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Exercise 1 : A market with uncertain trade execution
We consider a classical one-period binomial market, where the investor faces some uncertainty

on the execution of his trade order. The underlying probability space is

Ω = {νu, νd} × {0, 1},

we write its elements ω = (ν, θ) and we assume that the historical probability measure P satisfies
P(ω) = 1

4 for each ω ∈ Ω.
The market consists in two tradable assets : a risk-free asset with price values B0 = 1 at time

0 and B1 = 1 + r at time 1, for some fixed r > 0, and a risky asset with price S0 = 1,

S1(νu, θ) = 1 + u, S1(νd, θ) = 1 + d

independently of the value of θ, where −1 < d < u are fixed constants.

In this market, a trading strategy (for a self-financing portfolio) is simply a number φ ∈ R,
representing the number of units of the risky asset the investor would like to hold in the portfolio
between time 0 and time 1. We assume that with probability 1/2, the trade is not realized, more
precisely :

• If ω = (ν, 1), then the trade proceeds as planned,

• If ω = (ν, 0), then the trade is cancelled (with no cost for the investor).

We then denote by Xx,φ
1 the value at time 1 of a portfolio starting with wealth x at time 0 and

trading with strategy φ (we assume that initially, all the wealth is invested in the riskless asset).

As usual, if Xi, i = 0, 1 is a stochastic process we will call X̃ its discounting, i.e. X̃0 = X0 and
X̃1 = X1/(1 + r).

(1) For any x ∈ R and φ ∈ R, show that

X̃x,φ
1 (ν, θ) = x+ θφ

(
S̃1(ν)− 1

)
.

Recall that the No Arbitrage condition is

∀φ ∈ R,
(
X0,φ

1 (ω) ≥ 0 for all ω ∈ Ω
)
⇒
(
X0,φ

1 (ω) = 0 for all ω ∈ Ω
)
. (NA)

(2) Show that (NA) holds if and only if d < r < u.

(3) We let

M(S̃) =
{
Q ∼ P such that EQ

[
S̃1

]
= S0

}
.

Show that (NA) is equivalent toM(S̃) 6= ∅. If this condition holds, compute all the elements
of M(S̃).
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We now assume that d < r < u and consider an option with payoff G = g(S1), for a given function
g : {1 + u, 1 + d} → R.

(4) We denote by p̂(G) the superhedging price of the option. Recall its definition, then show that
p̂(G) = maxω∈Ω G̃(ω).

(5) Show that, if G is not a constant random variable, then it is not replicable in this market.

(6) The superhedging price being too high of a price, we consider a relaxed requirement on the
price and let

p̃(G) = inf

{
p ∈ R, ∃φ ∈ R, P

(
Xp,φ

1 ≥ G
)
≥ 3

4

}
.

Show that for any Q ∈M(S̃), it holds that

p̃(G) = EQ
[
G̃
]

and compute the associated strategy φ.
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Exercise 2 : Pricing with different interest rates
We consider a financial market with one risky asset, whose price process satisfies

St = S0 +

∫ t

0
b(Ss)ds+

∫ t

0
σ(Ss)dWs.

where W is a one-dimensional Brownian motion defined on a probability space (Ω,F ,P). The
functions b, σ are Lipschitz-continuous and b, σ and σ−1 are bounded. In the market, there are two
different interest rates: r > 0 is the rate for lending money, and R > r is the rate for borrowing
money. The goal of this exercise is to characterise the hedging price of an European option paying
g(ST ) at maturity T > 0. Here, g is a continuous function.

(1) Dynamics of the wealth process. For any t ≥ 0, we denote by φt the quantity of risky asset
held in the portfolio, αt the amount of money held on the cash account at time t and Vt the
value of the wealth process at time t.

(a) Explicit the infinitesimal change of value of the cash account between the date t and
t+ dt using r and R.

(b) Show that for a self-financing strategy

Vt = v +

∫ t

0

(
rVs + (b(Ss)− rSs)φs − (R− r) [Vs − φsSs]−

)
ds+

∫ t

0
φsσ(Ss)dWs,

where v is the initial wealth and we denote a− = −max(a, 0) = −a1{a≤0}. We
work here with strategies φ ∈ A, the set of measurable adapted processes such that

E
[∫ t

0 φ
2
sσ(Ss)

2ds
]
<∞.

(c) Compare with the classical framework.

(2) In the sequel, we denote f(x, y, z) = −ry − z(b(x) − rx)/σ(x) + (R − r)[y − zx/σ(x)]−. In
particular the dynamics of the wealth process starting from v and following the strategy φ
reads

V v,φ
t = v −

∫ t

0
f(Ss, V

v,φ
s , σ(Ss)φs)ds+

∫ t

0
φsσ(Ss)dWs. (1)

We want to characterise the minimal super-hedging price given by

p := inf
{
v ∈ R such that there exists φ ∈ A : V v,φ

T ≥ g(ST )
}
.

We assume that there exists a smooth solution u to the following semilinear PDE

∂tu+ b(x)∂xu+
1

2
σ(x)2∂xxu+ f(x, u, σ(x)∂xu) = 0,

with u(T, ·) = g. (We also suppose that u and all its derivatives are bounded).

(a) Let Yt = u(t, St) and Zt = σ(St)∂xu(t, St). Compute the dynamics of Y and give an
expression for YT .

(b) By determining a hedging strategy, deduce that u(0, S0) ≥ p. (Hint : use the fact that
for fixed v and φ, V v,φ is the unique solution to (1))
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(3) We are now going to prove the converse inequality.

(a) Let v ∈ R, φ ∈ A such that V v,φ
T ≥ g(ST ). We set δ := V v,φ−Y and β := φσ(S)−Z.Show

that

δt = δT +

∫ T

t
(asδs + bsβs)ds−

∫ T

t
βsdWs

where a and b are some bounded processes (to determine).

(b) Let Γ be the process given by

Γt = e
∫ t
0 (as− 1

2
b2s)ds+

∫ t
0 bsdWs .

Compute the dynamics of (Γtδt)t∈[0,T ].

(c) Deduce from the previous question the sign of δ0 and conclude.
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