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Fully nonlinear (2nd order parabolic) Stochastic PDEs

Evolution equations of the type{
u(0, ·) = u0,
du = F (x ,Du,D2u)dt + H(x ,Du) ◦ dBt ,

where u : [0,T ]× RN × Ω → R.

Introduced by Lions-Souganidis (’98).

Here B is a random path (typically Brownian motion) in Rd , and F is
degenerate elliptic i.e. nondecreasing in D2u.
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Motivation : movement of interfaces

Interface Γ moving with normal velocity :

V = f (x , n⃗,Dn⃗) +
∑
i

gi (x , n⃗)Ḃ
i

If we represent Γ as a level set {u = 0}, we can write a PDE for u :

du = F (x ,Du,D2u)dt +
∑
i

Hi (x ,Du) ◦ dB i
t

with

F (x , p,A) = −|p|f
(
x ,− p

|p|
,−Qp(A)

)
Hi = −|p|gi

(
x ,− p

|p|

)
.

(Then F elliptic ⇔ monotonicity of dynamics)
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Stochastic mean curvature flow

Guiding example : mean curvature flow + stochastic perturbation

V = −divΓn⃗(x) + Ḃ(t)

Level set PDE

∂tu = Tr
(
D2u

(
I − Du ⊗ Du

|Du|2

))
+ |Du| ◦ Ḃ(t)

→ quasilinear, parabolic, degenerate PDE + non-linear multiplicative
noise

Deterministic dynamics have been studied by many authors. Level set
PDE : Evans-Spruck (’91), Chen-Giga-Goto (’91),Barles, Soner,
Souganidis,...

The stochastic dynamics can be obtained as limit of bistable
reaction-diffusion with additive noise

∂tv
ε = ∆vε − 1

ε
F ′(vε) + ξε(t)

Funaki (’98), Weber (’10), Lions-Souganidis (’00,’20),...
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Solution theory

Pathwise approach : ξ = B(ω) is fixed, i.e. consider

∂tu = F (x , u,Du,D2u) +Hi (x , u,Du)ξ̇
i (t) on (0,T ]×RN , u(0, ·) = u0

for fixed u0 ∈ BUC (RN), ξ ∈ C 0([0,T ];Rd) (ξ(0) = 0).

Classical case : ξ ∈ C 1. No classical solution in general.
But Crandall-Lions theory of viscosity solutions give
existence/uniqueness.

Stochastic case : need to extend (continuously) the map ξ 7→ u
from C 1 to C 0
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Irreversibility

Nonlinearity of the equation → even for smooth u0, "shocks"
(discontinuities in Du) typically appear in finite time.

Need some PDE theory for weak solutions, the solution is NOT just an
SDE solution in infinite dimensions.

For example :
Finite-dimensional ODE with 1-dimensional noise

Ẋ (t) = V (X )ξ̇(t).

The solution is simply given by X (t) = ϕV (X0, ξ(t)).
For stochastic Hamilton-Jacobi

∂tu = H(x ,Du)ξ̇,

this is not so simple !
( Indeed : the (deterministic) equation

∂sU = H(x ,DU), U(0, ·) = u0

typically does not have a C 1 solution on (−∞,∞)× RN .)
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Irreversibility

Simple example :

∂tu = |Du| ξ̇(t), u(0, x) = |x |.

Then the (sub-)level sets ΓR(t) = {u(t, ·) ⩽ R} are given by

ΓR(t) =

{
B0(R − ξ(t)), t ⩽ τ

∅, t > τ

where τ = inf{t > 0, R − ξ(t) < 0}.
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Some well-posedness results

∂tu = F (x , u,Du,D2u) + Hi (x ,Du)ξ̇
i (t) on (0,T ]× RN , u(0, ·) = u0

Lions-Souganidis (98-00) : x-independent case. H = H(Du)
difference of convex functions (d-dimensional noise),
F = F (Du,D2u).
Semilinear case (H = H(x , u,Du) linear in Du) : global
transformations, cf. rough path approaches by Friz and coauthors
(’10 ’13)
d = 1, H = H(x ,Du) strictly convex in Du.
Friz-G.-Lions-Souganidis (’17), Seeger (’18), Lions-Souganidis.
Neumann boundary conditions : G.-Seeger (’21).

Proofs based on maximum principle arguments

d

dt
max
x,y

{u(t, x)− v(t, y)− Φ(t, x , y)} ⩽ 0,

for suitably chosen test-function Φ.
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Rest of the talk

Given a solution u to an equation of the form

du = F (x ,Du,D2u)dt + H(x ,Du) ◦ dB(t), t > 0, x ∈ TN

what can we say about u(t, ·) as t → ∞ ?

No general theory, but we present results in three regimes :
Convergence to equilibrium in x-independent equations
Quantitative rate of convergence in dimension 1 (x ∈ T)
Convergence to equilibrium in x dependent equations (when F ≡ 0)
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Basic idea

Consider
du = F (D2u,Du)dt + H(Du) ◦ dBt .

Up to translating the solution, assume F (0, 0) = H(0) = 0 → constants
are solutions.

Say we know that solutions to the deterministic equation
∂tv = F (D2v ,Dv) converge to constants.
B Brownian motion : almost surely, B will be very small on large
intervals.
By continuity, this means that on these intervals, u will behave like
v , and be close to a constant.

Conclusion : limt→∞ u(t, ·) = (const.).

(Very classical idea, cf e.g. Dirr-Souganidis ’03)
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Long time behaviour for a stochastic mean curvature flow

Let D = D ′ × R, where D is a bounded, C 2, convex domain in RN−1.
Fix Γ0 closed subset of D, with for some a < b

D ′ × (−∞, a] ⊂ Γ0 ⊂ D ′ × (−∞, b]

and consider Γ(t) its evolution under stochastic mean curvature flow

V = −div∂Γ(t)n⃗(x) + Ḃ(t)

with Γ(t) = Γ0, and right angle boundary condition

nΓ(t) · nD = 0 on ∂Γ(t) ∩ ∂D.

Theorem (G. Seeger ’21+)

Almost surely, for some c ∈ [a, b],

lim
t→∞

distH
(
Γ(t), Γ̄c(t)

)
= 0,

where
Γ̄c(t) = D × (−∞, c + B(t)].



Fully nonlinear SPDE Qualitative results : x-independent case Quantitative results in 1d Qualitative results : x-dependent case

Ideas of proof

We consider the level set formulation{
du = Tr

(
D2u

(
I − Du⊗Du

|Du|2

))
dt + |Du|dξ(t)

u(0, x) = u0(x), ∂nu = 0 on (0,+∞)× ∂D

Then we use the scheme of proof described above (comparison + related
compactness estimates) in the following steps :

convergence of deterministic dynamics : Giga Ohnuma Sato (’99),
u → v = v(xn).
stochastic term → v ↗ in xn.
convergence in Hausdorff distance requires a Borel-Cantelli argument
to rule out ”macroscopic holes” for large time.

(Similar results were obtained by different methods in the case of a
periodic graph by Es-Sahrir & von Renesse (’12) and
Dabrock-Hofmanova-Röger (’21))
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Stochastic mean curvature in 1D

For illustration purposes, consider the stochastic mean curvature flow
evolution of a periodic 1D graph :

∂th =
∂xxh

1 + (∂xh)2
+
√

1 + (∂xh)2 ◦ Ḃ(t), on [0,∞)× T,

h(0, ·) = h0 ∈ C (T),

where B is a scalar Brownian motion.

From Section 2 we expect (know) that

osc(u, t·) := max
T

u(t, ·)−min
T

u(t, ·) →t→∞ 0.

What about quantitative statements ?
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Theorem (G. Gess Lions Souganidis (’22+))

There exists c > 0 and a P-a.s. finite random variable C (ω), such that,
for any h solution to the previous equation, then,

∀t ⩾ 0, osc(h(t, ·)) ⩽ C (ω)osc(h0)e
−ct .

Remark : this is an improvement over both the deterministic (B ≡ 0) and
the purely stochastic case :

due to the degeneracy as ∂xh → ∞, there exist solutions hR to
∂th = ∂xxh

1+(∂xh)2
s.t.

osc(hR(0, ·)) = R, osc(hR(t, ·)) ⩾ R

2
for all t ⩽ cR.

for ∂th =
√

1 + (∂xh)2 ◦ Ḃ(t),

osc(h(t, ·)) ≈t→∞
C

max[0,t] B −min[0,t] B
≈ C

t1/2
.

Stochastic structure of B not so important, would also work for
B(t) = t, C sin(t) or fractional BM.
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Sketch of proof

Rewrite the equation as

∂tu = ∂xF (ux) + H(ux)Ḃ(t)

(with F (r) = arctan(r) and H(r) =
√

1 + r2 − 1). The proof proceeds in
3 steps :

1 The stochastic term guarantees that

osc(u(τ1, ·)) ⩽ C , for some τ1 ⩽ ln(osc(u0)) + C (ω).

Proof : This follows from
d

dt

∫
T
u =

∫
T
∂x(F (ux)) +

(∫
T
H(ux)

)
Ḃ(t)

(where H(p) =
√

1 + p2 − 1), which leads to

osc(u(t + h)) ⩽
∫
T
H(ux(t + h, ·)) ⩽ C

osc(u(t))
osc(B)t,t+h

(where H(p) =
√

1 + p2 − 1),and then using that [0,T ] can be
subdivided in T/C intervals where osc(B) is of order C ′, this gives

osc(u(T )) ⩽ C(ω)e−cTosc(u0).
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2 At a time τ2 = τ1 + C ′(ω),

∥ux(τ2)∥L∞ ⩽ C .

Proof : A similar argument to the previous step gives

∥G(ux(t + h, ·))∥∞ ⩽
osc(u(t, ·))

sup[u,v ]⊂[t,t+h], B(u)=min[u,v ] B

∫ v

u
(B(r)− B(u))dr

,

where
G(r) =

∫ r

0
(F ′H ′′)(u)du (∼r→0 cr)

Indeed : N(t) =
∫
T H(ux (·, t))dx satisfies

dN(r)

dr
⩽ −

∫
T
(F ′H′′)(ux (x , r))(uxx (x , r))

2dx ⩽ − ∥G(u(·, r)∥∞.

and we have ∫
u(·, t)−

∫
u(·, s) ⩾ −

∫ t

s
(B(u)− B(s))

dN(u)

du
du
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3 Once the gradient is bounded, we obtain

∥ux(τ2 + h)∥L2 ⩽ e−ch∥ux(τ2)∥L2 .

Proof : This follows from the uniform ellipticity of the deterministic part :

d

dt

∫
T
u2
x =−

∫
T
F ′(ux)(uxx)

2 −
∫
T

(
H ′′(ux)uxuxx

)︸ ︷︷ ︸
∂x (...)

Ḃ(t)

⩽ − c(∥ux∥∞)

∫
T
u2
x .

(Remark : more estimates / examples can be found in the paper).
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In this section, we consider solutions to

du = H(x ,Du) ◦ dB(t), on (0,+∞)× Td

where H is convex in Du.

Corresponds for instance to motion of a (periodic) graph where velocity
is given by

V (t, z) = a(x)Ḃ(t)

(where z = (x , zn) and a(·) ⩾ 0), in which case

H(x , p) = a(x)
√

1 + |p|2.
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Main result

Theorem (G. Gess Lions Souganidis (’22+))

Let H = H(x ,Du) be convex in Du and (for instance) strictly convex in
Du. Then, there exists cH s.t., for any solution u to

du + H(x ,Du) ◦ dB(t) = 0 on (0,∞)× Td ,

it holds that

u(t, x) = cHB(t) + ψ(t, x) + ot→∞(1).

Here ψ is a statistically stationary solution to

∂tψ + (H(x ,Dψ)− cH) ◦ dB(t) = 0,

satisfying

ϕ−(x) ⩽ ψ(t, x) ⩽ ϕ+(x) for all t ∈ R and x ∈ Td .

with
±
(
c + H(x ,Dϕ±)

)
= 0 in Td (in viscosity sense).
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The proof is based on repeated application of the inequality

SH(δ)S−H(δ) ⩽ Id ⩽ SH(δ)S−H(δ)

which crucially relies on convexity of H. (cf. Barron et al. ’98,
GGLS ’20).
The long-time behaviour of u(t, ·) is therefore given by :
(i) the macroscopic position ( cB(t))
(ii) the selected limiting upper/profile (ϕ+ / ϕ−)
(iii) the actual position of the associated stationary solution ψ.
In fact, these are roughly independent in the t → ∞ limit :(

B(t)√
t
, u(t, ·)− cB(t)

)
→

t→∞

(
Z , ψΦ+(B),B′

(0, ·)
)
.

where Z ∼ N (0, 1), B, B ′ are independent.
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Conclusion : some open questions

Good understanding of x-dependent equations
Well-posedness / selection by noise for ill-defined mean curvature
flow ?
Regularity theory ?

∂tu = λ∆u + H(Du) ◦ Ḃ(t) ? ⇒? u(t, ·) ∈ C 1

(scaling critical !)
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