint work with L. Biasco and M. Procesi

Università degli Studi Roma Tre

Jean-Pierre's birthday in the ether 09-06-2021

Families of NLS

$$
\mathrm{i} \mathbf{u}_{t}+\mathbf{u}_{x x}-V * \mathbf{u}+F\left(|\mathbf{u}|^{2}\right) \mathbf{u}=0, \quad \mathbf{u}(t, x)=\mathbf{u}(t, x+2 \pi)
$$

- $F(y)$ is real analytic in y in a neighborhood of $y=0$ with $f(0)=0$
- $V *: \ell^{1} \rightarrow \ell^{1}$ is a Fourier multiplier

$$
(V * u)(x)=\sum_{j \in \mathbb{Z}} V_{j} u_{j} e^{\mathrm{i} j x}, \quad V=\left(V_{j}\right)_{j \in \mathbb{Z}} \in[-1 / 4,1 / 4]^{\mathbb{Z}} \subset \ell^{\infty}(\mathbb{R}) .
$$

(substet of $\ell^{1}(\mathbb{C}) \leadsto u(x)=\sum_{j} u_{j} e^{i j x} 2 \pi$-periodic x-continuous)
More precisely $(V * \mathbf{u})(t, x):=(V * \mathbf{u}(t, \cdot))(x)$ for every $t \in \mathbb{R}$.

Result: For almost every $V \in[-1 / 4,1 / 4]^{\mathbb{Z}}$ there exist infinitely many small-amplitude weak almost-periodic solutions \mathbf{u}.

Result: For almost every $V \in[-1 / 4,1 / 4]^{\mathbb{Z}}$ there exist infinitely many small-amplitude weak almost-periodic solutions \mathbf{u}.

Definition (weak solutions)

A function $\mathbf{u}: \mathbb{R}^{2} \rightarrow \mathbb{C}$ which is 2π-periodic in x and such that the map $t \mapsto \mathbf{u}(t, \cdot) \in \ell^{1}$ is continuous is a weak solution of $N L S_{V}$ if for any smooth compactly supported function $\chi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ one has

$$
\int_{\mathbb{R}^{2}}\left(-\mathrm{i} \chi_{t}+\chi_{x x}\right) \mathbf{u}-\left(V * \mathbf{u}+F\left(|\mathbf{u}|^{2}\right) \mathbf{u}\right) \chi d x d t=0
$$

Our target is to prove existence of solutions with very little regularity. We construct infinetely many different solutions s.t.

$$
\left|u_{j}(t)\right| \sim\langle j\rangle^{-p}, \quad p>1
$$

for infinitely many j.

Almost-periodic: limit in the uniform topology of time quasi-periodic solutions, as $d \rightarrow \infty$

Given a vector $\omega \in \mathbb{R}^{d}$ of rationally independent frequencies $\omega_{1}, \ldots, \omega_{d}$ we say that $u(t, x)$ is a quasi-periodic function of frequency ω if there exists an embedding of a d-torus in the phase space:

$$
\mathbb{T}^{d} \rightarrow \mathcal{P}, \quad \theta \mapsto U(\theta, x)
$$

such that

$$
u(t, x)=U(\omega t, x) .
$$

The linear Schrödinger

$$
\mathrm{i} \mathbf{u}_{t}+\mathbf{u}_{x x}-V * \mathbf{u}=0
$$

Passing to the Fourier side

$$
\mathbf{u}=\sum_{j \in \mathbb{Z}} \mathbf{u}_{j}(t) e^{\mathrm{i} j x}
$$

we get

$$
\mathbf{u}(t, x)=\sum_{j \in \mathbb{Z}} \mathbf{u}_{j}(0) e^{\mathrm{i} j x} e^{\mathrm{i} \omega_{j} t}, \quad \omega_{j}=\left(j^{2}+V_{j}\right)
$$

which is uniform limit of smooth quasi-periodic functions (provided we require some minimal decay conditions on $\mathbf{u}_{j}(0)$.)

The linear Schrödinger

$$
\mathrm{i} \mathbf{u}_{t}+\mathbf{u}_{x x}-V * \mathbf{u}=0
$$

Passing to the Fourier side

$$
\mathbf{u}=\sum_{j \in \mathbb{Z}} \mathbf{u}_{j}(t) e^{\mathrm{i} j x}
$$

we get

$$
\mathbf{u}(t, x)=\sum_{j \in \mathbb{Z}} \mathbf{u}_{j}(0) e^{\mathrm{i} j x} e^{\mathrm{i} \omega_{j} t}, \quad \omega_{j}=\left(j^{2}+V_{j}\right)
$$

which is uniform limit of smooth quasi-periodic functions (provided we require some minimal decay conditions on $\mathbf{u}_{j}(0)$.)

Once the nonlinearity is plugged in... for most choices of V existence of infinitely many almost-periodic solutions with finite (actually very low) regularity both in time and space, under appropriate arithmetic conditions on the ω_{j}

around almost-periodic solutions

Instead of looking at the solutions, let us consider its support i.e. the infinite torus $\mathbb{Z}^{\mathbb{Z}}=\mathbb{R}^{\mathbb{Z}} / 2 \pi \mathbb{Z}^{\mathbb{Z}}$

$$
\mathbb{T}^{\mathbb{Z}} \rightarrow \ell^{1}(\mathbb{C}) \quad \varphi=\left(\varphi_{j}\right)_{j \in \mathbb{Z}} \mapsto \sum_{j \in \mathbb{Z}}\left|\mathbf{u}_{j}(0)\right| e^{\mathrm{i} \varphi_{j}+\mathrm{i} j x}
$$

We endow $\mathbb{T}^{\mathbb{N}}$ with a Banach manifold structure, based on ℓ^{∞}, in the usual manner

$$
\operatorname{dist}(\theta, \varphi)=\sup _{j \in \mathbb{Z}}\left|\theta_{j}-\varphi_{j}\right|_{2 \pi}
$$

around almost-periodic solutions

Instead of looking at the solutions, let us consider its support i.e. the infinite torus $\mathbb{Z}^{\mathbb{Z}}=\mathbb{R}^{\mathbb{Z}} / 2 \pi \mathbb{Z}^{\mathbb{Z}}$

$$
\mathbb{T}^{\mathbb{Z}} \rightarrow \ell^{1}(\mathbb{C}) \quad \varphi=\left(\varphi_{j}\right)_{j \in \mathbb{Z}} \mapsto \sum_{j \in \mathbb{Z}}\left|\mathbf{u}_{j}(0)\right| e^{\mathrm{i} \varphi_{j}+\mathrm{i} j x}
$$

The natural expected solution of the nonlinear problem is of the form:

$$
f(\varphi, x)=\sum_{\substack{\ell \in \mathbb{Z}^{\mathbb{Z}}:|\ell|_{1}<\infty \\ j \in \mathbb{Z}}} \widehat{f}(\ell, j) e^{\mathrm{i} \ell \cdot \varphi+\mathrm{i} j x}
$$

$\varphi=\left(\varphi_{1}, \varphi_{2}, \ldots\right)$ are infinitely many angles, in principle the same holds for $\ell=\ell_{1}, \ldots$
but the condition $|\ell|_{1}<\infty$ implies that ℓ has finite support! Hence in each sum $\ell \cdot \varphi$ is a finite sum

We require some decay on the Fourier coefficients

around almost-periodic solutions

Instead of looking at the solutions, let us consider its support i.e. the infinite torus $\mathbb{Z}^{\mathbb{Z}}=\mathbb{R}^{\mathbb{Z}} / 2 \pi \mathbb{Z}^{\mathbb{Z}}$

$$
\mathbb{T}^{\mathbb{Z}} \rightarrow \ell^{1}(\mathbb{C}) \quad \varphi=\left(\varphi_{j}\right)_{j \in \mathbb{Z}} \mapsto \sum_{j \in \mathbb{Z}}\left|\mathbf{u}_{j}(0)\right| e^{\mathrm{i} \varphi_{j}+\mathrm{i} j x}
$$

The natural expected solution of the nonlinear problem is of the form:

$$
f(\varphi, x)=\sum_{\substack{\ell \in \mathbb{Z}^{\mathbb{Z}}: \mid \ell \ell_{1}<\infty \\ j \in \mathbb{Z}}} \widehat{f}(\ell, j) e^{\mathrm{i} \ell \cdot \varphi+\mathrm{i} j x} \quad: \sum_{\ell, j}|\widehat{f}(\ell, j)| e^{\mathrm{a}(j)+\sum\left|\ell_{i}\right| \mathrm{p}_{i}}<\infty
$$

$\varphi=\left(\varphi_{1}, \varphi_{2}, \ldots\right)$ are infinitely many angles, in principle the same holds for $\ell=\ell_{1}, \ldots$
but the condition $|\ell|_{1}<\infty$ implies that ℓ has finite support!
Hence in each sum $\ell \cdot \varphi$ is a finite sum
We require some decay on the Fourier coefficients

- The regularity in x depends on the $\mathrm{a}(j)$;
- f is analytic in each angle φ_{j} in the strip $\left|\operatorname{Im}\left(\varphi_{j}\right)\right| \leq \mathrm{p}_{j}$.

towards finite regularity solutions for NLS

NLS as an infinite dimensional Hamiltonian system:

$$
\mathrm{i} u_{t}+u_{x x}-V * u+F\left(|u|^{2}\right) u=0 \rightsquigarrow H=\sum_{j \in \mathbb{Z}} \omega_{j}\left|u_{j}\right|^{2}+P(F, u)
$$

One wishes to fix some positive sequence $\left(I_{j}\right)_{j \in \mathcal{S}}:=\left(\left|u_{j}(0)\right|^{2}\right)_{j \in \mathcal{S}}$ and prove that, up to an analytic symplectic change of variables of the phase space, the torus

$$
\mathcal{T}_{I}=\left\{u \in \mathcal{P}:\left|u_{j}\right|^{2}=I_{j}, j \in \mathcal{S}, \quad\left|u_{j}\right|^{2}=0, j \in \mathcal{S}^{c}\right\}
$$

is an invariant torus supporting almost-periodic solutions of frequency ω, under Diophantine conditions.

towards finite regularity solutions for NLS

NLS as an infinite dimensional Hamiltonian system:

$$
\mathrm{i} u_{t}+u_{x x}-V * u+F\left(|u|^{2}\right) u=0 \rightsquigarrow H=\sum_{j \in \mathbb{Z}} \omega_{j}\left|u_{j}\right|^{2}+P(F, u)
$$

One wishes to fix some positive sequence $\left(I_{j}\right)_{j \in \mathcal{S}}:=\left(\left|u_{j}(0)\right|^{2}\right)_{j \in \mathcal{S}}$ and prove that, up to an analytic symplectic change of variables of the phase space, the torus

$$
\mathcal{T}_{I}=\left\{u \in \mathcal{P}:\left|u_{j}\right|^{2}=I_{j}, j \in \mathcal{S}, \quad\left|u_{j}\right|^{2}=0, j \in \mathcal{S}^{c}\right\}
$$

is an invariant torus supporting almost-periodic solutions of frequency ω, under Diophantine conditions.
key point: choice of the phase space.
more regularity \rightsquigarrow weaker Diophantine conditions \rightsquigarrow easier result

- Quasi-periodic solutions have been widely studied (starting from '90), by KAM theory for PDE's (Kuksin-Wayne-Pöschel) and by the Craig-Wayne-Bourgain method (newton like scheme + multiscale analysis)
almost-periodic ones:
- Quasi-periodic solutions have been widely studied (starting from '90), by KAM theory for PDE's (Kuksin-Wayne-Pöschel) and by the Craig-Wayne-Bourgain method (newton like scheme + multiscale analysis)
- While there are many results on quasi-periodic solutions also in the infinite dimensional context, very few is known about the almost-periodic ones:
All on NLS with external parameters \& very high (at least Gevrey) regularity both in time and space!
- Quasi-periodic solutions have been widely studied (starting from '90), by KAM theory for PDE's (Kuksin-Wayne-Pöschel) and by the Craig-Wayne-Bourgain method (newton like scheme + multiscale analysis)
- While there are many results on quasi-periodic solutions also in the infinite dimensional context, very few is known about the almost-periodic ones:
All on NLS with external parameters \& very high (at least Gevrey) regularity both in time and space!

For the quasi-periodic case one can set $\mathrm{V}=0$ and imitate the "finite dimensional KAM" (cf. Kuksin-Poschel 96 for ex, in the NLS):

- Under a non degenerate twist condition on the non-linearity, after one step of BNF
- Itroduce Action-Angle and use some torsion property in the usual manner to modulate the frequencies and linearize the dynamics on the invariant torus
- Quasi-periodic solutions have been widely studied (starting from '90), by KAM theory for PDE's (Kuksin-Wayne-Pöschel) and by the Craig-Wayne-Bourgain method (newton like scheme + multiscale analysis)
- While there are many results on quasi-periodic solutions also in the infinite dimensional context, very few is known about the almost-periodic ones:
All on NLS with external parameters \& very high (at least Gevrey) regularity both in time and space!

For the quasi-periodic case one can set $\mathrm{V}=0$ and imitate the "finite dimensional KAM" (cf. Kuksin-Poschel 96 for ex, in the NLS):

- Under a non degenerate twist condition on the non-linearity, after one step of BNF
- Itroduce Action-Angle and use some torsion property in the usual manner to modulate the frequencies and linearize the dynamics on the invariant torus

Problems:

Problem: in these results quasi-periodic solutions with d frequencies have size $\varepsilon_{d} \rightarrow 0$ as $d \rightarrow \infty$.

Goal: prove existence and linear stability of quasi-periodic functions with d frequencies with a strategy and smallness condition uniform in the dimension of the torus d !
...at least in the case with external parameters!

Pöschel ('02) considered (Dirichlet b.c.)
$\mathrm{i} u_{t}+u_{x x}-V(x) u+$ smooth NL $=0$
Result: for most choices of $V(x)$ in L^{2} one can constuct a sequence of invariant tori converging to an almost periodic solution

$$
\mathbb{T}^{n} \rightarrow \mathbb{T}^{n+1} \rightarrow \mathbb{T}^{n+2} \rightarrow \cdots \rightarrow \mathbb{T}^{\mathbb{N}}
$$

at each step one introduces action-angle variables to parameterize \mathbb{T}^{n} and then constructs \mathbb{T}^{n+1}

He needs the actions $I_{j} \rightarrow 0$ superexponentially to get the infinite torus! $\left|u_{j}\right| \rightarrow 0$ super-exponentially
Bourgain('04) studied i $u_{t}+u_{x x}-V * u+|u|^{4} u=0$
Result: for most choices of $V \in(-1,1)^{\mathbb{Z}}$ there exists at least one almost-periodic solution

$$
\left|u_{j}\right| \sim r e^{-s \sqrt{j}}
$$

He proved the persistence of an almost-periodic torus in one shot: no approximate finite dim. tori, no action-angle variables
∞-dim torus as product of circles and requiring lower bounds on all the "actions":

$$
\frac{r}{2} e^{-s \sqrt{\langle j\rangle}}<\left|u_{j}^{(0)}\right|<r e^{-s \sqrt{\langle j\rangle}}
$$

This means that there is a neighborhood $u^{(0)}$ made all of maximal tori uniformly bounded away from the singularities $u_{j}^{(0)}=0$ indeed on his approximately invariant tori action-angle variables would be well defined (in ∞ dimension this is not trivial)
∞-dim torus as product of circles and requiring lower bounds on all the "actions":

$$
\frac{r}{2} e^{-s \sqrt{\langle j\rangle}}<\left|u_{j}^{(0)}\right|<r e^{-s \sqrt{\langle j\rangle}}
$$

Remark: The set of actions of Bourgain's case has zero measure w.r.t the probability measure on $B_{r}\left(\mathrm{~g}_{s}\right)$

$$
\mathrm{g}_{s}:=\left\{u=\left(u_{j}\right)_{j \in \mathbb{Z}} \in \ell^{\infty}(\mathbb{C}): \quad \sup _{j \in \mathbb{Z}}\left|u_{j}\right| e^{s \sqrt{\langle j\rangle}}<\infty\right\}
$$

Biasco-M.-Procesi(19): inspired by Bourgain's idea

- remove the lower bound and generalize the strategy dealing with any choice of the action and x-dependent non-linearity
- scheme and smallness assumptions uniform in dimension
- Within the same scheme: existence and linear stability for almost-periodic and quasi-periodic Gevrey solutions

Construction of a flexible method based on

- a functional setting of Banach scales with good properties of norms (monotonicity, closeness w.r.t. Poisson brackets etc.)
- decomposition of the problem of persistence of the invariant torus in two steps:

1) prove a general normal form with counter-terms in order to modulate the frequency (containing the hard analysis!)
2) elimination of the counter-terms using external (or internal) parameters and convenient non-degeneracies assumption, via the implicit function theorem

(cf. Arnold, Moser, Herman,Rüssmann, Féjoz...)

The result in Gevrey regularity

Following Bourgain's strategy we fix as phase space:

$$
\mathrm{g}_{s}(\mathbb{C})=\left\{v \in \ell^{\infty}(\mathbb{C}): \quad|v|_{s}:=\sup _{j \in \mathbb{Z}}\left|v_{j}\right|\langle j\rangle^{2} e^{s\langle j\rangle^{\theta}}<\infty\right\},
$$

with $s>0$. We define

$$
\begin{equation*}
\mathrm{R}:=\left\{\omega=\left(\omega_{j}\right)_{j \in \mathbb{Z}} \in \mathbb{R}^{\mathbb{Z}}, \quad \sup _{j}\left|\omega_{j}-j^{2}\right|<1 / 2\right\} . \tag{1}
\end{equation*}
$$

Isomorphic to $[-1 / 2,1 / 2]^{\mathbb{Z}}$.
We endow R with the probability measure μ induced by the product measure on $[-1 / 2,1 / 2]^{\mathbb{Z}}$.
We say that $\omega \in \mathrm{R}$ is γ-Diophantine if
$\omega \in \mathrm{D}_{\gamma}:=\left\{\omega \in \mathrm{R}:|\omega \cdot \ell|>\gamma \prod_{n \in \mathbb{Z}} \frac{1}{\left(1+\left|\ell_{n}\right|^{2}\langle n\rangle^{2}\right)}, \quad \forall \ell \in \mathbb{Z}^{\mathbb{Z}}:|\ell|<\infty\right\}$.
NB. $\omega \cdot \ell=\sum_{n=j_{\text {min }}}^{j_{\text {max }}} \omega_{n} \ell_{n}$

The result in Gevrey regularity

Following Bourgain's strategy we fix as phase space:

$$
\mathrm{g}_{s}(\mathbb{C})=\left\{v \in \ell^{\infty}(\mathbb{C}): \quad|v|_{s}:=\sup _{j \in \mathbb{Z}}\left|v_{j}\right|\langle j\rangle^{2} e^{s\langle j\rangle^{\theta}}<\infty\right\},
$$

with $s>0$. We define

$$
\begin{equation*}
\mathrm{R}:=\left\{\omega=\left(\omega_{j}\right)_{j \in \mathbb{Z}} \in \mathbb{R}^{\mathbb{Z}}, \quad \sup _{j}\left|\omega_{j}-j^{2}\right|<1 / 2\right\} . \tag{1}
\end{equation*}
$$

Isomorphic to $[-1 / 2,1 / 2]^{\mathbb{Z}}$.
We endow R with the probability measure μ induced by the product measure on $[-1 / 2,1 / 2]^{\mathbb{Z}}$.
We say that $\omega \in \mathrm{R}$ is γ-Diophantine if
$\omega \in \mathrm{D}_{\gamma}:=\left\{\omega \in \mathrm{R}:|\omega \cdot \ell|>\gamma \prod_{n \in \mathbb{Z}} \frac{1}{\left(1+\left|\ell_{n}\right|^{2}\langle n\rangle^{2}\right)}, \quad \forall \ell \in \mathbb{Z}^{\mathbb{Z}}:|\ell|<\infty\right\}$.
Diophantine frequencies are typical in R !

Nice Hamiltonians are of the form $N=\sum_{j} \omega_{j}\left|u_{j}\right|^{2}+O\left(\left(|u|^{2}-I\right)^{2}\right)$
$\mathcal{T}_{I}=\left\{u \in B_{r}\left(\mathrm{~g}_{s}\right):\left|u_{j}\right|^{2}=I_{j}\right\}$ is an ω-almost-periodic invariant torus for N !
\qquad

Theorem ('a la Herman, Biasco, M., Procesi)

Let ω be Diophantine and N^{0} be a Hamiltonian possessing an invariant ω-almost-periodic torus. If H is sufficiently close to N_{0}, then

- \exists ! simplectic diffeomorphism
$\Phi: B_{r}\left(\mathrm{~g}_{s}\right) \rightarrow B_{r^{0}}\left(\mathrm{~g}_{s}\right), \quad r<r^{0}, s>s^{0}$
- \exists ! counter term $\Lambda=\sum_{j} \lambda_{j}\left(\left|u_{j}\right|^{2}-I_{j}\right), \quad\left(\lambda_{j}\right) \in \ell_{\infty}$
- \exists ! Hamiltonian N with an invariant ω-almost-periodic torus such that

$$
\begin{gathered}
H=N \circ \Phi^{-1}+\Lambda \\
(\text { equiv. }(H-\Lambda) \circ \Phi=N)
\end{gathered}
$$

Theorem ('a la Herman, Biasco, M., Procesi)

Let ω be Diophantine and N^{0} be a Hamiltonian possessing an invariant ω-almost-periodic torus. If H is sufficiently close to N_{0}, then

- \exists ! simplectic diffeomorphism
$\Phi: B_{r}\left(\mathrm{~g}_{s}\right) \rightarrow B_{r^{0}}\left(\mathrm{~g}_{s}\right), \quad r<r^{0}, s>s^{0}$
- \exists ! counter term $\Lambda=\sum_{j} \lambda_{j}\left(\left|u_{j}\right|^{2}-I_{j}\right), \quad\left(\lambda_{j}\right) \in \ell_{\infty}$
- \exists ! Hamiltonian N with an invariant ω-almost-periodic torus such that

$$
\begin{gathered}
H=N \circ \Phi^{-1}+\Lambda \\
(\text { equiv. }(H-\Lambda) \circ \Phi=N)
\end{gathered}
$$

Rmk: Since the Hamiltonian H depend on $\left(V_{j}\right)_{j \in \mathbb{Z}} \subset \ell_{\infty}$ and Λ smoothly depend on them, one can solve $\Lambda\left(V_{j}, \omega\right)=0$ by direct application of an implicit function theorem in a Banach space and get the desired dynamical conjugacy: $H=N \circ \Phi^{-1}$.

Result in Gevrey regularity

Theorem (Biasco, M., Procesi)

For any γ-Diophantine frequency $\omega \in \mathrm{R}$.
For any $\sqrt{I}:=u^{(0)} \in \mathrm{g}_{s}$ sufficiently small (say
$\left.\left|u_{j}^{(0)}\right|\langle j\rangle^{2} e^{s\langle j\rangle^{\theta}} \leq r \ll \sqrt{\gamma}\right)$
There exists $V=V\left(u^{(0)}, \omega\right) \in \ell_{\infty}$ and a change of variables $\Phi: \bar{B}_{r}\left(\mathrm{~g}_{s}\right) \rightarrow \bar{B}_{r}\left(\mathrm{~g}_{s}\right)$ such that

$$
\mathcal{T}_{I}:=\left\{u \in \mathrm{~g}_{s}:\left|u_{j}\right|=\left|u_{j}^{(0)}\right| \quad \forall j\right\}
$$

is an invariant torus for $H_{V} \circ \Phi$ on which the dynamics is $\theta \rightarrow \theta+\omega t$.

- If all the $\left|u_{j}^{(0)}\right|>0$ the we have a maximal torus
- If all the $\left|u_{j}^{(0)}\right|=0$ except a finite number we have a quasi-periodic solution
- In between we have infinite dimensional elliptic tori

NLS- Sobolev regularity

We construct solutions with finite regularity for

$$
\mathrm{i} \mathbf{u}_{t}+\mathbf{u}_{x x}-V * \mathbf{u}+F\left(|\mathbf{u}|^{2}\right) \mathbf{u}=0
$$

by considering special lower dimensional tori.
Example: consider the following (infinite) subset of \mathbb{Z}

$$
\begin{equation*}
\mathcal{S}:=2^{\mathbb{N}} \equiv\left\{2^{h}, \quad h \in \mathbb{N}\right\}, \quad \mathbb{Z}=\mathcal{S} \cup \mathcal{S}^{c} \tag{2}
\end{equation*}
$$

NLS- Sobolev regularity

We construct solutions with finite regularity for

$$
\mathrm{i} \mathbf{u}_{t}+\mathbf{u}_{x x}-V * \mathbf{u}+F\left(|\mathbf{u}|^{2}\right) \mathbf{u}=0
$$

by considering special lower dimensional tori.
Example: consider the following (infinite) subset of \mathbb{Z}

$$
\begin{equation*}
\mathcal{S}:=2^{\mathbb{N}} \equiv\left\{2^{h}, \quad h \in \mathbb{N}\right\}, \quad \mathbb{Z}=\mathcal{S} \cup \mathcal{S}^{c} \tag{2}
\end{equation*}
$$

We know that NLS_{V} has Gevrey solutions mostly supported on \mathcal{S} of frequency $\omega \in \mathrm{D}_{\gamma, \mathcal{S}}$:

$$
\mathrm{D}_{\gamma, \mathcal{S}}:=\left\{\omega \in \mathrm{R}:|\omega \cdot \ell|>\gamma \prod_{n \in \mathbb{Z}} \frac{1}{\left(1+\left|\ell_{n}\right|^{2}\langle n\rangle^{2}\right)}, \quad \sum_{j \in \mathcal{S}^{c}}\left|\ell_{j}\right| \leq 2\right\} .
$$

NLS- Sobolev regularity

By using the special structure of \mathcal{S} (and momentum conservation) we impose much stronger Diophantine conditions:

$$
\widehat{\mathrm{D}}_{\gamma, \mathcal{S}}:=\left\{\omega \in \mathrm{R}:|\omega \cdot \ell|>\gamma \prod_{n \in \mathcal{S}} \frac{1}{\left(1+\left|\ell_{n}\right|^{2}\left\langle\log _{2} n\right\rangle^{2}\right)}, \quad \sum_{j \in \mathcal{S}^{c}}\left|\ell_{j}\right| \leq 2\right\} .
$$

This allows us to prove existence of finite regularity solutions mostly supported on \mathcal{S} for the translation invariant NLS.
$\mathrm{W}_{p}(\mathbb{C})=\left\{v \in \ell^{1}(\mathbb{C}): \quad|v|_{s}:=\sup _{j \in \mathbb{Z}}\left|v_{j}\right|\langle j\rangle^{p}<\infty\right\}, \quad\langle j\rangle:=\max (1,|j|)$
Fix $\mathcal{S}=2^{\mathbb{N}}$, for any $0<\gamma \ll 1$, for any $p>1$, for all $r<r^{*}(\gamma, p)$ and every $\sqrt{I} \in \bar{B}_{r}\left(\mathrm{w}_{p}\right)$ with $I_{j}=0$ for $j \notin \mathcal{S}$

Theorem (Biasco, M.,Procesi; Sobolev case)

There exist a positive measure Cantor-like set

$$
\mathcal{C} \subset\left\{\nu \in \mathbb{R}^{\mathcal{S}}: \quad\left|\nu_{j}-j^{2}\right| \leq 1 / 2\right\}
$$

such that for all $\nu \in \mathcal{C}$ there exists a potential $V \in[-1 / 2,1 / 2]^{\mathcal{S}}$ and a change of variables $\Phi: \bar{B}_{r}\left(\mathrm{w}_{p}\right) \rightarrow \bar{B}_{r}\left(\mathrm{w}_{p}\right)$ such that

$$
\mathcal{T}_{I}:=\left\{u \in \mathrm{w}_{p}:\left|u_{j}\right|^{2}=I_{j} \quad \forall j \in \mathcal{S}, \quad u_{j}=0, \quad j \in \mathcal{S}^{c}\right\}
$$

is an elliptic KAM torus of frequency α for $H_{V} \circ \Phi$.
Finally V depends on ν in a Lipschitz way.
If we choose I appropriately then the solution has finite regularity.

Finite regularity solutions for NLS

Theorem (Biasco-Massetti-P. 20)

For any $p>1$ and for most choices of $V \in \ell^{\infty}$ there exist infinitely many almost periodic solutions

$$
u(t, x)=\sum_{j} \hat{u}_{j}(t) e^{\mathrm{i} j x}, \quad|u|_{p}:=\sup _{j}\left|\hat{u}_{j}\right|\langle j\rangle^{p} \ll 1 .
$$

here the frequency is $\sim j^{2}$
Such solutions are approximately supported on sparse subsets of \mathbb{Z}.

Finite regularity solutions for NLS

Theorem (Biasco-Massetti-P. 20)

For any $p>1$ and for most choices of $V \in \ell^{\infty}$ there exist infinitely many almost periodic solutions

$$
u(t, x)=\sum_{j} \hat{u}_{j}(t) e^{\mathrm{i} j x}, \quad|u|_{p}:=\sup _{j}\left|\hat{u}_{j}\right|\langle j\rangle^{p} \ll 1 .
$$

here the frequency is $\sim j^{2}$
Such solutions are approximately supported on sparse subsets of \mathbb{Z}.

- Since the condition $|u|_{p}:=\sup _{j}\left|\hat{u}_{j}\right|\langle j\rangle^{p}$ only implies that $u \in H^{1 / 2}(\mathbb{T})$ for all $t \rightsquigarrow$ solutions only in a weak-sense: $u \notin C^{2}$ in $x, u \notin C^{1}$ in t
- What is the "minimal regularity"?
- What is the role of the sparse set \mathcal{S} ?

Basic strategy

- Work on the Hamiltonian (for the NLS

$$
\left.H=\sum_{j}\left(j^{2}+V_{j}\right)\left|u_{j}\right|^{2}+P\right)
$$

- Fix a sparse subset \mathcal{S} satisfying appropriate separation conditions.
- Look for invariant infinite dimensional tori
$\mathfrak{i}: \mathbb{T}^{\mathcal{S}} \rightarrow \mathcal{T}_{I} \subset \mathrm{w}_{p}, \quad \varphi=\left(\varphi_{j}\right)_{j \in \mathcal{S}} \mapsto \mathfrak{i}(\varphi)$, with

$$
\mathfrak{i}_{j}(\varphi):=\sqrt{I_{j}} e^{\mathrm{i} \varphi_{j}} \text { for } j \in \mathcal{S}, \mathfrak{i}_{j}(\varphi):=0 \text { otherwise }
$$

- Show that such tori are the support of almost-periodic weak solutions by showing that $\mathbf{u}(t, x):=\Phi(\mathfrak{i}(\nu t), x)$ are uniform limit of smooth quasi-periodic functions.
- A careful control on the parameter dependence (V, ν, I) is needed: continuity w.r.t. product topology \& Lipschitz w.r.t. ℓ^{∞} for measure estimates and implicit fct thm respectively in $\infty \operatorname{dim}$ Lipschitz w.r.t. $\ell^{\infty} \nRightarrow$ measurability w.r.t. product!
- Infinitely many choices of \mathcal{S} lead to infinitely many different solutions

around regularity...

- the map $\mathfrak{i}:\left(\varphi_{j}\right)_{j \in \mathcal{S}} \mapsto \sqrt{I_{j}} e^{\mathrm{i} \varphi_{j}} \in \mathrm{w}_{p}$, is analytic (provided that we endow $\mathbb{T}^{\mathcal{S}}$ with the ℓ^{∞}-topology) BUT this does not imply that \mathbf{u} is analytic in time or space !

around regularity...

- the map $\mathfrak{i}:\left(\varphi_{j}\right)_{j \in \mathcal{S}} \mapsto \sqrt{I_{j}} e^{\mathrm{i} \varphi_{j}} \in \mathrm{w}_{p}$, is analytic (provided that we endow $\mathbb{T}^{\mathcal{S}}$ with the ℓ^{∞}-topology) BUT this does not imply that \mathbf{u} is analytic in time or space !

Here

the map $t \mapsto \nu t \in \mathbb{T}^{\mathcal{S}}$ is not even continuous \& the regularity of $t \mapsto \mathfrak{i}(\nu t)$ depends on the choice of I_{j}

EX: our solutions u is a slight deformation of

$$
V(\varphi, x)=\sum_{j \in \mathcal{S}} \frac{1}{\langle j\rangle^{p}} e^{\mathrm{i} j x+\mathrm{i} \varphi_{j}} \quad \rightsquigarrow v(t, x)=\sum_{j \in \mathcal{S}} \frac{1}{\langle j\rangle^{p}} e^{\mathrm{i} j x+\mathrm{i} j^{2} t} \quad p>1
$$

V is analytic in φ but v is not even C^{1} in time.

around regularity...

- the map $\mathfrak{i}:\left(\varphi_{j}\right)_{j \in \mathcal{S}} \mapsto \sqrt{I_{j}} e^{\mathrm{i} \varphi_{j}} \in \mathrm{w}_{p}$, is analytic (provided that we endow $\mathbb{T}^{\mathcal{S}}$ with the ℓ^{∞}-topology) BUT this does not imply that \mathbf{u} is analytic in time or space !

Here

the map $t \mapsto \nu t \in \mathbb{T}^{\mathcal{S}}$ is not even continuous \& the regularity of $t \mapsto \mathfrak{i}(\nu t)$ depends on the choice of I_{j}

EX: our solutions u is a slight deformation of

$$
V(\varphi, x)=\sum_{j \in \mathcal{S}} \frac{1}{\langle j\rangle^{p}} e^{\mathrm{i} j x+\mathrm{i} \varphi_{j}} \quad \rightsquigarrow v(t, x)=\sum_{j \in \mathcal{S}} \frac{1}{\langle j\rangle^{p}} e^{\mathrm{i} j x+\mathrm{i} j^{2} t} \quad p>1
$$

V is analytic in φ but v is not even C^{1} in time.

- if $p<2$ they are not classical solutions !
(we construct $v(t, \cdot) \in \mathrm{w}_{p}$ but not in $\mathrm{w}_{p^{\prime}} \forall p^{\prime}>p$)

Thanks!

