Université Paris-Dauphine

Master Masef
Année 2022-2023

Written exam : Evaluation des actifs financiers et arbitrage January 10, 2023 - 2h.

Exercise 1 : Utility maximization in a one-period model

We consider a one-period financial market. The underlying probability space is $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$, with $p_{i}:=\mathbb{P}\left(\left\{\omega_{i}\right\}\right)>0$ for each $i=1, \ldots, n$.

The market consists in two tradable assets : a risk-free asset with price values $B_{0}=1$ at time 0 and $B_{1}=1+r$ at time 1, for some fixed $r>0$, and a risky asset with price $S_{0}=1$, and $S_{1}=S_{1}(\omega)$ at time 1 .

In this market, a trading strategy (for a self-financing portfolio) is simply a number $\phi \in \mathbb{R}$, representing the number of units of the risky asset held in the portfolio between times 0 and 1 .

We then denote by $X_{1}^{x, \phi}$ the value at time 1 of a portfolio starting with wealth x at time 0 and trading with strategy ϕ.

As usual, if $X_{i}, i=0,1$ is a stochastic process we will call \tilde{X} its discounting, i.e. $\tilde{X}_{0}=X_{0}$ and $\tilde{X}_{1}=X_{1} /(1+r)$.

We fix a utility function $U: \mathbb{R} \rightarrow \mathbb{R}$, which must satisfy the following properties :

$$
\lim _{y \rightarrow+\infty} U(y)=+\infty, \quad U \text { is } C^{1} \text { on } \mathbb{R}, \quad \forall y \in \mathbb{R}, U^{\prime}(y)>0 .
$$

Given an initial wealth x and strategy ϕ, the corresponding expected utility is given by

$$
v(x, \phi)=\mathbb{E}\left[U\left(X_{1}^{x, \phi}\right)\right]
$$

and we are interested in the maximization problem

$$
u(x)=\sup _{\phi \in \mathbb{R}} v(x, \phi)=\sup _{\phi \in \mathbb{R}} \mathbb{E}\left[U\left(X_{1}^{x, \phi}\right)\right] .
$$

(1) For any $x \in \mathbb{R}$ and $\phi \in \mathbb{R}$, explain why

$$
\forall \omega \in \omega, \quad X_{1}^{x, \phi}(\omega)=(x-\phi) B_{1}+\phi S_{1}(\omega) .
$$

Give a similar formula for $\tilde{X}_{1}(\omega)$. Give an expression for $X_{1}^{x, \phi}$ in terms of $X_{1}^{0, \phi}$.
Recall that an arbitrage is an investment strategy ϕ s.t.

$$
\forall \omega \in \Omega, X_{1}^{0, \phi}(\omega) \geq 0, \quad \text { and } \exists \omega_{i} \in \Omega, X_{1}^{0, \phi}\left(\omega_{i}\right)>0 .
$$

(2) In this question, we assume that an arbitrage exists and we want to show that $u \equiv+\infty$.
(2a) Assume that ϕ is an arbitrage, show that there exists $1 \leq i \leq n$ such that, for any $x \in \mathbb{R}$,

$$
v(x, \phi) \geq\left(1-p_{i}\right) U(x(1+r))+p_{i} U\left(\left(x(1+r)+X^{0, \phi}\left(\omega_{i}\right)\right) .\right.
$$

(2b) Deduce how to construct a sequence $\phi_{n} \in \mathbb{R}$ such that for all $x \in \mathbb{R}$,

$$
\lim _{n} v\left(x, \phi_{n}\right)=+\infty .
$$

Deduce the value of $u(x)$.
(3) In this question, we fix $x \in \mathbb{R}$, and assume that there exists an optimal ϕ^{*} for which $u(x)=$ $v\left(x, \phi^{*}\right)$.
We also let

$$
\mathcal{M}(\tilde{S})=\left\{\mathbb{Q} \text { probability measure, } \mathbb{Q} \sim \mathbb{P} \text { and } \mathbb{E}^{\mathbb{Q}}\left[\tilde{S}_{1}\right]=S_{0}\right\}
$$

(3a) Compute $\frac{d}{d \phi} v(x, \phi)$.
(3b) Deduce that it holds that

$$
\mathbb{E}\left[U^{\prime}\left(X_{1}^{x, \phi^{*}}\right)\left(S_{1}-B_{1}\right)\right]=0
$$

(3c) Check that letting

$$
\frac{d \mathbb{Q}}{d \mathbb{P}}=\frac{U^{\prime}\left(X_{1}^{x, \phi^{*}}\right)}{\mathbb{E}\left[U^{\prime}\left(X_{1}^{x, \phi^{*}}\right)\right]}
$$

defines an element \mathbb{Q} of $\mathcal{M}(\tilde{S})$.
(4) We now consider an option with payoff $G=G(\omega)$ at time 1 . We consider the utility maximization problem for an agent buying the option, which can be written as

$$
u^{G}(x):=\sup _{\phi \in \mathbb{R}} v^{G}(x, \phi) \text { where } v^{G}(x, \phi)=\mathbb{E}\left[U\left(X_{1}^{x, \phi}+G\right)\right]
$$

$p \in \mathbb{R}$ is called an indifference price (for the buyer, with initial wealth x) if $u(x)=u^{G}(x-p)$. Throughout this question, we take for granted the existence of optimal strategies ϕ attaining the supremum in the definitions of v and v^{G}, for all values of x.
(4a) Discuss the definition of indifference price.
(4b) Show that for any $\phi, x \mapsto v^{G}(x, \phi)$ is strictly increasing. Deduce that u^{G} is strictly increasing and that, the initial wealth x being fixed, the indifference price, if it exists, is unique.
(4c) Recall the definition of a viable price. Show that if p is the indifference price, then p is a viable price.
(Hint : Show that, if p is an arbitrage for the buyer, then one can construct ϕ s.t. $v^{G}(x-p, \phi)>v\left(x, \phi^{*}\right)$, and conclude that $u^{G}(x-p)>u(x)$. Reason similarly for the seller).
(4d) If the market is complete, what can we say about the indifference price ?

Exercise 2 : Correlated assets

We consider a market with two risky assets, with price processes $S^{i}, i=1,2$ satisfying $S_{0}^{1}=$ $S_{0}^{2}=1$ and

$$
\begin{gathered}
d S_{t}^{1}=b_{1} S_{t}^{1} d t+\sigma_{1} S_{t}^{1} d W_{t}^{1} \\
d S_{t}^{2}=b_{2} S_{t}^{2} d t+\sigma_{2} S_{t}^{2}\left(\rho_{t} d W_{t}^{1}+\sqrt{1-\rho_{t}^{2}} d W_{t}^{2}\right)
\end{gathered}
$$

where $b_{1}, b_{2}, \sigma_{1}, \sigma_{2}$ are strictly positive constants, W^{1} and W^{2} are independent Brownian motions under \mathbb{P}, and ρ is an adapted process with values in $[-1,1]$.

The risk-free interest rate is a fixed constant $r>0$.
The goal of the exercise is to discuss the pricing and hedging of a European option with payoff $G=g\left(S_{T}^{1}, S_{T}^{2}\right)$ at time $T>0$.

Part I : constant correlation

In this section, we assume that $\rho_{t} \equiv \rho$ is a fixed deterministic constant in $]-1,1[$.
(1) Recall how to construct a probability measure $\mathbb{Q} \sim \mathbb{P}$ such that for $i=1,2$,

$$
\begin{gather*}
d S_{t}^{1}=r S_{t}^{1} d t+\sigma_{1} S_{t}^{1} d \bar{W}_{t}^{1} \tag{1}\\
d S_{t}^{2}=r S_{t}^{2} d t+\sigma_{2} S_{t}^{2}\left(\rho d \bar{W}_{t}^{1}+\sqrt{1-\rho^{2}} d \bar{W}_{t}^{2}\right)
\end{gather*}
$$

where $\left(\bar{W}^{1}, \bar{W}^{2}\right)$ are independent Brownian motions under \mathbb{Q}.
(2) Let $p_{\rho}:\left(t, s_{1}, s_{2}\right) \in[0, T] \times \mathbb{R} \times \mathbb{R} \mapsto p_{\rho}\left(t, s_{1}, s_{2}\right) \in \mathbb{R}$ be a smooth function which satisfies on $[0, T] \times \mathbb{R} \times \mathbb{R}$ the PDE

$$
r p-\partial_{t} p-r\left(s_{1} \partial_{s_{1}} p+s_{2} \partial_{s_{2}} p\right)-\frac{1}{2}\left(\sigma_{1}\right)^{2} s_{1}^{2} \partial_{s_{1} s_{1}} p-\frac{1}{2}\left(\sigma_{2}\right)^{2} s_{2}^{2} \partial_{s_{2} s_{2}} p-\rho \sigma_{1} \sigma_{2} s_{1} s_{2} \partial_{s_{1} s_{2}} p=0
$$

as well as the terminal boundary condition

$$
p\left(T, s_{1}, s_{2}\right)=g\left(s_{1}, s_{2}\right), \forall\left(s_{1}, s_{2}\right) \in \mathbb{R} \times \mathbb{R} .
$$

Prove that:
(i) for all $t \in[0, T], s_{1}, s_{2}>0$,

$$
p_{\rho}\left(t, s_{1}, s_{2}\right)=\mathbb{E}^{\mathbb{Q}}\left[e^{-r(T-t)} g\left(\left(S^{1}\right)_{T}^{t, s_{1}},\left(S^{2}\right)_{T}^{t, s_{2}}\right)\right]
$$

where $\left(\left(S^{1}\right)^{t, s_{1}},\left(S^{2}\right)^{t, s_{2}}\right)$ denotes the solution to (1) on $[t, T]$ with initial condition $S_{t}^{i}=s_{i}$, $i=1,2$.
(ii) it holds that, \mathbb{Q}-a.s.,

$$
e^{-r T} g\left(S_{T}^{1}, S_{T}^{2}\right)=p_{\rho}\left(0, S_{0}^{1}, S_{0}^{2}\right)+\sum_{i=1}^{2} \int_{0}^{T} \partial_{s_{i}} p_{\rho}\left(t, S_{t}^{1}, S_{t}^{2}\right) d \tilde{S}_{t}^{i}
$$

(iii) Recall the financial interpretation of the previous question, as it relates to the option with payoff $g\left(S_{T}^{1}, S_{T}^{2}\right)$.
(3) (i) Using Itô's formula, obtain an explicit expression for $\left(S^{1}\right)_{T}^{t, s_{1}}$ and $\left(S^{2}\right)_{T}^{t, s_{2}}$ in terms of $T-t, r, \rho, s_{i}, \bar{W}_{T}^{i}-\bar{W}_{t}^{i}, \sigma_{i}(i=1,2)$.
Deduce an expression for $\left.\mathbb{E}^{\mathbb{Q}}\left[e^{-r(T-t)} g\left(\left(S^{1}\right)_{T}^{t, s_{1}},\left(S^{2}\right)_{T}^{t, s_{2}}\right)\right)\right]$ involving two independent standard Gaussian variables Z_{1} and Z_{2}.
(ii) We now assume that the payoff is of the form $g\left(S_{T}^{1}, S_{T}^{2}\right)=h\left(S_{T}^{1}-S_{T}^{2}\right)$, where h is a C^{2} convex function. Using the representation from question (3)(i) and the previous question, deduce that $\partial_{s_{1} s_{2}} p_{\rho} \leq 0$.
(4) We now consider the case $\rho=1$. Show that in that case, if $\left(b_{1}, \sigma_{1}\right)$ and $\left(b_{2}, \sigma_{2}\right)$ are not proportional, one can construct an arbitrage.

Part II: Hedging with the wrong correlation

In this section, we go back to the case of a general correlation, which we assume not known a priori : we only know that, under a measure $\mathbb{Q} \sim \mathbb{P}$,

$$
\begin{gathered}
d S_{t}^{1}=r S_{t}^{1} d t+\sigma_{1} S_{t}^{1} d \bar{W}_{t}^{1} \\
d S_{t}^{2}=r S_{t}^{2} d t+\sigma_{2} S_{t}^{2}\left(\rho_{t} d \bar{W}_{t}^{1}+\sqrt{1-\rho^{2}} d \bar{W}_{t}^{2}\right),
\end{gathered}
$$

where $\left(\rho_{t}\right)$ is an adapted process, and $\bar{W}^{i}, i=1,2$ are independent \mathbb{Q}-Brownian motions. We assume that, it further holds that,

$$
\underline{\rho} \leq \rho_{t} \leq \bar{\rho}, \quad \forall t \in[0, T], \mathbb{Q} \text {-a.s. }
$$

where $-1<\underline{\rho}<\bar{\rho}<1$ are some fixed constants.
We now $\overline{f i x} \tilde{\rho} \in]-1,1[$, and assume that we sell and hedge the option according to the model with constant correlation parameter $\tilde{\rho}$. To be more precise, this means that we initially sell the option at price $P_{0}=p_{\tilde{\rho}}\left(0, S_{0}^{1}, S_{0}^{2}\right)$, and then invest in the risky assets with a strategy $\left(\phi_{t}^{1}, \phi_{t}^{2}\right)=$ $\left(\partial_{s_{1}} p_{\tilde{\rho}}\left(t, S_{t}^{1}, S_{t}^{2}\right), \partial_{s_{2}} p_{\tilde{\rho}}\left(t, S_{t}^{1}, S_{t}^{2}\right)\right)$, where $p_{\tilde{\rho}}$ is the function considered in Part I.

Since the correlation ρ_{t} is not assumed constant, we will make a hedging error. We now aim at computing this error.
(1) Apply Itô's formula, and the equation satisfied by $p_{\tilde{\rho}}$, to obtain that, a.s.,

$$
\begin{aligned}
& e^{-r T} g\left(S_{T}^{1}, S_{T}^{2}\right)=p_{\tilde{\rho}}\left(0, S_{0}\right)+\frac{1}{2} \int_{0}^{T} e^{-r t}\left(\rho_{t}-\tilde{\rho}\right) \sigma_{1} \sigma_{2} S_{t}^{1} S_{t}^{2} \partial_{s_{1} s_{2}} p_{\tilde{\sigma}}\left(t, S_{t}^{1}, S^{2}\right) d t \\
& \quad+\int_{0}^{T} e^{-r t} \partial_{s_{1}} \rho_{\tilde{\rho}}\left(t, S_{t}^{1}, S_{t}^{2}\right) \sigma_{1} d \bar{W}_{t}^{1}+\int_{0}^{T} e^{-r t} \partial_{s_{2}} p_{\tilde{\rho}}\left(t, S_{t}^{1}, S_{t}^{2}\right)\left(\rho_{t} d \bar{W}_{t}^{1}+\sqrt{1-\rho_{t}^{2}} d \bar{W}_{t}^{2}\right)
\end{aligned}
$$

(2) Deduce an expression for the (discounted) hedging error, defined as

$$
\tilde{\mathcal{E}}:=\left(P_{0}+\sum_{i=1}^{2} \int_{0}^{T} \phi_{t}^{i} d \tilde{S}_{t}^{i}\right)-e^{-r T} g\left(S_{T}^{1}, S_{T}^{2}\right) .
$$

(3) We assume in this question that $g\left(s_{1}, s_{2}\right)=h\left(s_{1}-s_{2}\right)$ where h is a C^{2} convex function. Using the result of (4) (ii) in Part I, deduce a choice of $\tilde{\rho}$ such that $\tilde{\mathcal{E}} \geq 0$ (namely, the considered strategy is super-hedging).

