intro	results	strategies	Herman	gevrey	sob	$_{\rm thanks}$
00000	000	000	0	0000	0000	0

Weak Sobolev almost-periodic solutions for the NLS on the circle

J.E. Massetti based on joint work with L. Biasco and M. Procesi

Università degli Studi Roma Tre

Jean-Pierre's birthday in the ether 09-06-2021

intro	results	strategies	Herman	gevrey	sob	thanks
●0000	000	000	O	0000	0000	O
Families	s of NLS					

$$\mathbf{i}\mathbf{u}_t + \mathbf{u}_{xx} - V * \mathbf{u} + F(|\mathbf{u}|^2)\mathbf{u} = 0, \qquad \mathbf{u}(t, x) = \mathbf{u}(t, x + 2\pi),$$

- F(y) is real analytic in y in a neighborhood of y = 0 with f(0) = 0
- $V*: \ell^1 \to \ell^1$ is a Fourier multiplier

$$(V * u)(x) = \sum_{j \in \mathbb{Z}} V_j u_j e^{ijx}, \quad V = (V_j)_{j \in \mathbb{Z}} \in [-1/4, 1/4]^{\mathbb{Z}} \subset \ell^{\infty}(\mathbb{R}).$$

(substet of $\ell^1(\mathbb{C}) \iff u(x) = \sum_j u_j e^{ijx} 2\pi$ -periodic *x*-continuous) More precisely $(V * \mathbf{u})(t, x) := (V * \mathbf{u}(t, \cdot))(x)$ for every $t \in \mathbb{R}$.

intro	results	strategies	Herman	gevrey	sob	$_{\mathrm{thanks}}$
00000	000	000	0	0000	0000	0

Result: For almost every $V \in [-1/4, 1/4]^{\mathbb{Z}}$ there exist infinitely many small-amplitude weak almost-periodic solutions **u**.

Definition (weak solutions)

A function $\mathbf{u} : \mathbb{R}^2 \to \mathbb{C}$ which is 2π -periodic in x and such that the map $t \mapsto \mathbf{u}(t, \cdot) \in \ell^1$ is continuous is a weak solution of NLS_V if for any smooth compactly supported function $\chi : \mathbb{R}^2 \to \mathbb{R}$ one has

$$\int_{\mathbb{R}^2} (-\mathrm{i}\chi_t + \chi_{xx}) \mathbf{u} - (V * \mathbf{u} + F(|\mathbf{u}|^2)\mathbf{u})\chi \, dx \, dt = 0.$$

Our target is to prove existence of solutions with very little regularity. We construct infinitely many different solutions s.t.

$$|u_j(t)| \sim \langle j \rangle^{-p}, \quad p > 1$$

for infinitely many j.

intro	results	strategies	Herman	gevrey	sob	thanks
00000	000	000	0	0000	0000	0

Result: For almost every $V \in [-1/4, 1/4]^{\mathbb{Z}}$ there exist infinitely many small-amplitude weak almost-periodic solutions **u**.

Definition (weak solutions)

A function $\mathbf{u} : \mathbb{R}^2 \to \mathbb{C}$ which is 2π -periodic in x and such that the map $t \mapsto \mathbf{u}(t, \cdot) \in \ell^1$ is continuous is a weak solution of NLS_V if for any smooth compactly supported function $\chi : \mathbb{R}^2 \to \mathbb{R}$ one has

$$\int_{\mathbb{R}^2} (-\mathrm{i}\chi_t + \chi_{xx}) \mathbf{u} - (V * \mathbf{u} + F(|\mathbf{u}|^2) \mathbf{u}) \chi \, dx \, dt = 0$$

Our target is to prove existence of solutions with very little regularity. We construct infinetely many different solutions s.t.

$$|u_j(t)| \sim \langle j \rangle^{-p}, \quad p > 1$$

for infinitely many j.

intro	results	strategies	Herman	gevrey	sob	$_{\rm thanks}$
00000	000	000	0	0000	0000	0

Almost-periodic: limit in the uniform topology of time quasi-periodic solutions, as $d \to \infty$

Given a vector $\omega \in \mathbb{R}^d$ of rationally independent frequencies $\omega_1, \ldots, \omega_d$ we say that u(t, x) is a quasi-periodic function of frequency ω if there exists an embedding of a *d*-torus in the phase space:

$$\mathbb{T}^d \to \mathcal{P}, \quad \theta \mapsto U(\theta, x)$$

such that

$$u(t,x) = U(\omega t, x).$$

intro	results	strategies	Herman	gevrey	sob	$_{ m 0}^{ m thanks}$
000€0	000	000	O	0000	0000	
The li	near Sch	rödinger				

$$\mathbf{i}\mathbf{u}_t + \mathbf{u}_{xx} - V * \mathbf{u} = 0$$

Passing to the Fourier side

$$\mathbf{u} = \sum_{j \in \mathbb{Z}} \mathbf{u}_j(t) e^{\mathrm{i}jx}$$

we get

$$\mathbf{u}(t,x) = \sum_{j \in \mathbb{Z}} \mathbf{u}_j(0) e^{\mathbf{i}jx} e^{\mathbf{i}\omega_j t}, \quad \omega_j = (j^2 + V_j)$$

which is uniform limit of smooth quasi-periodic functions (provided we require some minimal decay conditions on $\mathbf{u}_j(0)$.)

Once the nonlinearity is plugged in...

for most choices of V existence of infinitely many almost-periodic solutions with finite (actually very low) regularity both in time and space, under appropriate arithmetic conditions on the ω_j

intro	results	strategies	Herman	gevrey	sob	$_{ m 0}^{ m thanks}$
000€0	000	000	O	0000	0000	
The li	near Sch	rödinger				

$$\mathbf{i}\mathbf{u}_t + \mathbf{u}_{xx} - V * \mathbf{u} = 0$$

Passing to the Fourier side

$$\mathbf{u} = \sum_{j \in \mathbb{Z}} \mathbf{u}_j(t) e^{\mathrm{i}jx}$$

we get

$$\mathbf{u}(t,x) = \sum_{j \in \mathbb{Z}} \mathbf{u}_j(0) e^{\mathbf{i}jx} e^{\mathbf{i}\omega_j t}, \quad \omega_j = (j^2 + V_j)$$

which is uniform limit of smooth quasi-periodic functions (provided we require some minimal decay conditions on $\mathbf{u}_{j}(0)$.)

Once the nonlinearity is plugged in...

for most choices of V existence of infinitely many almost-periodic solutions with finite (actually very low) regularity both in time and space, under appropriate arithmetic conditions on the ω_j

around almost-periodic solutions

0000

Instead of looking at the solutions, let us consider its support i.e. the infinite torus $\mathbb{T}^{\mathbb{Z}} = \mathbb{R}^{\mathbb{Z}}/2\pi\mathbb{Z}^{\mathbb{Z}}$

$$\mathbb{T}^{\mathbb{Z}} \to \ell^1(\mathbb{C}) \quad \varphi = (\varphi_j)_{j \in \mathbb{Z}} \mapsto \sum_{j \in \mathbb{Z}} |\mathbf{u}_j(0)| e^{i\varphi_j + ijx}$$

We endow $\mathbb{T}^{\mathbb{N}}$ with a Banach manifold structure, based on $\ell^{\infty},$ in the usual manner

$$\operatorname{dist}(\theta,\varphi) = \sup_{j\in\mathbb{Z}} |\theta_j - \varphi_j|_{2\pi}$$

The natural expected solution of the nonlinear problem is of the form:

$$f(\varphi, x) = \sum_{\substack{\ell \in \mathbb{Z}^{\mathbb{Z}}: |\ell|_1 < \infty \\ j \in \mathbb{Z}}} \widehat{f}(\ell, j) e^{\mathrm{i} \ell \cdot \varphi + \mathrm{i} j x}$$

We require some decay on the Fourier coefficients

- The regularity in x depends on the a(j);
- f is analytic in each angle φ_j in the strip $|\text{Im}(\varphi_j)| \leq p_j$.

around almost-periodic solutions

0000

Instead of looking at the solutions, let us consider its support i.e. the infinite torus $\mathbb{T}^{\mathbb{Z}} = \mathbb{R}^{\mathbb{Z}}/2\pi\mathbb{Z}^{\mathbb{Z}}$

$$\mathbb{T}^{\mathbb{Z}} \to \ell^1(\mathbb{C}) \quad \varphi = (\varphi_j)_{j \in \mathbb{Z}} \mapsto \sum_{j \in \mathbb{Z}} |\mathbf{u}_j(0)| e^{i\varphi_j + ijx}$$

The natural expected solution of the nonlinear problem is of the form:

$$f(\varphi, x) = \sum_{\substack{\ell \in \mathbb{Z}^{\mathbb{Z}}: |\ell|_1 < \infty \\ j \in \mathbb{Z}}} \widehat{f}(\ell, j) e^{\mathrm{i} \ell \cdot \varphi + \mathrm{i} j x}$$

 $\varphi = (\varphi_1, \varphi_2, \dots)$ are infinitely many angles, in principle the same holds for $\ell = \ell_1, \dots$ but the condition $|\ell|_1 < \infty$ implies that ℓ has finite support! Hence in each sum $\ell \cdot \varphi$ is a finite sum

We require some decay on the Fourier coefficients

• The regularity in x depends on the a(j);

 $\bullet \ f \ \text{is analytic in each angle} \ \varphi_j \ \ \text{in the strip} \ |\mathrm{Im}(\varphi_j)| \leq \mathbf{p}_j.$

around almost-periodic solutions

0000

Instead of looking at the solutions, let us consider its support i.e. the infinite torus $\mathbb{T}^{\mathbb{Z}} = \mathbb{R}^{\mathbb{Z}}/2\pi\mathbb{Z}^{\mathbb{Z}}$

$$\mathbb{T}^{\mathbb{Z}} \to \ell^1(\mathbb{C}) \quad \varphi = (\varphi_j)_{j \in \mathbb{Z}} \mapsto \sum_{j \in \mathbb{Z}} |\mathbf{u}_j(0)| e^{i\varphi_j + ijx}$$

The natural expected solution of the nonlinear problem is of the form:

$$f(\varphi, x) = \sum_{\substack{\ell \in \mathbb{Z}^{\mathbb{Z}} : |\ell|_1 < \infty \\ j \in \mathbb{Z}}} \widehat{f}(\ell, j) e^{\mathrm{i}\ell \cdot \varphi + \mathrm{i}jx} \quad : \sum_{\ell, j} |\widehat{f}(\ell, j)| e^{\mathrm{a}(j) + \sum |\ell_i| \mathrm{p}_i} < \infty$$

 $\varphi = (\varphi_1, \varphi_2, \dots)$ are infinitely many angles, in principle the same holds for $\ell = \ell_1, \dots$ but the condition $|\ell|_1 < \infty$ implies that ℓ has finite support! Hence in each sum $\ell \cdot \varphi$ is a finite sum

We require some decay on the Fourier coefficients

- The regularity in x depends on the a(j);
- f is analytic in each angle φ_j in the strip $|\text{Im}(\varphi_j)| \leq p_j$.

NLS as an infinite dimensional Hamiltonian system:

$$\mathrm{i} u_t + u_{xx} - V * u + F(|u|^2)u = 0 \rightsquigarrow H = \sum_{j \in \mathbb{Z}} \omega_j |u_j|^2 + P(F, u)$$

One wishes to fix some positive sequence $(I_j)_{j \in S} := (|u_j(0)|^2)_{j \in S}$ and prove that, up to an analytic symplectic change of variables of the phase space, the torus

$$\mathcal{T}_{I} = \left\{ u \in \mathcal{P} : |u_j|^2 = I_j, \, j \in \mathcal{S}, \quad |u_j|^2 = 0, \, j \in \mathcal{S}^c \right\},$$

is an **invariant** torus supporting almost-periodic solutions of frequency ω , under Diophantine conditions.

key point: choice of the phase space. more regularity \rightsquigarrow weaker Diophantine conditions \rightsquigarrow easie

NLS as an infinite dimensional Hamiltonian system:

$$\mathrm{i} u_t + u_{xx} - V * u + F(|u|^2)u = 0 \rightsquigarrow H = \sum_{j \in \mathbb{Z}} \omega_j |u_j|^2 + P(F, u)$$

One wishes to fix some positive sequence $(I_j)_{j \in S} := (|u_j(0)|^2)_{j \in S}$ and prove that, up to an analytic symplectic change of variables of the phase space, the torus

$$\mathcal{T}_{I} = \left\{ u \in \mathcal{P} : \left| u_{j} \right|^{2} = I_{j}, \, j \in \mathcal{S}, \quad \left| u_{j} \right|^{2} = 0, \, j \in \mathcal{S}^{c} \right\},$$

is an **invariant** torus supporting almost-periodic solutions of frequency ω , under Diophantine conditions.

key point: choice of the phase space.

more regularity \rightsquigarrow weaker Diophantine conditions \rightsquigarrow easier result

intro	results	strategies	Herman	gevrey	sob	thanks
00000	000	000	0	0000	0000	0

- Quasi-periodic solutions have been widely studied (starting from '90), by KAM theory for PDE's (Kuksin-Wayne-Pöschel) and by the Craig-Wayne-Bourgain method (newton like scheme + multiscale analysis)
- While there are many results on quasi-periodic solutions also in the infinite dimensional context, very few is known about the almost-periodic ones:

For the quasi-periodic case one can set V=0 and imitate the "finite dimensional KAM" (cf. Kuksin-Poschel 96 for ex, in the NLS):

- Under a non degenerate twist condition on the non-linearity, after one step of BNF
- Itroduce Action-Angle and use some torsion property in the usual manner to modulate the frequencies and linearize the dynamics on the invariant torus

intro	results	strategies	Herman	gevrey	sob	thanks
00000	000	000	0	0000	0000	0

- Quasi-periodic solutions have been widely studied (starting from '90), by KAM theory for PDE's (Kuksin-Wayne-Pöschel) and by the Craig-Wayne-Bourgain method (newton like scheme + multiscale analysis)
- While there are many results on quasi-periodic solutions also in the infinite dimensional context, very few is known about the almost-periodic ones:

For the quasi-periodic case one can set V=0 and imitate the "finite dimensional KAM" (cf. Kuksin-Poschel 96 for ex, in the NLS):

- Under a non degenerate twist condition on the non-linearity, after one step of BNF
- Itroduce Action-Angle and use some torsion property in the usual manner to modulate the frequencies and linearize the dynamics on the invariant torus

intro	results	strategies	Herman	gevrey	sob	thanks
00000	000	000	0	0000	0000	0

- Quasi-periodic solutions have been widely studied (starting from '90), by KAM theory for PDE's (Kuksin-Wayne-Pöschel) and by the Craig-Wayne-Bourgain method (newton like scheme + multiscale analysis)
- While there are many results on quasi-periodic solutions also in the infinite dimensional context, very few is known about the almost-periodic ones:

For the quasi-periodic case one can set V=0 and imitate the "finite dimensional KAM" (cf. Kuksin-Poschel 96 for ex, in the NLS):

- Under a non degenerate twist condition on the non-linearity, after one step of BNF
- Itroduce Action-Angle and use some torsion property in the usual manner to modulate the frequencies and linearize the dynamics on the invariant torus

intro	results	strategies	Herman	gevrey	sob	thanks
00000	000	000	0	0000	0000	0

- Quasi-periodic solutions have been widely studied (starting from '90), by KAM theory for PDE's (Kuksin-Wayne-Pöschel) and by the Craig-Wayne-Bourgain method (newton like scheme + multiscale analysis)
- While there are many results on quasi-periodic solutions also in the infinite dimensional context, very few is known about the almost-periodic ones:

For the quasi-periodic case one can set V=0 and imitate the "finite dimensional KAM" (cf. Kuksin-Poschel 96 for ex, in the NLS):

- Under a non degenerate twist condition on the non-linearity, after one step of BNF
- Itroduce Action-Angle and use some torsion property in the usual manner to modulate the frequencies and linearize the dynamics on the invariant torus

intro	results	strategies	Herman	gevrey	sob	$_{\rm O}^{\rm thanks}$
00000	00•	000	O	0000	0000	
Problem	ns:					

Problem: in these results quasi-periodic solutions with d frequencies have size $\varepsilon_d \to 0$ as $d \to \infty$.

Goal: prove existence and linear stability of quasi-periodic functions with d frequencies with a strategy and smallness condition uniform in the dimension of the torus d!

... at least in the case with external parameters!

intro	results	strategies	Herman	gevrey	sob	$_{\mathrm{thanks}}$
00000	000	•00	0	0000	0000	0

Pöschel ('02) considered (Dirichlet b.c.) $iu_t + u_{xx} - V(x)u + \text{smooth NL} = 0$ **Result**: for most choices of V(x) in L^2 one can constuct a sequence of invariant tori converging to an almost periodic solution

$$\mathbb{T}^n \to \mathbb{T}^{n+1} \to \mathbb{T}^{n+2} \to \dots \to \mathbb{T}^{\mathbb{N}}$$

at each step one introduces action-angle variables to parameterize \mathbb{T}^n and then constructs \mathbb{T}^{n+1}

He needs the actions $I_j \to 0$ super-exponentially to get the infinite torus! $|u_j| \to 0$ super-exponentially

Bourgain('04) studied $iu_t + u_{xx} - V * u + |u|^4 u = 0$ Result: for most choices of $V \in (-1, 1)^{\mathbb{Z}}$ there exists at least one almost-periodic solution

$$|u_j| \sim r e^{-s\sqrt{j}}$$

He proved the persistence of an almost-periodic torus in **one shot**: no approximate finite dim. tori, no action-angle variables

intro	results	strategies	Herman	gevrey	sob	$_{\rm thanks}$
00000	000	000	0	0000	0000	0

 ∞ -dim torus as product of circles and requiring lower bounds on all the "actions":

 $\frac{r}{2}e^{-s\sqrt{\langle j\rangle}} < |u_j^{(0)}| < re^{-s\sqrt{\langle j\rangle}}$

This means that there is a neighborhood $u^{(0)}$ made all of maximal tori uniformly bounded away from the singularities $u_j^{(0)} = 0$ indeed on his approximately invariant tori action-angle variables would be well defined (in ∞ dimension this is not trivial)

intro	results	strategies	Herman	gevrey	sob	$_{\rm thanks}$
00000	000	000	0	0000	0000	0

 ∞ -dim torus as product of circles and requiring lower bounds on all the "actions":

 $\frac{r}{2}e^{-s\sqrt{\langle j\rangle}} < |u_j^{(0)}| < re^{-s\sqrt{\langle j\rangle}}$

Remark: The set of actions of Bourgain's case has zero measure w.r.t the probability measure on $B_r(\mathbf{g}_s)$

$$\mathbf{g}_s := \{ u = (u_j)_{j \in \mathbb{Z}} \in \ell^\infty(\mathbb{C}) : \quad \sup_{j \in \mathbb{Z}} |u_j| e^{s\sqrt{\langle j \rangle}} < \infty \}$$

intro	results	strategies	Herman	gevrey	sob	$_{\mathrm{thanks}}$
00000	000	000	0	0000	0000	0

Biasco-M.-Procesi(19): inspired by Bourgain's idea

- remove the lower bound and generalize the strategy dealing with any choice of the action and *x*-dependent non-linearity

- scheme and smallness assumptions uniform in dimension
- Within the same scheme: existence and linear stability for almost-periodic and quasi-periodic Gevrey solutions

Construction of a flexible method based on

- a functional setting of Banach scales with good properties of norms (monotonicity, closeness w.r.t. Poisson brackets etc.)
- decomposition of the problem of persistence of the invariant torus in two steps:

1) prove a general normal form with counter-terms in order to modulate the frequency (containing the hard analysis!)

2) *elimination* of the counter-terms using external (or internal) parameters and convenient non-degeneracies assumption, via the implicit function theorem

(cf. Arnold, Moser, Herman, Rüssmann, Féjoz...)

Following Bourgain's strategy we fix as phase space:

$$\mathbf{g}_{s}(\mathbb{C}) = \bigg\{ v \in \ell^{\infty}(\mathbb{C}) : \quad |v|_{s} := \sup_{j \in \mathbb{Z}} |v_{j}| \langle j \rangle^{2} e^{s \langle j \rangle^{\theta}} < \infty \bigg\},$$

with s > 0. We define

$$\mathbf{R} := \left\{ \omega = (\omega_j)_{j \in \mathbb{Z}} \in \mathbb{R}^{\mathbb{Z}}, \quad \sup_j |\omega_j - j^2| < 1/2 \right\}.$$
(1)

Isomorphic to $[-1/2, 1/2]^{\mathbb{Z}}$.

We endow **R** with the probability measure μ induced by the product measure on $[-1/2, 1/2]^{\mathbb{Z}}$. We say that $\omega \in \mathbb{R}$ is γ -Diophantine if

$$\omega \in \mathsf{D}_{\gamma} := \left\{ \omega \in \mathsf{R} \, : \, |\omega \cdot \ell| > \gamma \prod_{n \in \mathbb{Z}} \frac{1}{(1 + |\ell_n|^2 \langle n \rangle^2)} \, , \quad \forall \ell \in \mathbb{Z}^{\mathbb{Z}} : |\ell| < \infty \right\}.$$

NB.
$$\omega \cdot \ell = \sum_{n=j_{\min}}^{j_{\max}} \omega_n \ell_n$$

Diophantine frequencies are *typical* in **R**!

Following Bourgain's strategy we fix as phase space:

$$\mathbf{g}_{s}(\mathbb{C}) = \bigg\{ v \in \ell^{\infty}(\mathbb{C}) : \quad |v|_{s} := \sup_{j \in \mathbb{Z}} |v_{j}| \langle j \rangle^{2} e^{s \langle j \rangle^{\theta}} < \infty \bigg\},$$

with s > 0. We define

$$\mathbf{R} := \bigg\{ \omega = (\omega_j)_{j \in \mathbb{Z}} \in \mathbb{R}^{\mathbb{Z}}, \quad \sup_j |\omega_j - j^2| < 1/2 \bigg\}.$$
(1)

Isomorphic to $[-1/2, 1/2]^{\mathbb{Z}}$. We endow R with the probability measure μ induced by the product measure on $[-1/2, 1/2]^{\mathbb{Z}}$. We say that $\omega \in \mathbb{R}$ is γ -Diophantine if

$$\omega \in \mathsf{D}_{\gamma} := \Bigg\{ \omega \in \mathsf{R} \, : \; |\omega \cdot \ell| > \gamma \prod_{n \in \mathbb{Z}} \frac{1}{(1 + |\ell_n|^2 \langle n \rangle^2)} \, , \quad \forall \ell \in \mathbb{Z}^{\mathbb{Z}} : |\ell| < \infty \Bigg\}.$$

Diophantine frequencies are typical in R!

Nice Hamiltonians are of the form $N = \sum_{j} \omega_{j} |u_{j}|^{2} + O((|u|^{2} - I)^{2})$ $\mathcal{T}_{I} = \left\{ u \in B_{r}(\mathbf{g}_{s}) : |u_{j}|^{2} = I_{j} \right\}$ is an ω -almost-periodic invariant torus for N!

Theorem ('a la Herman, Biasco, M., Procesi)

Let ω be Diophantine and N^0 be a Hamiltonian possessing an invariant ω -almost-periodic torus. If H is sufficiently close to N_0 , then

- ∃! simplectic diffeomorphism
 - $\Phi: B_r(\mathbf{g}_s) \to B_{r^0}(\mathbf{g}_s), \quad r < r^0, \ s > s^0$
- $\exists ! \text{ counter term } \Lambda = \sum_{j} \lambda_j (|u_j|^2 I_j), \quad (\lambda_j) \in \ell_{\infty}$

• \exists ! Hamiltonian N with an invariant ω -almost-periodic torus uch that

$$H = N \circ \Phi^{-1} + \Lambda$$

(equiv. $(H - \Lambda) \circ \Phi = N$)

Rmk: Since the Hamiltonian H depend on $(V_j)_{j\in\mathbb{Z}} \subset \ell_{\infty}$ and Λ smoothly depend on them, one can solve $\Lambda(V_j, \omega) = 0$ by direct application of an implicit function theorem in a Banach space and get the desired dynamical conjugacy: $H = N \circ \Phi^{-1}$

intro	results	strategies	Herman	gevrey	sob	$_{\rm thanks}$
00000	000	000	0	0000	0000	0

Theorem ('a la Herman, Biasco, M., Procesi)

Let ω be Diophantine and N^0 be a Hamiltonian possessing an invariant ω -almost-periodic torus. If H is sufficiently close to N_0 , then

- $\exists ! simplectic diffeomorphism$ $\Phi : B_r(\mathbf{g}_s) \to B_{r^0}(\mathbf{g}_s), \quad r < r^0, s > s^0$
- $\exists ! \text{ counter term } \Lambda = \sum_{j} \lambda_j (|u_j|^2 I_j), \quad (\lambda_j) \in \ell_{\infty}$
- \exists ! Hamiltonian N with an invariant ω -almost-periodic torus such that

$$H = N \circ \Phi^{-1} + \Lambda$$

(equiv.
$$(H - \Lambda) \circ \Phi = N)$$

Rmk: Since the Hamiltonian H depend on $(V_j)_{j\in\mathbb{Z}} \subset \ell_{\infty}$ and Λ smoothly depend on them, one can solve $\Lambda(V_j, \omega) = 0$ by direct application of an implicit function theorem in a Banach space and get the desired dynamical conjugacy: $H = N \circ \Phi^{-1}$.

intro	results	strategies	Herman	gevrey	sob	$_{\rm thanks}$
00000	000	000	0	0000	0000	0

Theorem ('a la Herman, Biasco, M., Procesi)

Let ω be Diophantine and N^0 be a Hamiltonian possessing an invariant ω -almost-periodic torus. If H is sufficiently close to N_0 , then

- $\exists ! simplectic diffeomorphism$ $\Phi : B_r(\mathbf{g}_s) \to B_{r^0}(\mathbf{g}_s), \quad r < r^0, s > s^0$
- $\exists ! \text{ counter term } \Lambda = \sum_{j} \lambda_j (|u_j|^2 I_j), \quad (\lambda_j) \in \ell_{\infty}$
- \exists ! Hamiltonian N with an invariant ω -almost-periodic torus such that

$$H = N \circ \Phi^{-1} + \Lambda$$

(equiv. $(H - \Lambda) \circ \Phi = N$)

Rmk: Since the Hamiltonian H depend on $(V_j)_{j\in\mathbb{Z}} \subset \ell_{\infty}$ and Λ smoothly depend on them, one can solve $\Lambda(V_j, \omega) = 0$ by direct application of an implicit function theorem in a Banach space and get the desired dynamical conjugacy: $H = N \circ \Phi^{-1}$.

intro	results	strategies	Herman	gevrey	sob	$_{\rm O}^{\rm thanks}$
00000	000	000	O	0000	0000	
Result	in Gevr	ey regular	rity			

Theorem (Biasco, M., Procesi)

For any γ -Diophantine frequency $\omega \in \mathbb{R}$. For any $\sqrt{I} := u^{(0)} \in \mathfrak{g}_s$ sufficiently small (say $|u_j^{(0)}| \langle j \rangle^2 e^{s \langle j \rangle^{\theta}} \leq r \ll \sqrt{\gamma}$)

There exists $V = V(u^{(0)}, \omega) \in \ell_{\infty}$ and a change of variables $\Phi : \bar{B}_r(g_s) \to \bar{B}_r(g_s)$ such that

$$\mathcal{T}_I := \{ u \in \mathsf{g}_s : |u_j| = |u_j^{(0)}| \quad \forall j \}$$

is an invariant torus for $H_V \circ \Phi$ on which the dynamics is $\theta \to \theta + \omega t$.

- If all the $|u_j^{(0)}| > 0$ the we have a maximal torus
- If all the $|u_j^{(0)}| = 0$ except a finite number we have a quasi-periodic solution
- In between we have infinite dimensional elliptic tori

intro
0000results
000strategies
000Herman
0gevrey
0000sob
0000thanks
0NLS- Sobolev regularity

We construct solutions with finite regularity for

$$\mathbf{i}\mathbf{u}_t + \mathbf{u}_{xx} - V * \mathbf{u} + F(|\mathbf{u}|^2)\mathbf{u} = 0$$

by considering special lower dimensional tori. Example: consider the following (infinite) subset of \mathbb{Z}

$$\mathcal{S} := 2^{\mathbb{N}} \equiv \left\{ 2^h, \quad h \in \mathbb{N} \right\}, \quad \mathbb{Z} = \mathcal{S} \cup \mathcal{S}^c$$
(2)

We know that NLS_V has Gevrey solutions mostly supported on S of frequency $\omega \in D_{\gamma,S}$:

$$\mathsf{D}_{\gamma,\mathcal{S}} := \left\{ \omega \in \mathsf{R} \, : \; |\omega \cdot \ell| > \gamma \prod_{n \in \mathbb{Z}} \frac{1}{(1 + |\ell_n|^2 \langle n \rangle^2)} \, , \quad \sum_{j \in \mathcal{S}^c} |\ell_j| \leq 2 \right\}.$$

We construct solutions with finite regularity for

$$\mathbf{i}\mathbf{u}_t + \mathbf{u}_{xx} - V * \mathbf{u} + F(|\mathbf{u}|^2)\mathbf{u} = 0$$

by considering special lower dimensional tori. Example: consider the following (infinite) subset of \mathbb{Z}

$$\mathcal{S} := 2^{\mathbb{N}} \equiv \left\{ 2^h, \quad h \in \mathbb{N} \right\}, \quad \mathbb{Z} = \mathcal{S} \cup \mathcal{S}^c \tag{2}$$

We know that NLS_V has Gevrey solutions mostly supported on S of frequency $\omega \in D_{\gamma,S}$:

$$\mathsf{D}_{\gamma,\mathcal{S}}:= \Bigg\{ \omega \in \mathsf{R} \, : \; |\omega \cdot \ell| > \gamma \prod_{n \in \mathbb{Z}} \frac{1}{(1+|\ell_n|^2 \langle n \rangle^2)} \, , \quad \sum_{j \in \mathcal{S}^c} |\ell_j| \leq 2 \Bigg\}.$$

By using the special structure of \mathcal{S} (and momentum conservation) we impose much stronger Diophantine conditions:

$$\widehat{\mathsf{D}}_{\gamma,\mathcal{S}} := \left\{ \omega \in \mathbb{R} : |\omega \cdot \ell| > \gamma \prod_{n \in \mathcal{S}} \frac{1}{(1 + |\ell_n|^2 \langle \log_2 n \rangle^2)}, \sum_{j \in \mathcal{S}^c} |\ell_j| \le 2 \right\}.$$

This allows us to prove existence of finite regularity solutions mostly supported on S for the translation invariant NLS.

intro	results	strategies	Herman	gevrey	sob	$_{\rm thanks}$
00000	000	000	0	0000	0000	0

$$\mathbf{w}_p(\mathbb{C}) = \left\{ v \in \ell^1(\mathbb{C}) : \quad |v|_s := \sup_{j \in \mathbb{Z}} |v_j| \langle j \rangle^p < \infty \right\}, \quad \langle j \rangle := \max(1, |j|)$$

Fix $S = 2^{\mathbb{N}}$, for any $0 < \gamma \ll 1$, for any p > 1, for all $r < r^*(\gamma, p)$ and every $\sqrt{I} \in \bar{B}_r(\mathbf{w}_p)$ with $I_j = 0$ for $j \notin S$

Theorem (Biasco, M., Procesi; Sobolev case)

There exist a positive measure Cantor-like set

$$\mathcal{C} \subset \{\nu \in \mathbb{R}^{\mathcal{S}} : |\nu_j - j^2| \le 1/2\}$$

such that for all $\nu \in \mathcal{C}$ there exists a potential $V \in [-1/2, 1/2]^S$ and a change of variables $\Phi : \bar{B}_r(\mathbf{w}_p) \to \bar{B}_r(\mathbf{w}_p)$ such that

$$\mathcal{T}_I := \{ u \in \mathbf{w}_p : |u_j|^2 = I_j \quad \forall j \in \mathcal{S} \,, \quad u_j = 0 \,, \quad j \in \mathcal{S}^c \}$$

is an elliptic KAM torus of frequency α for $H_V \circ \Phi$. Finally V depends on ν in a Lipschitz way.

If we choose I appropriately then the solution has finite regularity.

Theorem (Biasco-Massetti-P. 20)

For any p > 1 and for most choices of $V \in \ell^{\infty}$ there exist infinitely many almost periodic solutions

$$u(t,x)=\sum_j \hat{u}_j(t)e^{\mathrm{i} jx}\,,\qquad |u|_p:=\sup_j|\hat{u}_j|\langle j\rangle^p\ll 1\,.$$
 here the frequency is $\sim j^2$

Such solutions are approximately supported on sparse subsets of \mathbb{Z} .

- Since the condition $|u|_p := \sup_j |\hat{u}_j| \langle j \rangle^p$ only implies that $u \in H^{1/2}(\mathbb{T})$ for all $t \rightsquigarrow$ solutions only in a weak-sense: $u \notin C^2$ in $x, u \notin C^1$ in t
- What is the "minimal regularity"?
- What is the role of the sparse set S?

Theorem (Biasco-Massetti-P. 20)

For any p > 1 and for most choices of $V \in \ell^{\infty}$ there exist infinitely many almost periodic solutions

$$u(t,x)=\sum_j \hat{u}_j(t)e^{ijx}\,,\qquad |u|_p:=\sup_j|\hat{u}_j|\langle j\rangle^p\ll 1\,.$$
 here the frequency is $\sim j^2$

Such solutions are approximately supported on sparse subsets of \mathbb{Z} .

- Since the condition $|u|_p := \sup_j |\hat{u}_j| \langle j \rangle^p$ only implies that $u \in H^{1/2}(\mathbb{T})$ for all $t \rightsquigarrow$ solutions only in a weak-sense: $u \notin C^2$ in $x, u \notin C^1$ in t
- What is the "minimal regularity"?
- What is the role of the sparse set S?

intro	results	strategies	Herman	gevrey	sob	$_{ m 0}^{ m thanks}$
00000	000	000	O	0000	00●0	
Basic	strategy					

- Work on the Hamiltonian (for the NLS $H = \sum_{j} (j^2 + V_j) |u_j|^2 + P)$
- Fix a sparse subset ${\mathcal S}$ satisfying appropriate separation conditions.
- Look for invariant infinite dimensional tori $\mathfrak{i}: \mathbb{T}^{S} \to \mathcal{T}_{I} \subset \mathfrak{w}_{p}, \quad \varphi = (\varphi_{j})_{j \in S} \mapsto \mathfrak{i}(\varphi), \text{ with }$

$$\mathfrak{i}_j(\varphi) := \sqrt{I_j} e^{\mathfrak{i}\varphi_j} \text{ for } j \in \mathcal{S}, \ \mathfrak{i}_j(\varphi) := 0 \text{ otherwise },$$

- Show that such tori are the support of almost-periodic weak solutions by showing that $\mathbf{u}(t, x) := \Phi(\mathbf{i}(\nu t), x)$ are uniform limit of smooth quasi-periodic functions.
- A careful control on the parameter dependence (V, ν, I) is needed: continuity w.r.t. product topology & Lipschitz w.r.t. ℓ[∞] for measure estimates and implicit fct thm respectively in ∞ dim Lipschitz w.r.t. ℓ[∞] ⇒ measurability w.r.t. product!
- \bullet Infinitely many choices of ${\mathcal S}$ lead to infinitely many different solutions

intro	results	strategies	Herman	gevrey	sob	$_{ m 0}^{ m thanks}$
00000	000	000	O	0000	000●	
around	regularit	y				

• the map $\mathbf{i} : (\varphi_j)_{j \in S} \mapsto \sqrt{I_j} e^{\mathbf{i}\varphi_j} \in \mathbf{w}_p$, is analytic (provided that we endow \mathbb{T}^S with the ℓ^{∞} -topology) BUT this does not imply that \mathbf{u} is analytic in time or space !

Here

the map $t \mapsto \nu t \in \mathbb{T}^{S}$ is not even continuous & the regularity of $t \mapsto \mathfrak{i}(\nu t)$ depends on the choice of I_{j}

EX: our solutions u is a slight deformation of

$$V(\varphi, x) = \sum_{j \in \mathcal{S}} \frac{1}{\langle j \rangle^p} e^{\mathbf{i} j x + \mathbf{i} \varphi_j} \quad \rightsquigarrow v(t, x) = \sum_{j \in \mathcal{S}} \frac{1}{\langle j \rangle^p} e^{\mathbf{i} j x + \mathbf{i} j^2 t} \quad p > 1$$

V is analytic in φ but v is not even C^1 in time

if p < 2 they are not classical solutions !
 (we construct v(t, ·) ∈ 𝑥_p but not in 𝑥_{p'} ∀p' > p)

intro	results	strategies	Herman	gevrey	sob	$_{\rm O}^{\rm thanks}$
00000	000	000	O	0000	000●	
around	regularit	y				

• the map $\mathbf{i} : (\varphi_j)_{j \in S} \mapsto \sqrt{I_j} e^{\mathbf{i}\varphi_j} \in \mathbf{w}_p$, is analytic (provided that we endow \mathbb{T}^S with the ℓ^{∞} -topology) BUT this does not imply that \mathbf{u} is analytic in time or space !

Here

the map $t \mapsto \nu t \in \mathbb{T}^{S}$ is not even continuous & the regularity of $t \mapsto \mathfrak{i}(\nu t)$ depends on the choice of I_j

EX: our solutions u is a slight deformation of

$$V(\varphi, x) = \sum_{j \in \mathcal{S}} \frac{1}{\langle j \rangle^p} e^{\mathbf{i} j x + \mathbf{i} \varphi_j} \quad \rightsquigarrow v(t, x) = \sum_{j \in \mathcal{S}} \frac{1}{\langle j \rangle^p} e^{\mathbf{i} j x + \mathbf{i} j^2 t} \quad p > 1$$

V is analytic in φ but v is not even C^1 in time.

if p < 2 they are not classical solutions !
 (we construct v(t, ·) ∈ 𝑥_p but not in 𝑥_{p'} ∀p' > p)

intro	results	strategies	Herman	gevrey	sob	$_{\rm O}^{\rm thanks}$
00000	000	000	O	0000	000●	
around	regularit	y				

• the map $\mathbf{i} : (\varphi_j)_{j \in S} \mapsto \sqrt{I_j} e^{\mathbf{i}\varphi_j} \in \mathbf{w}_p$, is analytic (provided that we endow \mathbb{T}^S with the ℓ^{∞} -topology) BUT this does not imply that \mathbf{u} is analytic in time or space !

Here

the map $t \mapsto \nu t \in \mathbb{T}^{S}$ is not even continuous & the regularity of $t \mapsto \mathfrak{i}(\nu t)$ depends on the choice of I_j

EX: our solutions u is a slight deformation of

$$V(\varphi, x) = \sum_{j \in \mathcal{S}} \frac{1}{\langle j \rangle^p} e^{\mathbf{i} j x + \mathbf{i} \varphi_j} \quad \rightsquigarrow v(t, x) = \sum_{j \in \mathcal{S}} \frac{1}{\langle j \rangle^p} e^{\mathbf{i} j x + \mathbf{i} j^2 t} \quad p > 1$$

V is analytic in φ but v is not even C^1 in time.

if p < 2 they are not classical solutions !
 (we construct v(t, ·) ∈ w_p but not in w_{p'} ∀p' > p)

intro	results	strategies	Herman	gevrey	sob	$_{\rm thanks}$
00000	000	000	0	0000	0000	•

Thanks !