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Summary

In this talk : we consider the limit as € — 0 of
dX; = sign(X,)| X:|"dt +edBI, Xy =0,

where B is a fractional Brownian motion, v < 1, and show that it
concentrates on the extremal solutions

xE(t) = +C tT.



Regularization by noise of ODE

Recall that, by the classical Cauchy-Lipschitz theory, the ODE
dx; = b(x¢)dt, xo € RV
is classically well-posed for b Lipschitz continuous.
In contrast, in the case of SDE :
dX; = b(X;)dt + dW,, Xo € RN,

where W is a (standard) Brownian motion, it is known that b bounded
is enough to have (strong) well-posedness for the SDE : Zvonkine '74,
Veretennikov '81 (adapted solutions), Davie '07 (path-by-path
uniqueness).



dX; = b(X;)dt + dW;, X € RV,

Idea : the map
t
TWiOHp : x s / b(x + W.)ds
Jo

is much more regular w.r.t. x than b.

In fact : TWilbtlp — b piy.j0,5) Where fiyy[0 ¢ is the occupation measure,
and roughly speaking, irregularity of W < regularity of piy.jo.¢-

Letting & = X — W, the SDE is equivalent to
t
0; = b +/ b(0s + Ws)ds
0

which is close to an ODE along TWil%tp (assuming that 6 evolves at a
slower time scale than W).



Fractional Brownian motion

The above principle only requires W to have irregular paths — more
general family of processes with varying degree of (irr)regularity ?

Natural candidate : W = (W;); > ¢ fractional Brownian motion (fBm)
with Hurst parameter H € (0, 1).

@ Gaussian process, stationary increments, Wy = 0 and
H
[We = Well 2y = |t — s]",

@ sample paths are (H — ¢)-Hélder continuous

@ Representation as moving average of a standard (2-sided) BM B :

NI=

W, = CH/t ((t—s)"’* _(_s)ﬂ*%) dB;,

— 00

o NOT a semimartingale, NOT a Markov process (for H # 1).



Regularization of ODE by fractional noise

Consider, for W* fractional Brownian motion with Hurst index
H e (0,1)
dX; = b(X;)dt + dWH, with b singular

Early results in the scalar case by Nualart-Ouknine '02

More recently : Catellier-Gubinelli *16 show well-posedness when

1
be C” 1— —
el > >H

(Note : v may be negative in which case fo Xs)ds must be suitably
interpreted).

Based on regularlty results for the averaged field

(TWb)(t fo x + Ws)ds and nonlinear Young integration.

Recent progress using stochastic sewing lemma (L& '20), very active
research area.



Selection by noise

Let b be non-Lipschitz and X¢ solve
dX; = b(X:)dt +edW;, X, € RV,

what can we say about the behaviour of X¢ ase —07?

Hope : convergence to one (or more) particular solution(s) to the ODE
% = b(x), which could be interpreted as the natural "physical" solutions.
(Selection by noise).

Difficult question in general ! In the rest of the talk : focus on scalar
equations, with an isolated singularity.



A scalar example

Consider (for 0 < v < 1)

| AX, x>0
b(x) = { —Bl|x[7, x<0.

The equation
dx; = b(x;)dt, xo=0
admits infinitely many solutions, of the form

1 1
xtl =cp (t—to)7, orx %

= —cg,(t —to)}”

Theorem (Bafico-Baldi '82)

Let X be the solution to dX; = b(X:)dt + edW;. Then it holds that
Lxe —ve_sg TOxt.0 + (1 = 7T)(5X7,u.

for some (explicit) m = w(A, B, 7).

Their proof is based on "PDE" arguments (martingales, Markov
processes)



Main result : setting

We take W fBm with Hurst index H, fix 1 >y > 1 — 5 and b such
that :
bjx>0 = Ax7, bjxco = —B(—x)7,

be C(R), b(\)=A'b(-)

where A, B > 0, and let X¢ solve
dXi = b(X{)dt +edW;, X5 =0.

Again, for e = 0, we have the family of "solutions”

1

_1 _1
xTt = CAW(t — to)_lk_'y, or x ot = _CB;y(t — to)_::__w



Main result
Theorem (G.-Madry)

Under the above assumptions, it holds that
Lxe —ve_sg TOxt+0 + (1 = 7T)(5X—,o.

for some 7 € (0,1) .

In fact, for any 0 < § < 1, there exists 7. with
Vs >0, Xorr, = (1—0)x° or Xopr, < (1—0)x°
and letting t. = (25=H) " it holds that
Te
supP [ > )\} < exp(—CA"),
€ =

for some 0 < k < 1.

Remark : for v > 0, the first assertion was already proven by
Pilipenko-Proske '18.



Simulations

4 simulated paths of X¢, ¢ € {1,0.3,0.1,0.03}, for H =0.1, vy = -1
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4 simulated paths of X¢, ¢ € {1,0.3,0.1,0.03}, for H =0.7, y = 0.4
(ta ~ 81'03)



|deas of proof

dXE = b(XZ)dt + edW,, Xo=0.

Scaling idea (“transition point”) from Delarue-Flandoli '14 :
Recall that (up to constants)

0=t |eW,| ~ et".

Let

tE = g(ﬁiH)il

be such that these coincide, and x. their common value at this time.

Then :
for t << t., Xy W, (randomness dominates)
for t >> t., X, ~ x;=°  (drift dominates)

the transition between these two regimes happens at a time of order t,
where |X| is of order x..
(in fact X© =9 x. X1, )



Markovian proof (Delarue-Flandoli, H = 1/2)

Follow the following procedure :
@ Wait until X¢ hits level +x,, this happens at time 71, of order t.
© Starting from +£x,,

P (Vs >0,[X5 s =1—6)x2") = p>0.

T

© If the above event does not happen and fails at time o1, wait until
time 72 where | X¢| > x.

Q iterate with times 7, oy, ...

If everything were Markov, the above procedure would conclude after
finitely many (independent) steps.

What about in our case ?



Main difficulty : Non-Markovian techniques

W* non Markovian : what happens between and after time 7y is
correlated, and so are the subsequent attempts...

But recall that W can be written in terms of the (Markov !) process B :

W; = Cy /t ((t — s)H—% — (—5)17%) dBs,

— 00

andforu>v>s withu—v<<v-—s:

1

W, — W, / (u—r) %—(v—r)H*E) dB,
Fs-measurable but small
+ / ((u—r)H_% —(v—r)ilf%) dB,

independent from F;




Non-Markovian techniques

We take inspiration from works on long time behaviour of fractional
SDEs, in particular Hairer '06, Panloup-Richard '20 and add :
@ an "admissibility” condition on B before starting step 1 or 2,
ensuring that influence of the past is small enough (otherwise : wait
i.e. "Step 0")

@ during step 2, we sequentially check for constraints on B on growing
intervals (of size proportional to t.), which ensure that X stays close
to x%*. (when failed : wait before restarting step 1).

@ The waiting times are chosen to ensure than when we restart, the
influence of the past noise (B up to "failure” is small), to have

P (|X¢| stays above x 10 after 7| F,,_,) = p > 0.

@ More precisely : waiting times depend on 'size of B’ (in some Holder
norm) before failure, and number of attempts :

Pt — pi =K+ |BIlE>



Open question : optimal concentration estimates

Recall Freidlin-Wentzell large deviations : if b is smooth,
P(X¢ not close from x) = exp (—e 2 (C + o(1)))

Situation different in the singular case !
Gradinaru-Herrmann-Roynette 01 : for H=1/2 and v > 0,

P(IX{] > (1+6)x") = exp (—e72(C + o(1)))
P(1X;] < (1—0)x) =exp (—e 27 (C+o(1)))

Note that the rate in the second one is t-...as expected !
Q: What about H # 1 ?
From our results, we only obtain, for some small k < 1:

P(IXF] < (1-08)x") < exp (—t")
Possible conjecture : the optimal rate is always
“2 51

(Related to rate of convergence to equilibrium for fractional SDE)



Conclusion

Main result : we consider the limit as ¢ — 0 of

dX. = b(X.)dt + cdW}, Xo =0, with b(x) = Alx| 1,0 — B|x|1,0

1

where WH is a fractional Brownian motion, 1 > v>1— 55, and show

that it concentrates on the extremal solutions
1
xE(t) = £CtT7 .

Some open questions :
e Optimal concentration estimates P(X{ = 0) ~ exp(—¢~")

e Can we say anything about the weights given to x™ and x~ in the
limit ? Dependence on H ?

e More complicated (e.g. multi-dimensional) situations 7 (already
difficult in the Markovian case...)



