Attracted by an elliptic fixed point

International Conference
Hamiltonian Dynamical Systems
in Honor of Jean-Pierre Marco

8 June 2021

David Sauzin (CNRS - IMCCE, Paris Observatory - PSL University)

Based on joint work with Bassam Fayad and Jean-Pierre Marco
P. Lochak - J.-P. Marco - D.S. 2003 On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems, Memoirs of the Amer. Math. Soc. 163 (2003), no. 775, viii+145 pp.
J.-P. Marco - D.S. 2003 Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems, Publ. Math. I.H.E.S. 96 (2003), 199-275.
J.-P. Marco - D.S. 2004 Wandering domains and random walks in Gevrey near-integrable Hamiltonian systems, Ergodic Theory \& Dynam. Systems 24 (2004), no. 5, 1619-1666.
L. Lazzarini - J.-P. Marco - D.S. 2019 Measure and capacity of wandering domains in Gevrey near-integrable exact symplectic systems, Memoirs of the Amer. Math. Soc. 257 (2019), no. 1235, vi +110 pp.
B. Fayad - J.-P. Marco - D.S. 2020 Attracted by an elliptic fixed point, Asterique 416 (2020), 321-340.

Terminology: 0 fixed point of T symplectic diffeo of $\mathbb{R}^{2 n}$ is elliptic of frequency vector $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$ if $D T(0)$ is conjugate to

$$
S_{\omega}:\left(\mathbb{R}^{2}\right)^{n} \circlearrowleft, \quad S_{\omega}\left(s_{1}, \ldots, s_{n}\right):=\left(R_{\omega_{1}}\left(s_{1}\right), \ldots, R_{\omega_{n}}\left(s_{n}\right)\right) .
$$

($R_{\beta}=$ rigid rotation around 0 in \mathbb{R}^{2} with rotation number β)
non-resonant if moreover $k \cdot \omega \notin \mathbb{Z}$ for all $k \in \mathbb{Z}^{n}-\{0\}$.
Resonant case very different: e.g. time-1 map of $H(x, y)=y\left(x^{2}+y^{2}\right)$ $\sim \triangleright$ linear part at $(0,0)=I d$ and each point of $\mathbb{R}_{>0} \times\{0\}$ is attracted.

$$
\begin{aligned}
X_{H} & =-\frac{\partial H}{\partial y} \frac{\partial}{\partial x}+\frac{\partial H}{\partial x} \frac{\partial}{\partial y} \\
& =-\left(x^{2}+3 y^{2}\right) \frac{\partial}{\partial x}+2 x y \frac{\partial}{\partial y}
\end{aligned}
$$

Is it possible to find a symplectomorphism with a non-resonant elliptic fixed point and a non-trivial orbit converging to it in forward time?

$$
T^{m}(z) \xrightarrow[m \rightarrow+\infty]{ } 0
$$

YES

[FMS20] B. Fayad, J.-P. Marco, D.S., Asterique 416 (2020), 321-340 https://hal.archives-ouvertes.fr/hal-01658860 or arXiv:1712.03001

Our theorem in [FMS20] gives the first such examples.
The phase space is \mathbb{R}^{6} (or $\mathbb{R}^{2 n}$ with any $n \geqslant 3$)
Our examples are C^{∞} but not analytic.
Notice that, by reversing time, this provides an example of Lyapunov unstable fixed point.

Context + historical perspective

A form of "Arnold diffusion" for the reverse dynamics...
If a system has a non-resonant elliptic fixed point or is close to integrable (external parameter ε), then the formal perturbation theory seems to predict that the action variables cannot vary much.
In low dimension, with non-degeneracy assumptions, KAM theory makes this prediction a theorem: perpetual stability of action variables.
"Arnold diffusion" = the possibility for some orbits to have their action variables drifting away from their initial values...
$n=1$
Linear part $(\theta, r) \mapsto(\theta+\omega, r)$ with $\omega \in \mathbb{R}-\mathbb{Q}$
Importance of the Birkhoff Normal Form

$$
(\tilde{\theta}, \tilde{r}) \mapsto\left(\tilde{\theta}+\omega+a_{1} \tilde{r}+\cdots+a_{N} \tilde{r}^{N}+O\left(\tilde{r}^{N+1}\right), \tilde{r}+O\left(\tilde{r}^{N+1}\right)\right)
$$

Non-zero BNF ("torsion") or ω Diophantine (even without torsion)
\Longrightarrow accumulation by invariant quasi-periodic smooth curves and Lyapunov stability.

Anosov-Katok 1970: examples in $D \subset \mathbb{R}^{2}$ with Lyapunov unstability and ergodicity ($\mathrm{BNF}=0$ and ω Liouvillian), but not a single orbit converging to 0 in forward or backward time.
$n \geqslant 2$
R. Douady \& P. Le Calvez 1983, R. Douady 1988: Lyapunov unstability with arbitrary non-degenerate BNF
(obtained from the existence of a sequence of points that converge to 0 and whose orbits travel along a simple resonance away from 0 , not from the existence of one particular orbit.)
B. Fayad preprint 2020: examples of Lyapunov unstability with $n \geqslant 3$, analytic Hamiltonian diffeos, divergent BNF.

Our examples in [FMS20]:

- have BNF = 0
- require $n \geqslant 3$
- are not analytic but Gevrey
- rely on "Herman synchronized diffusion mechanism".

The construction of Gevrey examples of unstable Hamiltonian or exact-symplectic systems is a line of research that had started in collaboration with Michel Herman and Jean-Pierre Marco in 1999...
J.-P. Marco - D.S. 2003 Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems, Publ. Math. I.H.E.S. 96 (2003), 199-275.
J.-P. Marco - D.S. 2004 Wandering domains and random walks in Gevrey near-integrable Hamiltonian systems, Ergodic Theory \& Dynam. Systems 24 (2004), no. 5, 1619-1666.
L. Lazzarini - J.-P. Marco - D.S. 2019 Measure and capacity of wandering domains in Gevrey near-integrable exact symplectic systems, Memoirs of the Amer. Math. Soc. 257 (2019), no. 1235, vi +110 pp.
B. Fayad - D.S. 2020 KAM tori are no more than sticky, Arch. Rat. Mech. Anal., 237, 3 (2020), 1177-1211.
[FMS20] Attracted by an elliptic fixed point, Asterique 416 (2020), 321-340.

Central thread: Gevrey regularity + variations on "Herman synchronized diffusion mechanism" ...

The Gevrey world

Given $\alpha \geqslant 1$ a real number, Gevrey- α regularity is defined by the requirement that the partial derivatives exist at all (multi)orders ℓ and are bounded by $C M^{|\ell|}|\ell|!^{\mid \alpha}$ for some C and M (when $\alpha=1$, this simply means analyticity).
Upon fixing a real $L>0$ (essentially the inverse of the previous M), one can define a Banach algebra $\left(G^{\alpha, L}\left(\mathbb{R}^{2 n}\right),\|\cdot\|_{\alpha, L}\right)$.
Calculus in the Gevrey world: products of Gevrey- α functions, differentiation ("Gevrey-Cauchy inequalities"), composition of Gevrey- α maps, solving ODEs (the flow of a Gevrey- α Hamiltonian is made of Gevrey- α symplectomorphisms)...

Denote by $\mathcal{U}^{\alpha, L}$ the set of all Gevrey- (α, L) symplectic diffeomorphisms of \mathbb{R}^{6} which fix 0 and are C^{∞}-tangent to Id at 0 .

One can define a distance $\operatorname{dist}(\Phi, \Psi)=\|\Phi-\Psi\|_{\alpha, L}$ that makes it a complete metric space.

In [FMS20], we prove
THEOREM Fix $\alpha>1$ and $L>0$. For each $\gamma>0$, there exist

- a non-resonant vector $\omega \in \mathbb{R}^{3}$,
- a point $z \in \mathbb{R}^{6}$,
- a diffeomorphism $\Psi \in \mathcal{U}^{\alpha, L}$ such that $\|\Psi-\operatorname{Id}\|_{\alpha, L} \leqslant \gamma$,
so that $T=\Psi \circ S_{\omega}$ satisfies $T^{m}(z) \underset{m \rightarrow+\infty}{\longrightarrow} 0$.
ω, z, Ψ are obtained as limits of Cauchy sequences $\left(\omega^{(n)}\right),\left(z^{(n)}\right),\left(\Psi^{(n)}\right)$ that we construct inductively.

In particular, each $\omega^{(n)}$ is in \mathbb{Q}^{3} and our "synchronized attraction scheme" for $T^{(n)}=\Psi^{(n)} \circ S_{\omega^{(n)}}$ relies on

- a fine synchronization between the three rational components of $\omega^{(n)}$
- an arrangement of the things so that $\Psi^{(n)}$ is (almost) inactive most of the time on a long portion of the $T^{(n)}$-orbit of $z^{(n)}$
- an avatar of a coupling lemma initially due to M. Herman.
$\alpha>1 \rightarrow$ easy to construct Gevrey- α bump fcns: for any $z \in \mathbb{R}^{2}$ and $\nu>0, \exists f_{z, \nu} \in G^{\alpha, L}\left(\mathbb{R}^{2}\right)$

$$
0 \leqslant f_{z, \nu} \leqslant 1, \quad f_{z, \nu} \equiv 1 \text { on } B(z, \nu / 2),
$$

and $\left\|f_{z, \nu}\right\|_{\alpha, L} \leqslant \exp \left(c \nu^{-\frac{1}{\alpha-1}}\right)$ (exponentially large for small ν).
We also fix $R>0$, pick $\eta_{R} \equiv 1$ on $[-2 R, 2 R]$, $\equiv 0$ on $[-3 R, 3 R]$, and set

$$
g_{R}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad g_{R}(x, y):=x y \eta_{R}(x) \eta_{R}(y) .
$$

Then we define $\Phi_{2,1, z, \nu}, \Phi_{1,3, z, \nu}, \Phi_{3,2, z, \nu} \in \mathcal{U}^{\alpha, L}$ by

$\Phi_{i, j, z, \nu}:=$ time-1 map of Hamiltonian $\exp \left(-c \nu^{-\frac{2}{\alpha-1}}\right) f_{z, \nu} \otimes_{i, j} g_{R}$,

$$
f_{z, \nu} \otimes_{i, j} g_{R}: s=\left(s_{1}, s_{2}, s_{3}\right) \mapsto f_{z, \nu}\left(s_{i}\right) g_{R}\left(s_{j}\right) .
$$

One gets $\left\|\Phi_{i, j, z, \nu}-\operatorname{Id}\right\|_{\alpha, L} \leqslant K \exp \left(-c \nu^{-\frac{1}{\alpha-1}}\right)$ exponentially small.
The trick: $\Phi^{t f \otimes_{2,1} g}\left(s_{1}, s_{2}, s_{3}\right)=\left(\Phi^{t f\left(s_{2}\right) g}\left(s_{1}\right), \Phi^{t g\left(s_{1}\right) f}\left(s_{2}\right), s_{3}\right)$.

Avatar of Herman's coupling lemma for $\Phi_{2,1, z, \nu}$:
(a) For $s_{2} \in B(z, \nu)^{c}, \Phi_{2,1, z, \nu}\left(s_{1}, s_{2}, s_{3}\right)=\left(s_{1}, s_{2}, s_{3}\right)$.
(b) For $x_{1} \in \mathbb{R}, \Phi_{2,1, z, \nu}\left(\left(x_{1}, 0\right), s_{2}, s_{3}\right)=\left(\left(\tilde{x}_{1}, 0\right), s_{2}, s_{3}\right)$ with $\left|\tilde{x}_{1}\right| \leqslant\left|x_{1}\right|$.
(c) For $x_{1} \in[-R, R], s_{2} \in B(z, \nu / 2)$ and $s_{3} \in \mathbb{R}^{2}$,

$$
\Phi_{2,1, z, \nu}\left(\left(x_{1}, 0\right), s_{2}, s_{3}\right)=\left(\left(\tilde{x}_{1}, 0\right), s_{2}, s_{3}\right) \text { with }\left|\tilde{x}_{1}\right| \leqslant \kappa\left|x_{1}\right|,
$$

$$
\text { where } \kappa:=1-\frac{1}{2} \exp \left(-c \nu^{-\frac{2}{\alpha-1}}\right) \text {. }
$$

Hence, a map like $\Phi_{2,1, z_{2}, \nu_{2}}=$ time-1 map of $\exp \left(-c \nu_{2}^{-\frac{2}{\alpha-1}}\right) f_{z_{2}, \nu_{2}} \otimes_{2,1} g_{R}$ preserves the x_{1}-axis and pushes down orbits towards the origin along this axis, while keeping the other two variables frozen (item (b)). However, it is only when the 2 nd variable is in $B\left(z_{2}, \nu_{2}\right)$ that $\Phi_{2,1, z_{2}, \nu_{2}}$ effectively brings down the x_{1}-axis towards the origin (item (c)). Moreover, if the 2 nd variable is securely outside the activating ball, then $\Phi_{2,1, z_{2}, \nu_{2}}$ is completely inactive (item (a)).
$\Phi_{i, j, z_{2}, \nu_{2}}$ acts as an elevator on the x_{j}-axis, that never goes up, and that effectively goes down when the ith variable is in the "activating" ball: z_{i} may push z_{j} down along the x_{j}-axis.

The proof of the THM uses longer and longer compositions of regularly alternating 'elevators', more precisely compositions of a large number of maps of the form $\Phi_{1,3, z_{1}, \nu_{1}} \circ \Phi_{3,2, z_{3}, \nu_{3}} \circ \Phi_{2,1, z_{2}, \nu_{2}} \quad$ (with an inductive choice of the parameters z_{i} and ν_{i}) followed by periodic rotations $S_{\omega^{(n)}}$ (with larger and larger periods):

$$
\begin{aligned}
T= & \lim \left\{\Psi^{(n)} \circ S_{\omega^{(n)}}\right\}, \quad \Psi^{(n+1)}= \\
& \Phi_{2,1, z_{2}^{(n+1)}, \nu_{2}^{(n+1)}} \circ\left(\Phi_{1,3, z_{1}^{(n)}, \nu_{1}^{(n)}} \circ \Phi_{3,2, z_{3}^{(n)}, \nu_{3}^{(n)}} \circ \Phi_{2,1, z_{2}^{(n)}, \nu_{2}^{(n)}}\right) \circ \cdots
\end{aligned}
$$

Suppose that z_{2} is inside the activating ball of some elevator $\Phi_{2,1}$, which is hence actively pushing down z_{1} on the x_{1}-axis. Suppose also that, simultaneously, some $\Phi_{3,2}$ is pushing down z_{2}. At some point, z_{2} will exit the activating ball of $\Phi_{2,1}$, which then becomes completely inactive. The variable z_{1} stops its descent and will just be rotating due to $S_{\omega(n)}$. A $\Phi_{1,3}$ that is active at this height of z_{1} can then be used to push down z_{3}. As z_{3} goes down, $\Phi_{3,2}$ becomes inactive and z_{2} will henceforth only rotate. This allows to introduce a new $\Phi_{2,1}$ which is active at this new height of z_{2}. An alternating procedure of the three types of elevators can thus be put in place.

Technical intermediary result (Proposition 4.1 in [FMS20]):
Let $\omega=\left(p_{1} / q_{1}, p_{2} / q_{2}, p_{3} / q_{3}\right) \in \mathbb{Q}_{+}^{3}$ with $q_{3}\left|q_{1}\right| q_{2}$ and $\left.z=\left(\left(x_{1}, 0\right),\left(x_{2}, 0\right),\left(x_{3}, 0\right)\right)\right] \in B(0, R)$ with $x_{1}, x_{2}, x_{3}>0$ and $x_{2} \geqslant 1 / q_{2}$.
Then, for any $\eta>0$, there exist
(a) $\bar{\omega}=\left(\bar{p}_{1} / \bar{q}_{1}, \bar{p}_{2} / \bar{q}_{2}, \bar{p}_{3} / \bar{q}_{3}\right)$ such that $\bar{q}_{3}\left|\bar{q}_{1}\right| \bar{q}_{2}$, the orbits of the landing point translation of vector $\bar{\omega}$ on \mathbb{T}^{3} are η-dense and $|\bar{\omega}-\omega| \leqslant \eta$;
(b) $\bar{z}=\left(\left(\bar{x}_{1}, 0\right),\left(\bar{x}_{2}, 0\right),\left(\bar{x}_{3}, 0\right)\right)$ such that $0<\bar{x}_{i} \leqslant x_{i} / 2$ and $\bar{x}_{2} \geqslant 1 / \bar{q}_{2}$;
(c) $z^{\prime} \in \mathbb{R}^{6}, \widehat{x}_{1} \in\left(\bar{x}_{1}+\frac{1}{\bar{q}_{1}^{3}}, x_{1}\right)$ and $N \geqslant 1$, such that $\left|z^{\prime}-z\right| \leqslant \eta$ and the diffeomorphism
true initial condition

$$
\mathcal{T}=\Phi_{2,1, \bar{x}_{2}, \bar{q}_{2}^{-3}} \circ \Phi_{1,3, \hat{x}_{1}, \bar{q}_{1}^{-3}} \circ \Phi_{3,2, x_{3}, \bar{q}_{3}^{-3}} \circ \Phi_{2,1, x_{2}, q_{2}^{-3}} \circ S_{\bar{\omega}}
$$

satisfies

$$
\mathcal{T}^{N}\left(z^{\prime}\right)=\bar{z}
$$

and $\left|\mathcal{T}^{m}\left(z^{\prime}\right)_{i}\right| \leqslant(1+\eta) x_{i}$ for $m \in\{0, \ldots, N\}$.
Moreover, \bar{q}_{1}, \bar{q}_{2} and \bar{q}_{3} can be taken arbitrarily large.

To be able to iterate the previous result, we must upgrade it by inserting a 'z-admissible' diffeomorphism...

DEFINITION Given $z=\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{6}$, we say that a diffeomorphism Φ of \mathbb{R}^{6} is z-admissible if $\Phi \equiv \operatorname{Id}$ on

$$
\left\{s \in \mathbb{R}^{6}:\left|s_{i}\right| \leqslant \frac{11}{10}\left|z_{i}\right|, i=1,2,3\right\} .
$$

Iterative step with a z-admissible diffeomorphism Φ inserted (Proposition 4.3 in [FMS20]):

Let $\omega=\left(p_{1} / q_{1}, p_{2} / q_{2}, p_{3} / q_{3}\right) \in \mathbb{Q}_{+}^{3}$ with $q_{3}\left|q_{1}\right| q_{2}$ and
$z=\left(\left(x_{1}, 0\right),\left(x_{2}, 0\right),\left(x_{3}, 0\right)\right) \in B(0, R)$ with $x_{1}, x_{2}, x_{3}>0$ and $x_{2} \geqslant 1 / q_{2}$.
Suppose $\Phi \in \mathcal{U}^{\alpha, L}$ is z-admissible and

$$
T:=\Phi_{2,1, \chi_{2}, q_{2}^{-3}} \circ \Phi \circ S_{\omega}
$$

satisfies $T^{M}\left(z_{0}\right)=z$ with $z_{0} \in \mathbb{R}^{6}, M \geqslant 1$. Then, for any $\eta>0$, there exist
(a) $\bar{\omega}=\left(\bar{p}_{1} / \bar{q}_{1}, \bar{p}_{2} / \bar{q}_{2}, \bar{p}_{3} / \bar{q}_{3}\right)$ such that $\bar{q}_{3}\left|\bar{q}_{1}\right| \bar{q}_{2}$, the orbits of the translation of vector $\bar{\omega}$ on \mathbb{T}^{3} are η-dense and $|\bar{\omega}-\omega| \leqslant \eta$;
(b) $\bar{z}=\left(\left(\bar{x}_{1}, 0\right),\left(\bar{x}_{2}, 0\right),\left(\bar{x}_{3}, 0\right)\right)$ such that $0<\bar{x}_{i} \leqslant x_{i} / 2$ and $\bar{x}_{2} \geqslant 1 / \bar{q}_{2}$;
(c) $\bar{z}_{0} \in \mathbb{R}^{6}$ such that $\left|\bar{z}_{0}-z_{0}\right| \leqslant \eta$, and $\bar{M}>M$, and $\bar{\Phi} \in \mathcal{U}^{\alpha, L}$
\bar{z}-admissible, so that

$$
\bar{T}:=\Phi_{2,1, \bar{x}_{2}, \bar{q}_{2}^{-3}} \circ \bar{\Phi} \circ S_{\bar{\omega}}
$$

satisfies $\bar{T}^{\bar{M}}\left(\bar{z}_{0}\right)=\bar{z}$ and $\left|\bar{T}^{m}\left(\bar{z}_{0}\right)_{i}\right| \leqslant(1+\eta) x_{i}$ for $m \in\{M, \ldots, \bar{M}\}$.
(d) Moreover, $\left\|\Phi_{2,1, \bar{x}_{2}, \bar{q}_{2}^{-3}} \circ \bar{\Phi}-\Phi_{2,1, x_{2}, q_{2}^{-3}} \circ \Phi\right\|_{\alpha, L} \leqslant \eta$.

Proof: Apply the Technical Intermediary Result to z and get $\bar{\omega}, \bar{z}, N$ and $z^{\prime} \eta$-close to z such that $\mathcal{T}^{N}\left(z^{\prime}\right)=\bar{z}$. Let

$$
\bar{\Phi}:=\Phi_{1,3, \hat{x}_{1}, \bar{q}_{1}^{-3}} \circ \Phi_{3,2, x_{3}, \bar{q}_{3}^{-3}} \circ \Phi_{2,1, x_{2}, q_{2}^{-3}} \circ \Phi .
$$

By z-admissibility we get

$$
\bar{T}^{m}\left(z^{\prime}\right)=\mathcal{T}^{m}\left(z^{\prime}\right) \quad \text { for } m \in\{0, \ldots, N\} .
$$

Let $\bar{M}:=M+N$ and $\bar{z}_{0}:=\bar{T}^{-M}\left(z^{\prime}\right): \eta$-close to z_{0} if we take $\bar{\omega}$ close enough to ω and the \bar{q}_{i} 's large enough.

Thank you for your attention!

