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Terminology: 0 fixed point of T symplectic di↵eo of R2n is
elliptic of frequency vector ! “ p!1, . . . ,!nq if DT p0q is conjugate to

S! : pR2qn ˝, S!ps1, . . . , snq :“ pR!1ps1q, . . . ,R!n
psnqq.

(R� “ rigid rotation around 0 in R2 with rotation number �)

non-resonant if moreover k ¨ ! R Z for all k P Zn ´ t0u.
Resonant case very di↵erent: e.g. time-1 map of Hpx , yq “ ypx2 ` y2q
„„B linear part at p0, 0q = Id and each point of R°0 ˆ t0u is attracted.
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Is it possible to find a symplectomorphism with a non-resonant elliptic
fixed point and a non-trivial orbit converging to it in forward time?

Tmpzq ›››››Ñ
mÑ`8

0

YES

[FMS20] B. Fayad, J.-P. Marco, D.S., Asterique 416 (2020), 321–340

https://hal.archives-ouvertes.fr/hal-01658860 or arXiv:1712.03001

Our theorem in [FMS20] gives the first such examples.

The phase space is R6 (or R2n with any n • 3)

Our examples are C8 but not analytic.

Notice that, by reversing time, this provides an example of Lyapunov
unstable fixed point.

(Lyapunov stability = orbits that start near 0 remain close to 0 for all forward time)
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Context + historical perspective

A form of “Arnold di↵usion” for the reverse dynamics...

If a system has a non-resonant elliptic fixed point or is close to integrable
(external parameter "), then the formal perturbation theory seems to
predict that the action variables cannot vary much.

In low dimension, with non-degeneracy assumptions, KAM theory makes
this prediction a theorem: perpetual stability of action variables.

“Arnold di↵usion” = the possibility for some orbits to have their action
variables drifting away from their initial values...

n “ 1

Linear part p✓, rq fiÑ p✓ ` !, rq with ! P R ´ Q

Importance of the Birkho↵ Normal Form
p✓̃, r̃q fiÑ

`
✓̃ ` ! ` a1r̃ ` ¨ ¨ ¨ ` aN r̃N ` Opr̃N`1q, r̃ ` Opr̃N`1q

˘

Non-zero BNF (“torsion”) or ! Diophantine (even without torsion)
ùñ accumulation by invariant quasi-periodic smooth curves

and Lyapunov stability.
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Anosov-Katok 1970: examples in D Ä R2 with Lyapunov unstability and
ergodicity (BNF “ 0 and ! Liouvillian), but not a single orbit converging
to 0 in forward or backward time.

n • 2

R. Douady & P. Le Calvez 1983, R. Douady 1988: Lyapunov unstability
with arbitrary non-degenerate BNF

(obtained from the existence of a sequence of points that converge to 0 and whose orbits travel

along a simple resonance away from 0, not from the existence of one particular orbit.)

B. Fayad preprint 2020: examples of Lyapunov unstability with n • 3,
analytic Hamiltonian di↵eos, divergent BNF.

Our examples in [FMS20]:
– have BNF “ 0
– require n • 3
– are not analytic but Gevrey
– rely on “Herman synchronized di↵usion mechanism”.
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The construction of Gevrey examples of unstable Hamiltonian or
exact-symplectic systems is a line of research that had started in
collaboration with Michel Herman and Jean-Pierre Marco in 1999...
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Central thread: Gevrey regularity + variations on “Herman synchronized
di↵usion mechanism”...
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The Gevrey world

Given ↵ • 1 a real number, Gevrey-↵ regularity is defined by the
requirement that the partial derivatives exist at all (multi)orders ` and
are bounded by CM |`||`|!↵ for some C and M (when ↵ “ 1, this simply
means analyticity).

Upon fixing a real L ° 0 (essentially the inverse of the previous M), one
can define a Banach algebra

`
G↵,LpR2nq, k . k↵,L

˘
.

Calculus in the Gevrey world: products of Gevrey-↵ functions,
di↵erentiation (“Gevrey-Cauchy inequalities”), composition of Gevrey-↵
maps, solving ODEs (the flow of a Gevrey-↵ Hamiltonian is made of
Gevrey-↵ symplectomorphisms)...

Denote by U↵,L the set of all Gevrey-p↵, Lq symplectic di↵eomorphisms
of R6 which fix 0 and are C8-tangent to Id at 0.

One can define a distance distp�, q “ k�´ k↵,L that makes it a
complete metric space.
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In [FMS20], we prove

THEOREM Fix ↵ ° 1 and L ° 0. For each � ° 0, there exist

– a non-resonant vector ! P R3,
– a point z P R6,
– a di↵eomorphism  P U↵,L such that k ´ Idk↵,L § �,

so that T “  ˝ S! satisfies Tmpzq ›Ñ
mÑ`8

0.

!, z ,  are obtained as limits of Cauchy sequences p!pnqq, pzpnqq, p pnqq
that we construct inductively.

In particular, each !pnq is in Q3 and our “synchronized attraction
scheme” for T pnq “  pnq ˝ S!pnq relies on

– a fine synchronization between the three rational components of !pnq

– an arrangement of the things so that  pnq is (almost) inactive most of
the time on a long portion of the T pnq-orbit of zpnq

– an avatar of a coupling lemma initially due to M. Herman.
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↵ ° 1 Ñ easy to construct Gevrey-↵ bump fcns: DESSIN
for any z P R2 and ⌫ ° 0, D fz,⌫ P G↵,LpR2q

0 § fz,⌫ § 1, fz,⌫ ” 1 on Bpz , ⌫{2q, fz,⌫ ” 0 on Bpz , ⌫qc

and kfz,⌫k↵,L § exppc ⌫´ 1
↵´1 q (exponentially large for small ⌫).

We also fix R ° 0, pick ⌘R ” 1 on r´2R , 2Rs, ” 0 on r´3R , 3Rs, and set

gR : R2 Ñ R, gRpx , yq :“ xy ⌘Rpxq ⌘Rpyq. DESSIN

Then we define �2,1,z,⌫ , �1,3,z,⌫ , �3,2,z,⌫ P U↵,L by

�i,j,z,⌫ :“ time-1 map of Hamiltonian expp´c ⌫´ 2
↵´1 qfz,⌫ bi,j gR ,

fz,⌫ bi,j gR : s “ ps1, s2, s3q fiÑ fz,⌫psi qgRpsjq.
One gets k�i,j,z,⌫ ´ Idk↵,L § K expp´c ⌫´ 1

↵´1 q exponentially small.

The trick: �t f b2,1g ps1, s2, s3q “
`
�t f ps2qg ps1q,�t gps1qf ps2q, s3

˘
.
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Avatar of Herman’s coupling lemma for �2,1,z,⌫ :

(a) For s2 P Bpz , ⌫qc , �2,1,z,⌫ps1, s2, s3q “ ps1, s2, s3q.
(b) For x1 P R, �2,1,z,⌫ppx1, 0q, s2, s3q “ ppx̃1, 0q, s2, s3q with |x̃1| § |x1|.
(c) For x1 P r´R ,Rs, s2 P Bpz , ⌫{2q and s3 P R2,

�2,1,z,⌫ppx1, 0q, s2, s3q “ ppx̃1, 0q, s2, s3q with |x̃1| § |x1|,

where  :“ 1 ´ 1
2 expp´c ⌫´ 2

↵´1 q.

Hence, a map like �2,1,z2,⌫2 “ time-1 map of expp´c ⌫
´ 2

↵´1

2 qfz2,⌫2 b2,1 gR
preserves the x1-axis and pushes down orbits towards the origin along this
axis, while keeping the other two variables frozen (item (b)). However, it
is only when the 2nd variable is in Bpz2, ⌫2q that �2,1,z2,⌫2 e↵ectively
brings down the x1-axis towards the origin (item (c)). Moreover, if the
2nd variable is securely outside the activating ball, then �2,1,z2,⌫2 is
completely inactive (item (a)).

�i,j,z2,⌫2 acts as an elevator on the xj -axis, that never goes up, and that
e↵ectively goes down when the ith variable is in the “activating” ball:

zi may push zj down along the xj -axis.

12/17

The proof of the THM uses longer and longer compositions of regularly
alternating ‘elevators’, more precisely compositions of a large number of
maps of the form �1,3,z1,⌫1 ˝ �3,2,z3,⌫3 ˝ �2,1,z2,⌫2 (with an inductive
choice of the parameters zi and ⌫i ) followed by periodic rotations S!pnq

(with larger and larger periods):

T “ lim
 
 pnq ˝ S!pnq

(
,  pn`1q “

�
2,1,zpn`1q

2 ,⌫pn`1q
2

˝
`
�

1,3,zpnq
1 ,⌫pnq

1
˝ �

3,2,zpnq
3 ,⌫pnq

3
˝ �

2,1,zpnq
2 ,⌫pnq

2

˘
˝ ¨ ¨ ¨

Suppose that z2 is inside the activating ball of some elevator �2,1, which
is hence actively pushing down z1 on the x1-axis. Suppose also that,
simultaneously, some �3,2 is pushing down z2. At some point, z2 will exit
the activating ball of �2,1, which then becomes completely inactive. The
variable z1 stops its descent and will just be rotating due to S!pnq . A �1,3

that is active at this height of z1 can then be used to push down z3.
As z3 goes down, �3,2 becomes inactive and z2 will henceforth only
rotate. This allows to introduce a new �2,1 which is active at this new
height of z2. An alternating procedure of the three types of elevators can
thus be put in place.
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Technical intermediary result (Proposition 4.1 in [FMS20]):

Let ! “ pp1{q1, p2{q2, p3{q3q P Q3
` with q3 | q1 | q2 and

z “ ppx1, 0q, px2, 0q, px3, 0qq P Bp0,Rq with x1, x2, x3 ° 0 and x2 • 1{q2.
Then, for any ⌘ ° 0, there exist

paq ! “ pp1{q1, p2{q2, p3{q3q such that q3 | q1 | q2, the orbits of the
translation of vector ! on T3 are ⌘-dense and |! ´ !| § ⌘;

pbq z̄ “ ppx1, 0q, px2, 0q, px3, 0qq such that 0 † x i § xi{2 and x2 • 1{q2;
pcq z 1 P R6, px1 P px1 ` 1

q3
1
, x1q and N • 1, such that |z 1 ´ z | § ⌘ and the

di↵eomorphism

T “ �2,1,x2,q
´3
2

˝ �1,3,px1,q´3
1

˝ �3,2,x3,q
´3
3

˝ �2,1,x2,q
´3
2

˝ S!

satisfies
T Npz 1q “ z̄

and |T mpz 1qi | § p1 ` ⌘qxi for m P t0, . . . ,Nu.
Moreover, q1, q2 and q3 can be taken arbitrarily large.

approximate initial condition

true initial condition

landing point
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To be able to iterate the previous result, we must upgrade it by inserting
a ‘z-admissible’ di↵eomorphism...

DEFINITION Given z “ pz1, z2, z3q P R6, we say that a
di↵eomorphism � of R6 is z-admissible if � ” Id on

ts P R6 : |si | § 11
10 |zi |, i “ 1, 2, 3u.

Iterative step with a z-admissible di↵eomorphism � inserted (Proposition
4.3 in [FMS20]):
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Let ! “ pp1{q1, p2{q2, p3{q3q P Q3
` with q3 | q1 | q2 and

z “ ppx1, 0q, px2, 0q, px3, 0qq P Bp0,Rq with x1, x2, x3 ° 0 and x2 • 1{q2.
Suppose � P U↵,L is z-admissible and

T :“ �2,1,x2,q
´3
2

˝ � ˝ S!

satisfies TMpz0q “ z with z0 P R6, M • 1. Then, for any ⌘ ° 0, there
exist

paq ! “ pp1{q1, p2{q2, p3{q3q such that q3 | q1 | q2, the orbits of the
translation of vector ! on T3 are ⌘-dense and |! ´ !| § ⌘;

pbq z̄ “ ppx1, 0q, px2, 0q, px3, 0qq such that 0 † x i § xi{2 and x2 • 1{q2;
pcq z̄0 P R6 such that |z̄0 ´ z0| § ⌘, and M ° M, and �̄ P U↵,L

z̄-admissible, so that

T :“ �2,1,x2,q
´3
2

˝ �̄ ˝ S!

satisfies T
Mpz̄0q “ z̄ and |Tmpz̄0qi | § p1` ⌘qxi for m P

 
M, . . . ,M

(
.

pdq Moreover, k�2,1,x2,q
´3
2

˝ �̄´ �2,1,x2,q
´3
2

˝ �k↵,L § ⌘.
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Proof: Apply the Technical Intermediary Result to z and get !, z̄ , N and
z 1 ⌘-close to z such that T Npz 1q “ z̄ . Let

�̄ :“ �1,3,px1,q´3
1

˝ �3,2,x3,q
´3
3

˝ �2,1,x2,q
´3
2

˝ �.

By z-admissibility we get

T
mpz 1q “ T mpz 1q for m P t0, . . . ,Nu.

Let M :“ M ` N and z̄0 :“ T
´Mpz 1q: ⌘-close to z0 if we take ! close

enough to ! and the qi ’s large enough.
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Thank you for your attention!


