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1 Basics of measure theory and integration

Definition 1. A set E ⊂ P(E) is a σ-algebra (also called a σ-field) on a set E if it satisfies the three following
properties:

• The whole set belongs to it: E ∈ E;

• For every A ∈ E, we have E \A ∈ E;

• If (An)n∈N is a countable family of elements of E, then ∪n∈NAn ∈ E.

The sets in E are called the E-measurable sets (or simply the measurable sets, when there is no ambiguity on
the σ-field considered), and the pair (E, E) is called a measurable space.

Example 1. If E is any set, then {∅, E} and P(E) are σ-algebras on E.

Proposition 1. An intersection of σ-algebras is also a σ-algebra.

Definition 2. If F ⊂ P(E), then the σ-algebra generated by F is defined as

σ(F) =
⋂

E σ-algebra : E⊃F
E .

It is the smallest σ-algebra which contains F .

Definition 3. If E is a topological space, with family of open sets O, the Borel σ-algebra, denoted B(E), is σ(O).
In the sequel, when we work on R or more generally Rd, they will always be equipped with the Borel σ-algebra B(Rd).

Definition 4. Let (E, E) and (F,F) be measurable spaces. A map f : E → F is called measurable if for every
set A ∈ F we have f−1(A) ∈ E.

Definition 5. A measure on a measurable space (E, E) is a map µ : E → [0,+∞] such that, if (An)n∈N is a
countable family of pairwise disjoint elements of E, then

µ

( ⋃
n∈N

An

)
=
∑
n∈N

µ(An) .

The triplet (E, E , µ) is then called a measured space.
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Example 2. On any measurable space (E, E), we can define the counting measure µ : A ∈ E 7→ card(A).

If x ∈ E, the Dirac mass at x is the measure δx : A ∈ E 7→ 1x∈A.

A more interesting example is the Lebesgue measure on (R,B(R)), which is the unique measure λ on B(R)
such that λ([a, b]) = b− a for any a ≤ b (its existence is not a trivial fact !).

Definition 6. Let µ be a measure on a measurable space (E, E). We say that the measure µ is finite if µ(E) <∞.
We say that µ is sigma-finite if there exists a countable family (En)n∈N ∈ EN such that µ(En) <∞ for every n ∈ N
and E = ∪n∈NEn.

If (E, E , µ) is a measured space, we say that a property holds for µ-almost every x ∈ E if there exists a
set N ∈ E such that µ(N) = 0 and the property holds for every x ∈ E \N .

A useful technical tool to prove equality of two measures is Proposition 2 below, which is a consequence of the
monotone class lemma, that we present now.

Definition 7. A monotone class is a subset M ⊂ P(E) such that:

• The whole set belongs to it: E ∈ M;

• For every A, B ∈ M, if A ⊂ B then B \A ∈ M;

• It is stable by non-decreasing countable union, that is to say, if (An)n∈N is a non-decreasing sequence of
events in M (i.e., such that An ⊂ An+1 for every n ∈ N), then ∪n∈NAn ∈ M.

Note that an intersection of monotone classes is also a monotone class, which allows to define:

Definition 8. If F ⊂ P(E), the monotone class generated by F is defined as

M(F) =
⋂

M monotone class : M⊃F
M .

It is the smallest monotone class which contains F .

We can now state the monotone class lemma:

Theorem 1 (Monotone class lemma). If C ⊂ P(E) is stable by finite intersections (i.e., if for every A, B ∈ C we
have A ∩B ∈ C), then M(C) = σ(C).

Note that a σ-algebra is also a monotone class, so σ(C) is a monotone class, so the inclusion M(C) ⊂ σ(C)
comes for free from the definition. Hence, the interesting part of this theorem is that if C is stable by finite
intersections, then M(C) is also a σ-field, whence the inclusion σ(C) ⊂ M(C).

We will rarely use directly the monotone class theorem, but we often use the following important consequence,
to show equality of two measures.

Proposition 2. Let µ, ν be measures on a measurable space (E, E). Assume that C ⊂ E is stable under finite
intersections, satisfies σ(C) = E and that µ(A) = ν(A) for all A ∈ C.

Assume moreover that µ(E) = ν(E) < ∞ (note that this condition is always satisfied if µ and ν are two
probability measures) or, more generally, that there exists a sequence (En)n∈N ∈ CN such that ∪n∈NEn = E
and µ(En) = ν(En) <∞ for every n ∈ N. Then, we have µ = ν.

This allows for instance to prove uniqueness of the Lebesgue measure, or that two finite measures on R coincide
if and only if they agree on sets of the form (−∞, a], for a ∈ R.

Exercise 1. Is it true in general that if µ and ν are two σ-finite measures defined on the same measurable
space (E, E) which agree on a set C which is stable by finite intersections and which generates all the σ-field E,
then µ = ν?
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The main use of measures is that they allow to define integrals of measurable functions f : (E, E) → (R,B(R)):

Proposition/Definition 1. Let (E, E , µ) be a measured space. Then there exists a unique way of defining, for
every measurable and non-negative function f : E → R+, a quantity

∫
E fdµ ∈ [0,+∞] (also written

∫
E f(x)dµ(x)

or
∫
E f(x)µ(dx) and omitting the set E if there is no ambiguity), such that:

• If A ∈ E, then
∫
1Adµ = µ(A);

• Linearity: for any measurable functions f, g ≥ 0 and a, b ∈ R+, it holds
∫
(af + bg)dµ = a

∫
fdµ+ b

∫
gdµ;

• Monotonicity: for any measurable functions f, g with 0 ≤ f ≤ g, we have
∫
fdµ ≤

∫
gdµ (note that in fact

this point follows from linearity combined with the fact that
∫
fdµ ≥ 0 for every f ≥ 0).

More generally, if f is a measurable function taking values in R, we then say that f is integrable if
∫
|f |dµ < +∞,

and we then define
∫
fdµ =

∫
f+dµ−

∫
f−dµ, where f+ = max(f, 0) and f− = max(−f, 0). Similarly, if f takes

values in C, we say that f is integrable if its real part and its imaginary part are integrable, and we define the
integral of f as

∫
fdµ =

∫
(Re f)dµ+ i

∫
(Im f)dµ.

The three following limit theorems are very useful.

Theorem 2. (Monotone convergence) Let (fn)n∈N be a non-decreasing sequence of measurable and non-
negative functions, and let f = limn→∞ fn. Then it holds that

lim
n→∞

∫
fndµ =

∫
fdµ .

(Fatou’s lemma) Let (fn)n∈N be a sequence of measurable and non-negative functions, then it holds that∫ (
lim inf
n→∞

fn

)
dµ ≤ lim inf

n→∞

∫
fndµ .

To recall the direction of the inequality, you can have in mind the example of fn = 1[n, n+1), with the Lebesgue
measure on R.

(Dominated convergence) Let (fn)n∈N be a sequence of measurable functions and f be a measurable function
such that for µ-almost every x ∈ E, we have fn(x) → f(x), and assume that there exists an integrable function g
such that for every n ∈ N, for µ-almost every x ∈ E, we have |fn(x)| ≤ g(x). Then, we have

lim
n→∞

∫
fndµ =

∫
fdµ .

Fatou’s lemma can be deduced from the monotone convergence theorem, and the dominated convergence
theorem can be proved using Fatou’s lemma.

The two following results follow from the dominated convergence theorem, and are useful to study functions
defined using an integral.

Proposition 3 (Continuity theorem). Let (E, E , µ) be a measured space, let (F, d) be a metric space and
let f : E × F → R be such that:

• For every y ∈ F , the map x ∈ E 7→ f(x, y) is E-measurable and µ-integrable (so that
∫
E f(x, y)dµ(x) is well

defined);

• For µ-almost every x ∈ E, the map y ∈ F 7→ f(x, y) is continuous on F ;

• There exists a µ-integrable function g : E → R such that for µ-almost every x ∈ E, for all y ∈ F , we
have |f(x, y)| ≤ g(x, y).

Then the function h : y ∈ F 7→
∫
E f(x, y)dµ(x) is continuous on F .
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Proposition 4 (Derivation under the integral). Let (E, E , µ) be a measured space, let I be an interval of R and
let f : (x, y) ∈ E × I 7→ f(x, y) ∈ R be such that:

• For every y ∈ I, the map x ∈ E 7→ f(x, y) is E-measurable and µ-integrable;

• For µ-almost every x ∈ E, the map y ∈ I 7→ f(x, y) is differentiable on I (we denote by ∂f/∂y its derivative);

• There exists a µ-integrable function g : E → R such that for µ-almost every x ∈ E, for all y ∈ I, we
have |∂f∂y (x, y)| ≤ g(x, y).

Then the function h : y ∈ I 7→
∫
E f(x, y)dµ(x) is differentiable on I and for every y ∈ I we have

h′(y) =

∫
E

∂f

∂y
(x, y) dµ(x) .

Definition 9. Let (E, E) and (F, F) be two measurable spaces. We can define the product σ-algebra E ⊗ F ,
which is a σ-algebra on E × F given by

E ⊗ F = σ(E × F) = σ
(
{A×B , A ∈ E , B ∈ F}

)
.

Definition 10. Let (E, E , µ) and (F,F , ν) be two measured spaces such that µ and ν are sigma-finite. The product
measure µ⊗ ν is the unique measure on (E × F, E ⊗ F) such that for all A ∈ E and B ∈ F ,

(µ⊗ ν)(A×B) = µ(A)ν(B) .

Theorem 3 (Fubini for non-negative functions). Let (E, E , µ) and (F,F , ν) be two measured spaces such that
both µ and ν are sigma-finite. Let f : E × F → R be a measurable function with respect to E ⊗ F . Then the
maps x ∈ E 7→

∫
F f(x, y)dν(y) and y ∈ F 7→

∫
E f(x, y)dµ(x) are measurable and∫

E×F
f d(µ⊗ ν) =

∫
F

(∫
E
f(x, y)µ(dx)

)
ν(dy) =

∫
E

(∫
F
f(x, y)ν(dy)

)
µ(dx) . (1)

Theorem 4 (Fubini for integrable functions). Let (E, E , µ) and (F,F , ν) be two measured spaces such that both µ
and ν are sigma-finite. Let f : E×F → R be a measurable function with respect to E ⊗F . Then the following are
equivalent:

1. f is integrable with respect to µ⊗ ν;

2.
∫ (∫

|f(x, y)|µ(dx)
)
ν(dy) <∞;

3.
∫ (∫

|f(x, y)| ν(dy)
)
µ(dx) <∞,

and if this holds, then the maps x ∈ E 7→
∫
F f(x, y)dν(y) and y ∈ F 7→

∫
E f(x, y)dµ(x) are integrable and (1)

holds.

Given a measured space (E, E , µ) and a measurable f ≥ 0, we can always define a new measure ν on (E, E)
by

ν(A) =

∫
E
f1A dµ .

We say that f is the density of ν with respect to µ, also written f = dν/dν.

A measure ν is said to be absolutely continuous with respect to µ, (written ν ≪ µ) if for all A ∈ E , we
have the implication µ(A) = 0 =⇒ ν(A) = 0. It is easy to check that if ν admits a density with respect to µ,
then ν ≪ µ. The converse turns out to be also true.

Theorem 5 (Radon-Nikodym). Let ν and µ be two σ-finite measures on a measured space (E, E), such that ν ≪ µ.
Then ν admits a density with respect to µ.
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2 Probability: random variables, independence,

We now fix a probability space, namely a measured space (Ω, F , P) where P is a probability measure, i.e.,
it satisfies P(Ω) = 1.

In this context, familiar objects from measure theory are given new names:

Definition 11. An event is a measurable set A ∈ F .

An event A holds almost surely (abbreviated a.s.) if P(A) = 1.

A (E-valued) random variable X is a measurable map from (Ω, F) to a measurable space (E, E). (When
the arrival set E is not specified, this usually means E = R).

The expectation or mean of a non-negative or integrable random variable X is E[X] =
∫
ΩX(ω)P(dω).

An integrable variable is said to be centered if its mean is 0.

The variance of an integrable variable X is

Var(X) = E
[
(X − E[X])2

]
= E

[
X2
]
− E[X]2 .

The law of a E-valued random variable X is the measure image on E, defined for A ∈ E by

LX(A) = P ◦X−1(A) = P
(
{ω ∈ Ω : X(ω) ∈ A}

)
.

The cumulant distribution function of a scalar random variable X is the function x ∈ R 7→ P(X ≤ x). By
a remark above, it fully characterizes the law of X.

Note that in probability theory, the underlying set Ω is typically unimportant (and is often not specified). The
important objects are random variables and their properties (such as their laws).

Proposition 5. Let X be a scalar random variable, let h : R → R be measurable and such that h(X) is integrable.
Then

E [h(X)] =

∫
R
h(x)LX(dx) .

For instance, if the law of X admits a density f with respect to Lebesgue measure, then

E[h(X)] =

∫
R
h(x)f(x) dx .

Given a random variable X taking values in (E, E), the σ-algebra generated by X, denoted σ(X), is

σ(X) =
{
X−1(A), A ∈ E

}
.

It is the smallest sub-σ-algebra of F for which X is measurable.

Proposition 6. Let X be a random variable taking values in some measurable space (E, E) and let Y be a σ(X)-
measurable real random variable, then there exists a measurable map ψ : E → R such that Y = ψ(X).

Definition 12 (Lp spaces). Fix 1 ≤ p <∞. Given a random variable X, its Lp norm is defined by

∥X∥Lp = E
[
|X|p

]1/p
.

We then define the set

Lp(Ω, F , P) =
{
X : Ω → R measurable such that ∥X∥Lp <∞

}
.

The Lp norm is not a norm on this set because ∥X∥Lp = 0 only implies that X = 0 almost surely, so we define the
space Lp(Ω, F , P) which is obtained by taking the quotient by the equivalence relation X ∼ Y if and only if X = Y
almost surely. Equipped with the Lp norm, it is a Banach space.

We can also define the L∞ norm (and the corresponding L∞ space)

∥X∥L∞ = ess sup |X| = inf
{
c ∈ R : P(|X| ≤ c) = 1

}
.
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We record the following important inequalities for expectations of random variables.

Proposition 7. (Jensen) If ϕ : R → R is convex and X is a real random variable, then

ϕ (E[X]) ≤ E [ϕ(X)]

(as long as the two expectations above are well defined).

Cauchy-Schwarz) For any two real random variables X and Y ,

E
[
|XY |

]
≤ ∥X∥L2 ∥Y ∥L2 .

(Hölder) Fix 1 ≤ p, q ≤ ∞ such that 1/p+ 1/q = 1. Then for any two real random variables X and Y ,

E
[
|XY |

]
≤ ∥X∥Lp ∥Y ∥Lq .

Note that it follows from Jensen’s inequality that ∥ · ∥Lp ≤ ∥ · ∥Lq if p ≤ q.

A simple but often very efficient way of measuring probabilities is given by the following proposition.

Proposition 8. Let U : R → R be a non-decreasing positive function. Then for any real random variable X such
that the below expectation make sense, for any a ∈ R, it holds that

P (X ≥ a) ≤ E[U(X)]

U(a)
.

Proof. The result follows from taking the expectation in the inequality U(a)1{X≥a} ≤ U(X).

This implies the following classical special cases:

∀a > 0 P(|X| ≥ a) ≤ E[|X|]
a

(Markov) ,

∀a > 0 P
(
|X − E[X]| ≥ a

)
≤ Var(X)

a2
(Bienaymé-Tchebychev) ,

∀λ > 0 ∀a ∈ R P(X ≥ a) ≤ E
[
eλX

]
e−λa (Chernoff) .

Definition 13. Two events A,B ∈ F are independent if

P(A ∩B) = P(A)P(B) .

A family (Ai)i∈I of events is independent if for every n ≥ 1, for any choice of indices i1, . . . , in ∈ I,

P(Ai1 ∩ · · · ∩Ain) = P(Ai1) · · ·P(Ain) .

Similarly, two random variables X and Y taking values respectively in (E, E) and (E′, E ′) are independent if for
every A ∈ E and every B ∈ E ′ we have

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) .

A family (Xi)i∈I of random variables taking values in whatever measurable spaces (Ei, Ei) is independent if for
every n ≥ 1, for any choice of indices i1, . . . , in ∈ I and of measurable sets A1 ∈ Ei1 , . . . , An ∈ Ein, it holds that

P(Xi1 ∈ A1, . . . , Xin ∈ An) = P(Xi1 ∈ A1) · · ·P(Xin ∈ An) .

A family (Gi)i∈I of σ-algebras is independent if any family (Ai)i∈I of events with Ai ∈ Gi for every i ∈ I is
independent.
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Note that independence of a family is stronger than pairwise independence of its elements.

Note that it follows from the definition that two variables X and Y are independent if and only if the law
of (X,Y ) is the product measure LX ⊗LY . A similar result is true for families of random variables. In particular,
in conjunction with Proposition 5 and Fubini’s theorem, this implies that if X and Y are independent and f and g
are two measurable functions such that the expectations below make sense, then

E[f(X)g(Y )] = E[f(X)]E[g(Y )] .

Given a sequence (An)n∈N of events, we define

lim sup
n

An =
⋂
n∈N

( ⋃
k≥n

Ak

)
=
{
ω ∈ Ω : ω belongs to infinitely many events An

}
.

Proposition 9 (Borel-Cantelli’s Lemma). (1) Let (An)n∈N be a sequence of events such that
∑

n∈N P(An) < ∞.
Then P(lim supAn) = 0.

(2) Let (An)n∈N be an independent sequence of events such that
∑

n∈N P(An) = ∞. Then P(lim supAn) = 1.

Proof. (1) By Fubini,

E

[ ∞∑
n=0

1An

]
=

∞∑
n=0

P(An) < ∞ ,

which implies that P(
∑

n 1An <∞) = 1, which is the claim.

(2) Note that

Ω \ (lim sup
n

An) =
⋃
n∈N

( ⋂
k≥n

(Ω \Ak)
)
,

and since this is an increasing union, we have

P
(
Ω \ (lim sup

n
An)

)
= lim

n→∞
P
( ⋂
k≥n

(Ω \Ak)
)
.

Let n ∈ N be fixed. For every p ∈ N, using independence we can write

P
( ⋂
k≥n

(Ω \Ak)
)

≤ P
( n+p⋂
k=n

(Ω \Ak)
)

=

n+p∏
k=n

(1− P(Ak)) ≤ exp

(
−

n+p∑
k=n

P(Ak)
)
,

using the inequality 1− x ≤ e−x. This goes to 0 when p→ ∞ by assumption, which shows that for every n ∈ N,

P
( ⋂
k≥n

(Ω \Ak)
)

= 0 ,

which implies the result.

In fact, (2) above only holds under pairwise independence. Let us give this as an exercise.

We first record the important fact:

Lemma 1. Let X1, . . . , Xn be pairwise independent random variables in L2(Ω, F , P). Then Var(X1+ · · ·+Xn) =
Var(X1) + · · ·+Var(Xn).

Exercise 2. Let (An)n∈N be a sequence of pairwise independent events such that
∑

n P(An) = ∞. Let Sn =∑n
k=0 1Ak

, S = limn→∞ Sn and mn = E[Sn] (which converges to +∞ by assumption). Show that Var(Sn) ≤ mn.
Deduce from Chebychev’s inequality that P(S ≤ mn/2) ≤ 4/mn, and conclude that P(S = ∞) = 1.
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3 Convergence of random variables

Let X, and Xn, n ∈ N be some random variables defined on the same probability space.

Definition 14. We say that Xn converges to X:

in probability if for every ε > 0, we have P(|Xn −X| > ε) → 0.

in Lp (for a given p ≥ 1) if ∥Xn −X∥Lp → 0.

almost surely if P(Xn → X) = 1.

in law or in distribution if for every bounded and continuous function ϕ, we have E[ϕ(Xn)] → E[ϕ(X)].

Note that convergence in law is really a property of the laws of the random variables, not of the random
variables themselves, unlike the other modes of convergence.

Proposition 10. We have the following implications between the different modes of convergence:

1. If Xn → X almost surely then Xn → X in probability.

2. If Xn → X in Lp and q ≤ p then Xn → X in Lq.

3. If Xn → X in L1 then Xn → X in probability.

4. If Xn → X in probability then Xn → X in law.

5. If Xn → X in law and the variable X is constant, then Xn → X in probability.

6. If Xn → X in probability, then there exists a subsequence (Xφ(n))n∈N which converges almost surely to X.

7. (Dominated convergence theorem) If Xn → X almost surely and there exists an integrable variable Z such
that |Xn| ≤ Z for every n ∈ N, then Xn → Z in L1.

Note that Theorem 18 below gives yet another partial implication.

Proof. 1. The first implication follows from the dominated convergence theorem applied to the functions fn =
1{|Xn−X|>ε}.

2. The second implication follows from Jensen’s inequality.

3. The third implication follows from Markov’s inequality, which entails that P(|Xn−X| > ε) ≤ ∥Xn−X∥L1/ε.

5. If Xn → c ∈ R in law and ε > 0 then, taking ϕ a continuous and bounded function such that ϕ(c) = 0
and ϕ(x) = 1 if |x− c| ≥ ε, we have P(|Xn − c| ≥ ε) ≤ E[ϕ(Xn)] → ϕ(c) = 0.

6. Using that Xn → X in probability we can construct an extraction φ (i.e., φ : N → N is strictly increasing)
such that for every n ∈ N,

P
(
|Xφ(n) −X| ≥ 1

n

)
≤ 1

n2
.

By the Borel-Cantelli lemma, this implies that almost surely, for n large enough, |Xφ(n) −X| < n/n, which
implies that Xφ(n) → X.

4. Assume that Xn → X in probability, and let f be a continuous and bounded function. Since the se-
quence (E[f(Xn)])n∈N is bounded, to show that it converges to E[f(X)], it is enough to show that all its
converging subsequences have this limit. Thus, we consider a subsequence (Xφ(n))n∈N, we assume that the
sequence (E[f(Xφ(n))])n∈N converges to some limit ℓ ∈ R when n → ∞. Since Xφ(n) → X in probability,
using the implication 6 we can find a subsequence (Xφ(ψ(n)))n∈N which converges almost surely to X. Then,
we have

ℓ = lim
n→∞

E
[
f(Xφ(n))

]
= lim

n→∞
E
[
f(Xφ(ψ(n)))

]
= E[f(X)] .

where the last equality follows from the dominated convergence theorem.
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In general, there are no other implications between the various notions of convergence (exercise: find coun-
terexamples).

We will now spend more time on the convergence in law.

The characteristic function of (the law of) a real random variable X is defined by

ϕX : t ∈ R 7→ E[eitX ] .

Note that for any random variable X, it is a continuous and bounded function on R.
It can be linked to moments of X in the following way:

Proposition 11. Assume that E|X|k <∞. Then ϕX is Ck on R, and ϕ(k)(0) = ikE[Xk].

Proof. Exercise (use differentiation under E)

The main utility of characteristic functions comes from the following result.

Theorem 6 ((Lévy’s Continuity Theorem)). The following are equivalent:

(1) Xn → X in law,

(2) For every t ∈ R, ϕXn(t) → ϕX(t).

Proof. The implication (1) ⇒ (2) follows from the definitions. We give the fact that (2) ⇒ (1) as an exercise, with
main steps sketched:

• Show that

P(|X| ≥ r) ≤ r

2

∫ 2/r

−2/r
(1− ΦX(t)) dt

(hint: use Fubini’s theorem to evaluate
∫ c
−c(1− ΦX(t))dt and use that | sin(x)| ≤ |x|/2 for |x| ≥ 2).

• Deduce that if (2) holds, then for any ε > 0, for r large enough and n large enough we have P(|Xn| ≥ r) ≤ ε.

• Use that for any R > r > 0, functions of the form x 7→
∑N

k=−N ake
i kπx

R are dense in the set of continuous
function on [−r, r], in combination with the previous step, to conclude.

Recall that the cumulant distribution function of X is defined by FX(x) = P(X ≤ x). This can also be used
for convergence in law.

Theorem 7. Xn → X in law if and only if for every x ∈ R, if FX is continuous at x then FXn(x) → FX(x).

Proof. Left in exercise (as in the previous proof: first deal with the tails of the Xn to reduce to a compact set).

We also record the important compactness criterion for weak convergence:

Definition 15. A family (Xi)i∈I of random variables is tight if, for any ε > 0, there exists a compact set K,
such that for every i ∈ I we have P(Xi /∈ K) ≤ ε.

Note that any finite family is tight. The main interest of this notion is that it characterizes (sequential)
compactness for convergence in law.

Theorem 8. (1) If Xn → X in law, then (Xn)n∈N is tight.

(2) (Prokhorov) If (Xn)n∈N is tight, then there exists a random variable X (possibly defined on a different
probability space) and a subsequence (Xnk

)n∈N such that Xnk
→ X in law.

9



We prove the theorem with the help of the following lemma.

Lemma 2. A function F : R → R is the cumulant distribution function of a random variable X if and only if:

1. F in non-decreasing;

2. F is cadlag (right-continuous and with left limits);

3. lim−∞ F = 0 and lim+∞ F = 1.

Proof. Exercise. Hint: for the “if” direction, consider, X = G(U), where G(y) = sup{x : F (x) ≤ y}, and U is
a uniform random variable on [0, 1]. Note: this may be in practice a useful way to simulate a random variable
whose cumulant distribution function is known.

Proof of Theorem 8. (1) is easier and left as exercise.

(2) (Sketch). By a diagonal procedure, we construct an extraction φ such that for each rational num-
ber q, FXφ(n)

(q) converges to some limit that we call F0(q). We then let for every x ∈ R, F (x) := limq∈Q,q>x F0(q).
We check that this function F satisfies the assumptions of Lemma 2 (tightness is only used to show that it satisfies
point 3.).

4 The Law of Large Numbers and the Central Limit Theorem

In this section, we consider a sequence (Xn)n≥1 of independent real random variables which all have the same law.
This is called an i.i.d. sequence (for “independent and identically distributed”).

4.1 The Law of Large Numbers

Theorem 9 (Weak Law of Large Numbers). Assume that (Xn)n≥1 is an i.i.d. sequence of real integrable variables,
and let m = E[X1]. Then

X1 + · · ·+Xn

n

n→∞−→ m in probability.

Proof. Since the limit is a constant, it suffices to check convergence in law, which can be done through the
characteristic function. For n ≥ 1, let us write Sn = X1 + · · ·+Xn. Then, for every t ∈ R we have

ϕSn/n(t) = E
[
exp

(
it
Sn
n

)]
= ϕX1(t/n)

n =

(
1 + im

t

n
+ o
( t
n

))n
n→∞−→ eitm .

In fact, the above can be strengthened to almost sure convergence.

Theorem 10 (Strong Law of Large Numbers). Under the same hypotheses than in Theorem 9, we have

X1 + · · ·+Xn

n

n→∞−→ m almost surely.

Many different proofs of this result exist. One proof uses the following result, which can also be usefull in other
situations.

Theorem 11 (Kolmogorov’s 0-1 law). Let (Gn)n∈N be an independent sequence of sub σ-algebras of F . We
consider the terminal σ-algebra of this sequence, which is

G =
⋂
n∈N

σ(Fk, k ≥ n) .

Then this σ-algebra is trivial, that is to say, for every event A ∈ G, we have P(A) = 0 or P(A) = 1.

10



Proof. The idea is to show that G is independent of itself, and thus P(A) = P(A ∩ A) = P(A)2, which implies
that P(A) is 0 or 1. A detailed proof can be found for example in the notes of Jean-François Le Gall [3].

Proof of Theorem 10, the Strong Law of Large Numbers. To simplify, we assume that m = 0. For every n ≥ 1, we
write Sn = X1 + · · ·+Xn. Let a > 0 and let M = supn∈N(Sn − na). We aim to show that M <∞ almost surely,
which implies that, almost surely,

lim sup
n→∞

Sn
n

≤ lim sup
n→∞

(
a+

M

n

)
= a .

If we show this for every a > 0, this would entail that lim supSn/n ≤ 0, and the other bound lim inf Sn/n ≥ 0
would follow by symmetry. Thus, a > 0 being fixed, there remains to show that P(M <∞) = 1.

For n ∈ N, let us define

Mn = max
0≤k≤n

(Sn − na) = max
0≤k≤n

(X1 + · · ·+Xn − na)

and
M ′
n = max

0≤k≤n
(X2 + · · ·+Xn+1 − na) = max

0≤k≤n
(Sk+1 −X1 − na) .

First, note that Mn and M ′
n have the same law. Besides, for every n ∈ N we can write

Mn+1 = max
(
0, max

1≤k≤n
(Sk − ka)

)
= max(0, M ′

n +X1 − a) = M ′
n −min(M ′

n, a−X1) .

Taking the expectation, we obtain

E
[
min(M ′

n, a−X1)
]

= E[M ′
n]− E[Mn+1] = E[Mn]− E[Mn+1] ≤ 0 ,

because by definition we have Mn+1 ≥ Mn. Yet, the dominated convergence theorem, with domination by the
integrable variable |a−X1|, implies that

E
[
min(M ′

n, a−X1)
] n→∞−→ E

[
min(M ′, a−X1)

]
,

where M ′ = limM ′
n. Thus, we deduce that

E
[
min(M ′, a−X1)

]
≤ 0 .

If we had M ′ = ∞ almost surely, then the minimum above would be alsmot surely equal to a − X1, and this
would lead to a contradiction because we have E[a − X1] = a > 0. Therefore, we must have P(M ′ = ∞) < 1.
And since M ′ and M have the same law, the same holds for M . This is where the 0-1 law comes into play: the
event {M = ∞} belongs to the terminal σ-field ⋂

n≥1

σ(Xk, k ≥ n)

and the variables (Xn)n∈N are independent. Hence, Kolmogorov’s 0-1 law ensures that P(M = ∞) can only be 0
or 1, so we deduce that P(M = ∞) = 0, that is to say, M < ∞ almost surely, which is what we wanted to
show.

4.2 The Central Limit Theorem

Definition 16. The standard Gaussian measure, denoted by N (0, 1), is the probability measure on R with density
function given by x 7→ e−x

2/2/
√
2π.

Exercise: check that the above is a well-defined probability measure (hint: compute
∫
e−x

2−y2dxdy via polar
coordinates). Further check that if Z has law N (0, 1), then E[Z] = 0, E[Z2] = 1, and the characteristic function

is given by ϕZ(t) = e
−t2

2 (hint: use integration by parts to show that ϕ′Z(t) = −tϕZ(t)).
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Theorem 12 (Central Limit Theorem). Let (Xn)n∈N be an i.i.d. sequence of variables with E|X1|2 < ∞, and
let m = E[X1] and σ

2 = V ar(X1). For every n ≥ 1, we write Sn = X1 + · · ·+Xn. Then we have the convergence
in law

Sn −mn

σ
√
n

n→∞−→ N (0, 1) .

Proof. Let us assume that m = 0 and σ = 1 (the general case follows by considering Y = (X −m)/σ).

Since the variables are i.i.d., it holds that

ϕSn/
√
n(t) = ϕX1

(
t√
n

)n
=

(
1− t2

2n
+ o

(
t2

n

))n
n→∞−→ e−t

2/2 .

5 Conditional expectations

Let us start with some preliminary definitions. Let (Ω, F , P) be a probability space.

If A, B ∈ F are two events with P(B) > 0, then we can define the conditional probability of A knowing B,
which is

P(A|B) =
P(A ∩B)

P(B)
.

If X : Ω → R is an integrable variable and B ∈ F is an event with P(B) > 0, we can also define the conditional
expectation of X knowing B:

E[X|B] =
E[X1B]

P(B)
.

We can also define in a simple manner the conditional expectation with respect to a random variable Y , as long
as Y takes finitely or countably many values y1, y2, . . . (each with positive probability). Then, for any integrable
variable X, we let

E[X|Y ] =
∑
k

E[X|Y = Yk]1{Y=yk} = ϕ(Y ) ,

where ϕ : R → R is the function defined by ϕ(y) = E[X|Y = y] if P(Y = y) > 0, and ϕ(y) = 0 otherwise.

Similarly, we can define the conditional expectation of an integrable variable X with respect to G, a sub-σ-
algebra of F which is generated by a finite or countable partition (Ak)k of Ω where Ak ∈ F , by writing

E[X|G] =
∑

k :P(Ak)>0

E[X|Ak] 1Ak
.

If you think of a σ-algebra as a quantity of information (knowing G means knowing in which set of the partition
you are), then the conditional expectation of X with respect to G is the best prediction of X you can make with
the information at your disposal.

The above definitions can in fact be generalized to a more complete notion, which is the subject of this chapter.

Proposition 12. Let G be a sub-σ-algebra of F . Then for any X ∈ L1(Ω, F , P), there exists a unique Y ∈
L1(Ω, G, P) (which means that Y must be G-measurable and integrable, and is unique up to equality almost every-
where) which satisfies one of the two following equivalent conditions:

1. For every event A ∈ G, we have E[X1A] = E[Y 1A].

2. For every Z ∈ L∞(Ω, G, P) (i.e., for every G-measurable and bounded variable), we have E[XZ] = E[Y Z].

12



Proof. Existence: Writing X = X+ −X−, it suffices to treat the case where X is nonnegative. We then check
that the map

A ∈ G 7−→ E [X1A]

is a measure on (Ω, G), which is absolutely continuous with respect to P. By the Radon-Nikodym theorem, this
measure admits a (G-measurable) density Y , which by definition must satisfy

∀A ∈ G, E [X1A] = E [Y 1A] .

It follows from an approximation argument that this identity extends with 1A replaced by arbitrary G-measurable
random variables.

Uniqueness: Let Y and Y ′ be two variables which satisfy the above. Since Y and Y ′ are G-measurable, the
event A = {Y > Y ′} is in G, and it follows that

E[Y 1A] = E[X1A] = E[Y ′1A] ,

which implies that E
[
(Y − Y ′)1{Y >Y ′}

]
= 0, so that almost surely Y ≤ Y ′. By symmetry the reverse inequality

also holds almost surely. Therefore, Y = Y ′ almost surely.

The random variable Y obtained from the above proposition is denoted E[X|G], and called the conditional
expectation of X with respect to G (or knowing G). The conditional expectation can also be defined similarly
in the case when the variable X is not integrable but X ≥ 0.

Remark: the conditional expectation, when restricted to X ∈ L2(Ω, F , P), coincides with the orthogonal
projection on the closed subspace L2(Ω, G, P), with the scalar product ⟨X, Y ⟩ = E[XY ]. In particular, for X ∈ L2,
the conditional expectation E[X|G] can be understood as the “best” approximation ofX by a G-measurable random
variable.

We now detail some properties of the conditional expectation.

Proposition 13. Assuming that the random variables X,Y are such that the conditional expectations below make
sense, we have the following (in)equalities, understood in the almost sure sense.

1. (Linearity) If Y , Z are G-measurable, then E[XY + Z|G] = E[X|G] Y + Z.

2. (Monotonicity) If X ≤ Y almost surely, then E[X|G] ≤ E[Y |G].

3. E[E[X|G]] = E[X].

4. (L1-contraction) E [ |E [X|G]|] ≤ E [|X|].

5. (Tower property) If G1 ⊂ G2, then E[E[X|G2]|G1]] = E[X|G1].

6. If X is independent from G, then E[X|G] = E[X].

7. If X is independent from G, and Y is G-measurable, then for any measurable f , it holds that E[f(X,Y )|G] =
g(Y ) where g(y) = E[f(X, y)].

8. Conditional version of monotone convergence, Fatou’s lemma, dominated convergence, Jensen’s inequality,...

Proof. Left as exercise.

If Y is a random variable, we define the conditional expectation of X with respect to Y by

E[X|Y ] := E[X|σ(Y )].

Remark: by Proposition 6, there exists a function h such that E[X|Y ] = h(Y ). To prove this identity, by
definition it suffices to check that for any measurable (bounded) g, it holds that

E [Xg(Y )] = E [h(Y )g(Y )] .

13



Exercise 3. Check that this coincides with the definition given in the beginning of the subsection if Y is discretely
valued.

When the considered random variables have densities, conditional expectations can be computed explicitly.

Proposition 14. Assume that (X,Y ) has a law which admits a density p : R2 → R with respect to the Lebesgue
measure on R. Then, for any function h : R → R such that h(X) is integrable, we have

E[h(X)|Y ] = g(Y ) ,

where g : R → R is the function given by

g(y) =

∫
R h(x)p(x, y) dx∫

R p(x, y) dx

if the denominator (which is the density of the variable Y ) is positive, and g(y) = 0 otherwise.

6 Martingales in discrete time

Let (Ω, F , P) be a probability space.

Definition 17. A discrete real stochastic process is a sequence of random variables (Xn)n∈N defined on a same
probability space (Ω, F , P) and taking values in (R, B(R)).

Definition 18. A filtration of (Ω, F , P) is a non-decreasing sequence (Fn)n∈N of sub-σ-algebras of F , that is to
say, Fn ⊂ Fn+1 for every n ∈ N. We say that (Ω, F , (Fn)n∈N, P) is a filtered probability space.

In a filtered probability space, one can think of n as time and Fn represents the information known at time n.

Definition 19. A process (Xn)n∈N is said to be adapted to the filtration (Fn)n∈N if, for all n ∈ N, the variable Xn

is Fn-measurable.

Definition 20. If (Xn)n∈N is a process, we define the natural filtration, or canonical filtration of filtration
generated by (Xn)n∈N as (Fn)n∈N where, for every n ∈ N, Fn = σ(X0, . . . , Xn). It is the smallest filtration which
makes the process (Xn)n∈N adapted.

Definition 21. A process (Xn)n∈N is called a martingale (respectively, a submartingale, a supermartingale) with
respect to a filtration (Fn)n∈N if:

• The process (Xn)n∈N is adapted to (Fn)n∈N, i.e., for every n ∈ N, Xn is Fn-measurable.

• For every n ∈ N, the variable Xn is integrable.

• For every n ∈ N, E[Xn+1|Fn] = Xn, respectively E[Xn+1|Fn] ≥ Xn, E[Xn+1|Fn] ≤ Xn.

Example 3. Random walk: if (Xn)n≥1 are i.i.d. integrable and centered variables, then the process (Sn)n∈N defined
by S0 = 0 and Sn = X1 + · · ·+Xn for every n ≥ 1 is a martingale.

Closed martingale: if Z ∈ L1(F), and (Fn)n∈N is a filtration, then the process (Xn)n∈N defined by Xn = E[Z|Fn]
for every n ∈ N is a martingale. It is called a closed martingale, or Doob’s martingale.

Definition 22. A stopping time with respect to a filtration (Fn)n∈N is a random variable T : Ω → N ∪ {+∞} such
that

∀n ∈ N , {T ≤ n} ∈ Fn ,

Exercise: check that this equivalent to the same definition with ≤ replaced by =.
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Example 4. If (Xn)n∈N is an adapted process and A is a Borel set of R then the first hitting time of A, namely

TA = inf
{
n ∈ N : Xn ∈ A

}
,

with the usual convention that inf ∅ = +∞, is a stopping time.

If T is a stopping time which is almost surely finite, then we can define the variable

XT =
∑
n∈N

Xn1{T=n} .

Definition 23. Given a stopping time T relative to a filtration (Fn)n∈N, we define the σ-field of the past until T
as

FT =
{
A ∈ F : ∀n ∈ N, A ∩ {T = n} ∈ Fn

}
.

Exercise 4. Check that FT is a σ-algebra, that T is FT -measurable, that if T < ∞ almost surely, then XT

is FT -measurable., and that if S and T are two stopping times such that S ≤ T , then FS ⊂ FT .

Theorem 13 (Doob’s optional stopping (or sampling) theorem). Let (Xn)n∈N be a martingale, respectively a
submartingale, a supermartingale, with respect to a filtration (Fn)n∈N, and let T be a stopping time for this
filtration.

• Then, the stopped process (Xn∧T )n∈N is a martingale (respectively, a submartingale, a supermartingale).

• Moreover, if T <∞ almost surely and one of the following holds:

– T is almost surely bounded, i.e., there exists a constant C <∞ such that T ≤ C almost surely;

– E[T ] <∞ and (Mt+1 −Mt)t∈N is bounded in L∞;

– (Mt∧T )t∈N is bounded in L∞,

then XT ∈ L1(FT ) and E[XT ] = E[X0], respectively, E[XT ] ≥ E[X0], E[XT ] ≤ E[X0].

Exercise 5. Find a martingale M and a stopping time T <∞ almost surely, and such that E[MT ] ̸= E[M0].

We then have the following generalization:

Proposition 15. Let S ≤ T be two bounded stopping times, and (Mn)n∈N a martingale (all relative to the same
filtration). Then

E[MT |FS ] =MS .

An important part of martingale theory is their convergence properties when n → ∞. We state the below
theorems without proofs.

Theorem 14. Let (Mn)n∈N be a martingale which is bounded in L1 (i.e., supn E|Mn| <∞). Then Mn converges
almost surely to a limit M∞ ∈ L1.

Note that, although the limit is in L1, the convergence does not hold in L1 in general. Indeed, let M0 = 1 and,
for every n ≥ 1, let Mn = U1 . . . Un, where the Un are i.i.d. with P(U1 = 0) = P(U1 = 2) = 1/2. Then Mn → 0
almost surely, but E[Mn] = 1 for all n.

There exist the following variants of the above result:

Theorem 15. Let (Mn)n∈N be a submartingale such that (M+
n )n∈N is bounded in L1, where M+

n = max(Mn, 0).
Then Mn converges almost surely to a limit M∞ ∈ L1.

Theorem 16. Any non-negative supermartingale converges almost surely to a limiting integrable variable.

In the case of a martingale bounded in Lp for p > 1, we can obtain a stronger convergence:
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Theorem 17. Let (Mn)n ≥0 be a martingale which is bounded in Lp, for a certain 1 < p <∞. Then Mn converges
almost surely and in Lp to a limit M∞.

Proof of the case p = 2. In the case p = 2, recalling that conditional expectations are orthogonal projections, for
every 0 ≤ n ≤ m, we have

∥ Mm∥22 = ∥Mm −Mn∥22 + ∥Mn∥22 ,

from which it follows that ∥Mn∥2 is an increasing sequence, which, since it is bounded, must converge to a finite
limit. It then also follows that (Mn)n∈N is a Cauchy sequence in L2, from which we can conclude.

In order to state conditions under which the convergence holds in L1, we need the following (important) notion.

Definition 24. A family (Xi)i∈I of real random variables is uniformly integrable if

lim
a→∞

sup
i∈I

E
[
|Xi| 1{|Xi|≥a}

]
= 0

or, equivalently, if (Xi)i∈I is bounded in L1 and for every ε > 0, there exists δ > 0 such that for all A ∈ F ,
if P(A) ≤ δ then for every i ∈ I we have E[|Xi|1A] ≤ ε.

Exercise 6. Check the equivalence between the two definitions. Note that uniform integrability implies L1 bound-
edness. Find a counterexample showing that the converse is not true in general.

Example 5. 1. A finite collection of integrable variables is always uniformly integrable.

2. Domination by an integrable variable implies uniform integrability, that is to say, if (Xi)i∈I and Z ∈ L1(F)
are such that, for all i ∈ I, we have |Xi| ≤ Z, then (Xi)i∈I is uniformly integrable.

3. If a collection is bounded in Lp for a given p > 1, then it is uniformly integrable.

4. More generally, if there exists a function ϕ : R → R with ϕ(x)/|x| → +∞ when |x| → ∞ and supi E[ϕ(Xi)] <
∞, then the family (Xi)i∈I is uniformly integrable. This is called De La Vallée Poussin’s criterion.

5. Let X ∈ L1(F), and let (Gi)i∈I be a collection of sub-σ-fields of F . Then, the family (Xi)i∈I defined
by Xi = E[X|Gi] is uniformly integrable.

The following theorem motivates the introduction of the concept of uniform integrability. Indeed, it gives a
necessary and sufficient condition to obtain equivalence between convergence in probability and convergence in L1.

Theorem 18. Let (Xn)n∈N be a sequence of integrable random variables. Then, the two following properties are
equivalent:

1. The sequence (Xn)n∈N converges in L1 towards a variable X ∈ L1(F).

2. The sequence (Xn)n∈N is uniformly integrable and converges in probability towards a variable X.

This theorem is a particular case of Lebesgue-Vitali’s convergence theorem, which deals with the more general
case of Lp, for p ≥ 1.

This theorem can also be seen as a stronger version of the dominated convergence theorem, which only gives
a sufficient condition for convergence in L1: if Xn → X a.s. (and thus also in probability) and if there exists Z ∈
L1(F) such that, for all n ∈ N, |Xn| ≤ Z, then (Xn)n∈N converges to X in L1. The hypothesis of uniform
integrability is weaker than domination by an integrable variable (i.e., the latter implies the former, as explained
in point 1 of Example 5). Thus, the above theorem says that uniform integrability is the optimal hypothesis that
one should require in order to obtain convergence in L1.

To prove the direct implication, one only has to check that the definition of uniform integrability, using that
a finite family is uniformly integrable. The reciprocal can be obtained by showing that the sequence (Xn)n∈N is a
Cauchy sequence in L1(Ω, F , P).

This important result has the following consequence for martingales:
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Theorem 19 (Convergence in L1). Let (Xn)n∈N be a martingale. Then, the three following statements are
equivalent:

1. The sequence (Xn)n∈N converges almost surely and in L1 to a random variable X∞ ∈ L1.

2. The family (Xn)n∈N is uniformly integrable.

3. The martingale (Xn)n∈N is closed, that is to say, there exists a random variable Z ∈ L1 such that, for
all n ∈ N, Xn = E[Z|Fn].

If condition 1 holds, then we can take Z = X∞ in 3.

This theorem leads to the following extension of Doob’s stopping theorem:

Theorem 20 (Stopping theorem, second version). Let (Mn)n∈N be a martingale with respect to a filtration (Fn)n∈N,
which is uniformly integrable and thus converges almost surely and in L1 towards a random variable M∞ ∈ L1.
Let S and T be two stopping times relative to (Fn)n∈N, taking values in N∪{∞}, such that S ≤ T . Then we have

E
[
XT

∣∣FS] = XS ,

where XT is defined as

XT = X∞ 1{T=∞} +
∞∑
n=0

Xn 1{T=n}

and XS is defined similarly.

7 Gaussian vectors

In this section, we deal with random vectors, i.e., random variables taking values in Rd.
Note that many results stated above in the scalar case remain true in higher dimension. For instance, given a

random vector X = (X1, . . . , Xd), its characteristic function is defined by

ϕX : ξ = (ξ1, . . . , ξd) ∈ Rd 7−→ E
[
exp(i⟨ξ, X⟩)

]
where ⟨·, ·⟩ is the usual scalar product (ξ ·X =
xi1X1 + · · ·+ ξdXd).

Then it still holds that the law of a random vector is characterized by its characteristic function, and that a
sequence (Xn)n∈N converges in distribution to a variable X if and only if its characteristic functions ϕXn converge
pointwise to ϕX .

Definition 25. A scalar random variable X is a Gaussian if there exists m ∈ R and σ ≥ 0 such that X has the
same law as m+ σZ, where Z ∼ N (0, 1) or, equivalently (if σ ̸= 0), if the law of X has the density

1

σ
√
2π

exp

(
− (x−m)2

2σ2

)
with respect to the Lebesgue measure on R. We write X ∼ N (m,σ2).

Proposition 16. If X ∼ N (m, σ2) then for every t ∈ R we have ϕX(t) = exp(imt− t2σ2/2).

Definition 26. A random vector X = (X1, . . . , Xd) is a Gaussian vector (also written: (X1, . . . , Xd) are
jointly Gaussian) if, for each (λ1, . . . , λd) ∈ Rd, the scalar random variable λ1X1 + · · ·+ λdXd is Gaussian.

Remark: to show that (X1, . . . , Xd) is a Gaussian vector, it is not enough to show that each of its components
is Gaussian. Exercise: find a counterexample such that each component is Gaussian but (X1, . . . , Xd) is not a
Gaussian vector.

17



Definition 27. Given a Gaussian vector X, we define its mean m = (m1, . . . , md) ∈ Rd and its covariance
matrix Σ = (Σi,j)1≤i, j≤d ∈ Rd×d by

mi = E[Xi] and Σi,j = Cov(Xi, Xj) = E
[
(Xi − EXi)(Xj − EXj)

]
.

Proposition 17. The law of a Gaussian vector is characterized by its mean m and covariance matrix Σ. More
precisely, the characteristic function of X is given for ξ ∈ Rd by

ϕX(ξ) = exp

(
i⟨m, ξ⟩ − ⟨ξ, Σξ⟩

2

)
.

We then write X ∼ N (m,Σ).

Proof. By assumption, if ξ ∈ Rd, the variable ⟨ξ, X⟩ is Gaussian, and we can compute

E[⟨ξ, X⟩] = ⟨m, ξ⟩ and Var(⟨ξ, X⟩) =
∑
i, j

ξiξjΣi,j = ⟨ξ, Σξ⟩ .

The formula then follows from that for the scalar Gaussian variables. Since the characteristic function can be
expressed as a function of the mean and the covariance matrix, it shows that these two objects characterize the
law of the Gaussian vector.

This result has the following interesting consequences:

Corollary 1. Let (X1, . . . , Xd) be jointly Gaussian. Then X1, . . . , Xd are independent if and only if they are
pairwise uncorrelated.

Corollary 2. If X ∼ N (m, Σ) and A ∈ Rd×d then AX ∼ N (Am, AΣ(tA)).

Proof. By the above proposition, it suffices to show that both members have the same law and covariance matrix.

Remark: this gives a way to simulate any Gaussian vector with given mean m and covariance matrix Σ: it is
enough to find a matrix A such that Σ = A(tA), and to let X = m+AY , where Y ∼ N (0, 1). There always exists
such a matrix A, which can even be taken triangular: this is the so-called Cholesky decomposition of symmetric
matrices.

Let us present one more corollary of Proposition 17:

Corollary 3. If (Xn)n∈N is a sequence of Gaussian vectors with mean mn and covariance matrices Σn such
that mn → m and Σn → Σ, then Xn converges in distribution fo N (m, Σ).

Proof. It suffices to check pointwise convergence of the characteristic functions.

We now show how, for Gaussian vectors, conditional expectations are easy to compute.

Proposition 18. Let (X, Y ) be a Gaussian vector in R2, with mean m and covariance matrix Σ given by

m =

(
mX

mY

)
and Σ =

(
σXX σXY
σXY σY Y

)
and assume that σY Y > 0. Then we have

E [X|Y ] = mX +
σXY
σY Y

(Y −mY ) .
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Proof. Let us define the variable

W = X − σXY
σY Y

Y .

Then a direct computation gives that Cov(W, Y ) = 0, and since (W, Y ) is Gaussian, this implies that W is
independent of Y . The result then follows from writing X = W + (σXY /σY Y )Y , with W independent of Y and
the second term is σ(Y )-measurable.

Note that the above computation extends to vectors of higher dimensions.

Finally, we remark that Gaussian vectors also arise naturally in fluctuation of i.i.d. random vectors.

Theorem 21 (Central Limit Theorem in Rd). Let (Xn)n∈N be an i.i.d. sequence of random vectors, with square
integrable entries. Let m = E[X1], and Σ =

(
Cov(X1

i , X
1
j )
)
1≤i,j≤d . Then we have the convergence in law

X1 + · · ·+Xn − nm√
n

n→∞−→ N (0, Σ) .

Proof. We treat the case m = 0. For every n ≥ 1, we write Sn = X1+ · · ·+Xn. For every fixed ξ ∈ Rd, the scalar
Central Limit Theorem applied to the sequence of real variables (⟨ξ, Xn⟩)n∈N shows that ⟨ξ, Sn⟩/

√
n converges

in distribution to N
(
0, ⟨u, Σu⟩

)
, which implies that ϕSn/

√
n(ξ) → exp

(
− ⟨u, Σu⟩/2

)
.

8 Brownian motion

8.1 Definition and first properties

Definition 28. A continuous-time stochastic process is a family X = (Xt)t∈R+ of random variables indexed
by R+, defined on a same probability space.

Definition 29. A (standard) Brownian motion is a continuous-time stochastic process (Bt)t≥0 such that

1. B0 = 0 almost surely;

2. For each k ≥ 2 and 0 < t1 < · · · < tk, the increments Bt1 , Bt2 −Bt1 , . . . , Btk −Btk−1
are independent;

3. For each 0 ≤ s ≤ t, the increment Bt −Bs has law N (0, t− s);

4. For every ω ∈ Ω, the function t 7→ Bt(ω) is continuous on R+.

Remark 1. (Technical remark on continuity of sample paths)

• Condition 4 is sometimes replaced by the weaker condition:

(4’) There exists a measurable Ω0 ⊂ Ω with P(Ω0) = 1, such that for every ω ∈ Ω0, the function t 7→ Bt(ω)
is continuous on R+.

Note that if B satisfies 1, 2, 3 and 4’, we can redefine Bt to be constant equal to 0 outside of Ω0, to obtain
a stochastic process satisfying 4, which is almost surely equal to the original process.

• In fact, even though 1, 2 and 3 do not imply 4 or 4’, they imply that we can find a modification of B (that
is to say, a process B′ such that for all t ≥ 0, almost surely, Bt = B′

t) which is continuous (exercise: use for
instance a similar construction to what is done below to find a sequence of continuous processes Bn, which
almost surely converge uniformly on compacts, and such that for all t ≥ 0, almost surely, Bn

t → Bt.)

Definition 30. A continuous-time stochastic process (Xt)t≥0 is a Gaussian process if for every k ≥ 1 and
any t1, . . . , tn, (Xt1 , . . . , Xtk) is a Gaussian vector.
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Proposition 19. Let (Bt)t≥0 be a continuous-time stochastic process. Then (Bt)t≥0 is a Brownian motion if and
only if it is a Gaussian process with mean function given by E[Bt] = 0 for all t ≥ 0 and covariance function given
by E[BsBt] = min(s, t) for all s, t ≥ 0 and such that for all ω ∈ Ω, the function t 7→ Bt(ω) is continuous on R+.

Proof. Assume first that (Bt)t≥0 is a Brownian motion. Let k ≥ 1 and let 0 ≤ t1 < · · · < tk. Then the
vector (Bt1 , Bt2 − Bt1 , . . . , Btk − Btk−1

) has independent components each with a Gaussian distribution, so it is
a Gaussian vector. Thus, (Bt1 , . . . , Btk) is a Gaussian vector. For every t ≥ 0, we have E[Bt] = E[Bt − B0] = 0
because Bt −B0 ∼ N (0, t). And if 0 ≤ s ≤ t, we have

E[BsBt] = E
[
Bs(Bs +Bt −Bs)

]
= E

[
B2
s

]
+ E

[
Bs(Bt −Bs)

]
= s+ 0 = min(s, t) .

using that Bs ∼ N (0, s) and that it is independent of Bt −Bs.

For the reciprocal, assume that B is a Gaussian process with the above mean function and covariance function,
and with continuous paths. First, B0 = 0 almost surely because E[B2

0 ] = 0. Then, if k ≥ 2 and 0 < t1 < · · · < tk
then (Bt1 , Bt2 −Bt1 , . . . , Btk −Btk−1

) is a Gaussian vector and we can check by computation that its components
are uncorrelated. Thus, its components are independent. Lastly, if 0 ≤ s ≤ t, we know that the increment Bt−Bs
is Gaussian and it suffices to check that it has mean 0 and variance t− s.

Proposition 20. Let B = (Bt)t≥0 be a Brownian motion. Then:

1. (Symmetry) (−Bt)t≥0 is a Brownian motion.

2. (Scaling) For each λ > 0, Bλ
t = Bλt/

√
λ is a Brownian motion.

3. (Weak Markov property) For each constant T > 0, BT
t := BT+t − BT is a Brownian motion (independent

from σ(Bs, s ≤ T )).

4. (Time inversion) (tB1/t1{t>0})t≥0 is a Brownian motion.

Proof. Left as an exercise. The most delicate point is to check that for the last point, the process is continuous
at 0, which is equivalent to

lim
t→∞

Bt
t

= 0 . (2)

Note that it follows from the Strong Law of Large Numbers that Bn/n → 0, when n is an integer which tends
to ∞. Exercise: prove that(2), holds almost surely, taking for granted that

E
[

sup
t∈[0,1]

|Bt|
]
< ∞ (3)

and using independence of increments. We show (3) later.

The fact that Brownian motions exist is not an obvious fact. We present later a rigorous construction of
Brownian motion. Before this, let us introduce the law of the Brownian motion:

Definition 31. Let C(R+, R) be the set of continuous functions from R+ to R, and let E be the Borel σ-algebra
on this set associated with the topology of uniform convergence on compacts. Ket B = (Bt)t≥0 be a Brown-
ian motion, defined on a probability space (Ω, F , P). We can see B as a map B : Ω → C(R+, R). The
Wiener measure P0 is the law of B on (C(R+, R), E), i.e., the image measure of P by B: for all A ∈ E, we
let P0(A) = P(B−1(A)) = P

(
(t 7→ Bt) ∈ A

)
.

Yet, to ensure that this definition makes sense, one needs to check the following fact:

Proposition 21. A Brownian motion B defines a measurable map from (Ω, F) to (C(R+, R), E).
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Proof. To show this, it is enough to check that for every open set O ⊂ C(R+, R), we have B−1(O) ∈ F . Yet, the
topology of uniform convergence on compacts derives from the distance

d : (f, g) 7−→
∞∑
n=1

1

2n
min

(
1, sup

[0, n]
|f − g|

)
.

The space C(R+, R) with this distance is separable (i.e., there exists a countable dense family), which implies
that each open set is a countable union of open balls. So it is enough to show that for every f ∈ C(R+, R) and
every ε > 0, we have {ω ∈ Ω : d(Bω, f) < ε} ∈ F . To show this, we may write

{
ω ∈ Ω : d(Bω, f) < ε

}
=
{
ω ∈ Ω :

∞∑
n=0

1

2n
min

(
1, sup

[0, n]∩Q
|B − f |

)
< ε
}
,

which belongs to F as the preimage of the measurable set [0, ε) through a measurable function (the big sum).
Note that here it is important that we reduced the supremum to the rational points, to that it is the supremum
of countably many quantities, which makes the above function measurable.

Remark: this Wiener measure P0 does not depend on the choice of the Brownian motion (the Brownian motion
in itself depends on the choice of the set Ω and on how it is constructed): all (standard) Brownian motion have
the same law.

8.2 Construction of Brownian motion

We now present a rigorous construction of Brownian motion. Note that a Brownian motion can be viewed as a
function of two variables:

B :

{
Ω× R+ −→ R
(ω, t) 7−→ Bω

t ,

Hence, for every fixed ω ∈ Ω, we have a function Bω : R+ → R: this is why we can say that Brownian
motion is a random function (“random” means that it depends on ω). Besides, for every fixed t ∈ R+, the
map Bt : ω ∈ Ω 7→ Bω

t ∈ R is a random variable, that is to say, a measurable map from Ω to R. In the following
proof, we often switch between these two points of view on Brownian motion, sometimes seen as a random func-
tion and sometimes as a family of random variables indexed by t ≥ 0. Hence, in the notation Bω

t , when we omit
the ω it means that we consider the random variable Bt, and when we omit the t it means that we consider the
function Bω. Sometimes we write B(t) instead of Bt, or B

ω(t) instead of Bω
t .

We construct the process only on the interval [0, 1], and then Brownian motion on R+ can be obtained by
pasting together independent copies.

We consider E = [0, 1], equipped with the Borel σ-algebra E = B([0, 1]) and the Lebesgue measure λ.
Then, L2(E) = L2(E, E , λ), which is the set of square integrable functions from E to R, is a Hilbert space,
when equipped with the scalar product ⟨f, g⟩L2(E) =

∫
[0,1] fg dλ.

The idea is that we will construct an isometry Φ : L2(E) → L2(Ω), where (Ω, F , P) is some probability space,
that is to say, to each function it associates a scalar random variable, and it preserves the scalar product, i.e., for
every f, g ∈ L2(E),

⟨Φ(f), Φ(g)⟩L2(Ω) = ⟨f, g⟩L2(E) ,

where the scalar product in L2(Ω) is the usual scalar product ⟨X, Y ⟩L2(Ω) = E[XY ]. This map Φ will also be such
that, for every f ∈ L2(E), the variable Φ(f) is a centered Gaussian variable with variance ∥f∥2L2 .

Then, we will construct a Brownian motion (Bt)t∈[0,1] such that, for every t ∈ [0, 1], Bt = Φ(1[0,t]). Note that
this does not really define B because the right-hand side is only an element of L2(Ω), namely, it is an equivalence
class of random variables which are almost surely equal. Therefore, this only defines Bt up to almost sure equality,
but not pointwise in ω. We will later define precisely Bω

t for every ω ∈ Ω and every t ∈ [0, 1].
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To get the intuition behind this construction, let us first check that if Φ and B are constructed in this way,
then the process B is indeed a Gaussian process with the correct mean and covariance functions. For every k ≥ 1,
if t1, . . . , tk ∈ [0, 1] and λ1, . . . , λk ∈ R then we have (note that Φ being an isometry implies that it is linear)

k∑
j=1

λjBtj =

k∑
j=1

λjΦ(1[0,tj ]) = Φ

( k∑
j=1

λj1[0,tj ]

)
,

which is a Gaussian variable because as explained before the function Φ maps every function f ∈ L2(E) onto a
Gaussian variable. Therefore, B is a Gaussian process on [0, 1].

Then, for every t ∈ [0, 1], we have E[B(t)] = E
[
Φ(1[0,t])

]
= 0 because Φ(1[0,t]) is a centered Gaussian variable.

And if 0 ≤ s ≤ t ≤ 1, using that Φ is an isometry we can write

E
[
B(s)B(t)

]
= E

[
Φ(1[0,s])Φ(1[0,t])

]
= ⟨Φ(1[0,s]), Φ(1[0,t])⟩L2(Ω)

= ⟨1[0,s], 1[0,t]⟩L2(E) =

∫
[0,1]

1[0,s](x)1[0,t](x) dx = s = min(s, t) .

Therefore, B is a Gaussian process with the correct mean and covariance function, and there will remain to check
later that its trajectories are continuous.

Let us now construct this map Φ. To define it, we consider a Hilbertian basis of the space L2(E). Namely, we
consider the family of functions (h0, hn,k)n∈N, 0≤k<2n defined by h0 = 1[0, 1] and, for n ∈ N and 0 ≤ k ≤ 2n − 1,

hn,k = 2n/2
(
1[ 2k

2n+1 ,
2k+1

2n+1

) − 1[ 2k+1

2n+1 ,
2k+2

2n+1

)) .
This family forms a Hilbertian orthonormal basis of L2(E) (the factor 2n/2 above is a normalization factor ensuring
that ∥hn,k∥L2(E) = 1), so that for every f ∈ L2(E) we have the convergence, in the L2 sense,

⟨f, h0⟩h0 +
N∑
n=0

2n−1∑
k=0

⟨f, hn,k⟩hn,k
N→∞−→ f . (4)

Then, we consider a family (Z0, Zn,k)n∈N, 0≤k<2n of i.i.d. standard Gaussian variables, defined on some probability
space (Ω, F , P). This sequence is orthonormal in L2(Ω, F , P), which is the set of square integrable scalar ran-
dom variables defined on Ω, equipped with the usual scalar product ⟨X, Y ⟩L2(Ω) = E[XY ], as explained above.
Therefore, there exists an isometry Φ : L2(E, E , λ) → L2(Ω, F , P) which maps the orthonormal basis onto the
orthonormal family, that is to say, such that Φ(h0) = Z0 and for every n ∈ N and every 0 ≤ k ≤ 2n − 1, we
have Φ(hn,k) = Zn,k. Applying this isometry Φ on both sides of (4), we get that, for every f ∈ L2(E),

Φ(f) = lim
N→∞

⟨f, h0⟩Z0 +

N∑
n=0

2n−1∑
k=0

⟨f, hn,k⟩Zn,k , (5)

where the limit is in L2. Note that this can also be taken as a definition of the map Φ.

At this point, we know that for every f ∈ L2(E), the variable Φ(f) is Gaussian, because it is a limit in L2 of
Gaussian variables, and we have the following:

Lemma 3. If a sequence of Gaussian variables converges in L2, then the limit is also Gaussian.

Proof. Left as an exercise. Note that L2 convergence implies convergence of the means and of the variances, and
then use the characteristic function.

Moreover, for every f ∈ L2(E), the variable Φ(f) is centered because it is a limit in L2 of centered variables,
and has variance Var(Φ(f)) = ∥Φ(f)∥2L2(Ω) = ∥f∥2L2(E) because Φ is an isometry. Therefore, we checked that Φ(f)
has distribution N

(
0, ∥f∥2L2(E)

)
.
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Let us now consider

g0 :

{
[0, 1] → R

t 7→ ⟨1[0, t], h0⟩ = t

and, for n ∈ N and 0 ≤ k ≤ 2n − 1,

gn,k :


[0, 1] → R

t 7→ ⟨1[0, t], hn,k⟩ =

∫ t

0
hn,k(s) ds .

Exercise: draw the graph of the first functions of the family. With this notation, for every t ∈ [0, 1], Equation (5)
applied to the function f = 1[0, t] writes

Φ(1[0, t]) = lim
N→∞

g0(t)Z0 +
N∑
n=0

2n−1∑
k=0

gn,k(t)Zn,k , (6)

where the convergence is still with respect to the L2 norm on L2(Ω). Then, for every N ∈ N we define a random
function

BN :


(Ω, F , P) −→ C([0, 1])

ω 7−→ Bω
N = Z0(ω)g0 +

N∑
n=0

Fn(ω) , with Fn(ω) =

2n−1∑
k=0

Zn,k(ω)gn,k ,

where C([0, 1]) is the set of continuous functions on [0, 1], so that (6) boils down to

∀t ∈ [0, 1] Φ(1[0, t]) = lim
N→∞

BN (t) , (7)

where the convergence is once again in L2(Ω).

We now want to show that, almost surely, the above convergence is uniform on the segment [0, 1], which we
do by showing that the series of the functions Fn converges normally, that is to say, that the series of general
term ∥Fn∥∞ converges, except for ω in a negligible set.

For every n ∈ N, since the functions (gn,k)0≤k<2n have disjoint support, we have

∥Fn∥∞ = max
0≤k≤2n−1

|Zn,k| ∥gn,k∥∞ = max
0≤k≤2n−1

|Zn,k| gn,k
(2k + 1

2n+1

)
=

1

2n/2+1
max

0≤k≤2n−1
|Zn,k| .

Then, for every n ∈ N, we have

P
(
∥Fn∥∞ ≥ 1

2n/4

)
= P

(
∃k ∈ {0, . . . , 2n − 1} : |Zn,k| ≥ 2n/4+1

)
≤ 2n P

(
|Z0| ≥ 2n/4+1

)
.

At this point, we use the following lemma:

Lemma 4. If Z is a standard Gaussian variable, then for all x ≥ 0, we have P(|Z| ≥ x) ≤ e−x
2/2.

The proof of this lemma is left as an exercise. Hint: simply use that for x, t ≥ 0, we have (x+ t)2 ≥ x2 + t2.

With this lemma, we obtain∑
n∈N

P
(
∥Fn∥∞ ≥ 1

2n/4

)
≤
∑
n∈N

2n exp
(
− 2n/2+1

)
< ∞ .

Thus, Borel-Cantelli’s lemma ensures that there exists Ω0 ∈ F with P(Ω0) = 1 and for every ω ∈ Ω0, for n large
enough we have ∥Fn∥∞ < 1/2n/4, which implies that

∞∑
n=0

∥Fn∥∞ < ∞ .
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Let us fix ω ∈ Ω0. Then, the sequence of functions (Bω
N )N∈N converges uniformly on the segment [0, 1] to a

function Bω : [0, 1] → R. Since Bω
N is continuous for every N and the convergence is uniform, the function Bω is

continous on [0, 1]. For ω ∈ Ω \ Ω0, we define Bω(t) = 0 for every t ∈ [0, 1], so that for every ω, the function Bω

is continuous.

Now, note that for every t ∈ [0, 1] we have BN (t) → B(t) almost surely, but from (7) we also have the
convergence BN (t) → Φ(1[0,t]) in L2. Thus, for every t ∈ [0, 1], almost surely, we have B(t) = Φ(1[0,t]). This
concludes the construction of Brownian motion, because we already checked that if B(t) = Φ(1[0,t]) then B
satisfies all the conditions to be a Brownian motion, apart from the continuity condition that we checked just
above.

8.3 Other properties

We conclude this section with a few properties of the paths of Brownian motion.

Definition 32. If B is a Brownian motion, we define its associated continuous-time filtration (Ft)t≥0 by writ-
ing Ft = σ (Bs, 0 ≤ s ≤ t) for every t ≥ 0, and we also define F∞ = σ(Bt, t ≥ 0).

Proposition 22 (Blumenthal’s 0 − 1 law). The σ-algebra F0+ = ∩st>0Ft is trivial, in the sense that every
event A ∈ F0+ has probability 0 or 1.

Proof. Let A ∈ F0+, and let us show that A is independent of F∞. For every k ≥ 1, for every choice of
times 0 ≤ t1 < · · · < tk and for every bounded and continuous function f : Rk → R, we have

E
[
1Af(Bt1 , . . . , Btn)

]
= E

[
lim
ε→0

1Af(Bt1+ε −Bε, . . . , Btn+ε −Bε)
]

= lim
ε→0

E
[
1Af(Bt1+ε −Bε, . . . , Btn+ε −Bε)

]
= lim

ε→0
P(A)E

[
f(Bt1+ε −Bε, . . . , Btn+ε −Bε)

]
= E

[
lim
ε→0

1Af(Bt1 , . . . , Btn)
]

= P(A)E
[
f(Bt1 , . . . , Btn)

]
,

where the first and last equalities follow from the continuity of the Brownian motion and of f , the second and the
fourth equalities follow from the dominated convergence theorem and for the third equality we used that A ∈ Fε
and independence of increments.

Hence, if A ∈ F0+, then A is independent of cF∞, and therefore of itself, because A ∈ F∞. Therefore, we
have P(A) = P(A ∩A) = P(A)2, which implies that P(A) ∈ {0, 1}.

Corollary 4 (Kolmogorov’s 0− 1 law). The tail σ-algebra ∩t≥0σ (Bs, s ≥ t) is also trivial.

Proof. It follows from Blumenthal’s 0-1 by considering the time inversion of Brownian motion, i.e., the process t 7→
tB1/t1t>0.

Corollary 5. It holds almost surely that for all t > 0,

sup
[0, t]

B > 0 and inf
[0, t]

B < 0 .

Proof. Consider the event

A =
⋂
t>0

{
sup
[0, t]

B > 0
}
.

For every s > 0, we have

A =
⋂

0<t≤s

{
sup
[0, t]

B > 0
}

∈ Fs ,
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so that we have A ∈ F0+. Hence, Blumenthal’s 0-1 law entails that P(A) ∈ {0, 1}.
Besides, we also have

A =
⋂
n≥1

An with An =
{

sup
[0, 1/n]

B > 0
}

and this intersection is non-increasing, so that P(A) = limP(An). Yet, for every n ≥ 1 we have

P(An) ≥ P
(
B1/n > 0

)
=

1

2
,

because B1/n is a centered Gaussian variable with positive variance. Thus, we conclude that P(A) ̸= 0 and finally
that P(A) = 1. The statement on the infimum also holds almost surely by symmetry.

Corollary 6. It holds almost surely that

lim sup
t→+∞

Bt = +∞ and lim inf
t→+∞

Bt = −∞ .

Proof. First note that the continuity of trajectories implies that{
lim sup
t→+∞

Bt = +∞
}

=
{
sup
t≥0

Bt = +∞
}
.

Let a > 0. For n ∈ N we can write

P
(
sup
t≥0

Bt > a
)

≥ P
(

sup
0≤t≤n

Bt > a
)

= P
(

sup
0≤t≤1

Bnt > a
)

= P
(

sup
0≤t≤1

Bnt√
n
>

a√
n

)
= P

(
sup

0≤t≤1
Bt >

a√
n

)
n→∞−→ P

(
sup
[0,1]

B > 0
)

= 1 ,

where the first equality on the second line follows from the time-change property of Brownian motion (see Propo-
sition 20), and the last equality is given by Corollary 5. Therefore, for every a > 0 we have

P
(
sup
t≥0

Bt > a
)

= 1 ,

which implies that this supremum is almost surely infinite.

We now wish to present the strong Markov property for Brownian motion. To do so, we need the following
definitions:

Definition 33. A random variable T taking values in R+∪{+∞} is a stopping time relative to a continuous-time
filtration (Ft)t≥0 if for every t ≥ 0, we have {T ≤ t} ∈ Ft.

Exercise 7. Is the above definition equivalent to the same definition where instead of the events {T ≤ t} we
consider the events {T = t}? (give a proof or a counterexample).

Definition 34. If T is a stopping time relative to a continuous-time filtration (Ft)t≥0, we define the σ-field of the
past until T as

FT =
{
A ∈ F∞ : ∀t ≥ 0 , A ∩ {T ≤ t} ∈ Ft

}
.

Exercise 8. Same question as above: can T ≤ t be equivalently replaced by T = t in the above definition?

Theorem 22 (Strong Markov property for Brownian Motion). Let B be a Brownian motion, let T be a stop-
ping time (relative to the filtration of B) such that P(T < ∞) > 0. Then, under the conditional probability
measure P(·|T <∞), the process B(T ) defined by

B(t) : t ≥ 0 7−→ BT+t −BT

is a Brownian motion, which is independent of FT .
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Proof. To simplify, we assume that T < ∞ almost surely. Let us show that for every A ∈ FT , every k ≥ 1
and 0 ≤ t1 < · · · < tk and f : Rk → R a continuous and bounded function,

E
[
1Af(B

(T )
t1
, . . . , B

(T )
tk

)
]

= P(A)E
[
f(Bt1 , . . . , Btk)

]
. (8)

This would show that B(T ) is independent of FT and the case A = Ω shows that B(T ) has the same distribution
as B, i.e., it is a Brownian motion. Let A, k, t1, . . . , tk, f be as above. The idea to show (8) is to discretize T
and to use the weak Markov property. More precisely, for every n ≥ 1, we define

Tn =
⌈nT ⌉
n

= inf

{
k

n
, k ∈ N,

k

n
≥ T

}
.

Then, we have Tn − 1/n < T ≤ Tn, whence Tn → T almost surely, and therefore we have the almost sure
convergence

f
(
B

(Tn)
t1

, . . . , B
(Tn)
tk

) n→∞−→ f
(
B

(T )
t1
, . . . , B

(T )
tk

)
.

Thus, by the dominated convergence theorem, we have

E
[
1Af(B

(T )
t1
, . . . , B

(T )
tk

)
]

= lim
n→∞

E
[
1Af(B

(Tn)
t1

, . . . , B
(Tn)
tk

)
]

= lim
n→∞

∞∑
k=0

E
[
1A∩{Tn=k/n} f(B

(k/n)
t1

, . . . , B
(k/n)
tk

)
]
.

Note now that for every n ≥ 1 and k ∈ N,

A ∩
{
Tn =

k

n

}
= A ∩

{
T ≤ k

n

}
\
{
T ≤ k − 1

n

}
∈ Fk/n ,

because A ∈ FT . Yet, the weak Markov property tells us that for every n ≥ 1 and k ∈ N, the process B(k/n) is a
Brownian motion independent of Fk/n, whence

E
[
1Af(B

(T )
t1
, . . . , B

(T )
tk

)
]

= lim
n→∞

∞∑
k=0

P
(
A ∩

{
Tn =

k

n

})
E
[
f(Bt1 , . . . , Btk)

]
= P(A)E

[
f(Bt1 , . . . , Btk)

]
,

applying again dominated convergence.

This strong Markov property has the following nice property:

Theorem 23 (Reflection principle). For t ≥ 0, let St = sups≤tBs. Then, we have

1. For every 0 ≤ a ≤ b, we have
P
(
St ≥ a, Bt ≤ b

)
= P

(
Bt ≥ 2a− b

)
.

2. For every t ≥ 0, the variable St has the same law as |Bt|.

Proof. We start by proving the first point. We consider the stopping time

T = inf
{
t ≥ 0 : Bt = a

}
.

We already know that T < ∞ almost surely, and the idea is to reflect the part of the trajectory of the Brownian
motion which is after this time, with respect to the horizontal line at height a. First, we write

P
(
St ≥ a, Bt ≤ b

)
= P

(
T ≤ t, Bt ≤ b

)
= P

(
T ≤ t, B

(T )
t−T ≤ b− a

)
. (9)

The last term above is the probability of an event which is expressed as a function of T and of B(T ). Yet, by the
strong Markov property, we have that B(T ) is independent of T (note that T is FT -measurable), and we have

B(T ) in law
= B

in law
= −B in law

= −B(T ) ,
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where the second equality is symmetry of Brownian motion (see Proposition 20). Therefore, Equation (9) becomes

P
(
St ≥ a, Bt ≤ b

)
= P

(
T ≤ t, −B(T )

t−T ≤ b− a
)

= P
(
T ≤ t, Bt −BT ≥ a− b

)
= P

(
St ≥ a, Bt ≥ 2a− b

)
.

Then, the second point of the statement follows by taking a = b and writing

P(St ≥ a
)

= P(St ≥ a, Bt > a) + P(St ≥ a, Bt ≤ a) = P(Bt ≥ a) + P(Bt ≥ 2a− a) = P(|Bt| ≥ a) ,

which concludes the proof.

Note that the second point in the above theorem implies that S1 ∈ Lp for every p < ∞, which in particular
implies (3).

Students interested in learning more on properties of Brownian motion can consult the book “Brownian motion”
by Mörters and Peres.
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