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Rough volatility models

Stochastic volatility models, the (discounted) asset price has dynamics
(under pricing measure)

dSt = σtStdWt ,

and σt is a process with rough sample paths, typically modelled around a
fractional Brownian motion W H with H ∈ (0, 1

2 ), e.g.

σt = f (t,W H
t ),

(where W H and W are correlated).
Bayer-Friz-Gatheral ’16 : rough Bergomi model, f (t, x) = ζ(t) exp(ηx).
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fractional Brownian motion

W H fractional Brownian motion (fBm) with Hurst parameter
H ∈ (0, 1).

Riemann-Liouville fBm :

W H
t = CH

∫ t

0
(t − s)H− 1

2 dWs ,

where W standard BM.
Gaussian process, explicit covariance function.
sample paths are (H − ε)-Hölder continuous
(H < 1

2 : rough(er than standard BM) regime).

NOT a semimartingale, NOT a Markov process (for H ̸= 1
2 ).
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fractional Brownian motion : sample paths

W H fractional Brownian motion (fBm) with Hurst parameter
H ∈ (0, 1).
Simulated sample paths with H ∈ {0.1, 0.35, 0.5, 0.75} :
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Advantages of rough volatility models

historical time-series of observed prices are consistent with a rough
volatility process with H ≈ 0.1 (Gatheral-Jaisson-Rosenbaum ’16,...)
can reproduce features of observed volatility surfaces, in particular
explosion of ATM skew τH−1/2, again H ≈ 0.1 (Alos-Leon-Vives ’07,
Fukasawa ’11)
arises as scaling limit of microstructure models under natural
assumptions (El Euch-Fukasawa-Rosenbaum ’18,
Jusselin-Rosenbaum ’20).

A lot of research activity in the last 7 years
(cf. http://sites.google.com/site/roughvol)

However, lack of Markov (and semimartingale) property leads to
complications, from both theoretical and practical perspectives.

http://sites.google.com/site/roughvol
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Rough paths and rough volatility

• In general, does not fall in classical rough path setting. But can still
have a rough path type approach∫ T

0
σ(Ŵt)dWt ≈

∑
i

∑
0 ⩽ k ⩽ K

σ(k)(Ŵti )

k!

(∫ ti+1

ti

Ŵ k
ti ,sdWs

)

cf. [Bayer, Friz, G., Martin, Stemper, MF, ’20], see also
Harang-Tindel-Wang, Bruned-Katsetsiadis, Fukasawa-Takano for related
recent results.

• Useful to obtain precise large deviation estimates, cf. [Friz, G. ,
Pigato, AAP, ’21], [Friz, G. , Pigato, QF, ’22],

c(t, kt) ∼t→0 exp

(
−Λ(x)

t2H

)
t1/2+2H A(x)

2Λ′(x)
√

Λ(x)
√
π

where we combine Laplace method on Wiener space with rough path
type methods (following Azencott, Ben Arous, Aida, Inahama,...).
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Motivation : rough volatility pricing

Rough Bergomi (type) model :

dSt/St = σt(ρdWt + ρ̄dW̄t), σt = f (t, Ŵt),

Ŵt =

∫ t

0
K (t, s)dWs , K (t, s) = (t − s)

H−1/2
+ .

Call prices in this model given by (Romano-Touzi formula)

E
[
CBS

(
S0 exp

(
ρ

∫ T

0
f (t, Ŵt)dWt −

ρ2

2

∫ T

0
f (t, Ŵt)

2dt

)
,K ,

ρ̄2

2

∫ T

0
f (t, Ŵt)

2dt

)]

=: E [Φ (I,J )]

where

I =

∫ T

0
f (t, Ŵt)dWt , J =

∫ T

0
f (t, Ŵt)

2dt
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Numerical simulation of I

I =

∫ T

0
f (Ŵt)dWt , Ŵt =

∫ t

0
(t − s)H−1/2dWs .

Discretization : N time steps, h = T
N , tk = kh, k = 0, . . . ,N.

I ≈ ÎN :=
N−1∑
k=0

f (Ŵtk )
(
Wtk+1 −Wtk

)
.

The Gaussian vector (
Ŵtk ,Wtk

)
k=1,...,N

has explicit covariance and can be simulated exactly by the Cholesky
method (cost : O(N2) + preliminary O(N3)).
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Strong error vs weak error

I =

∫ T

0
f (Ŵt)dWt , Î =

∑
k

f (Ŵtk )
(
Wtk+1 −Wtk

)
=

∫ T

0
f (Ŵη(t))dWt

with η(t) = h⌊t/h⌋.
Strong error

E
[(

I − Î
)2
]
=

∫ T

0
E
[(

f (Ŵt)− f (Ŵη(t))
)2
]
dt ∼ N−2H

→ strong order H, very slow convergence for H close to 0 !
But what about weak error ? i.e. given test function Φ,

EΦ := E [Φ(I)]− E
[
Φ(Î)

]
≲ N−??

Recall classical case H = 1/2, strong rate = 1/2, weak rate = 1 (classical
works of Talay and co-authors).
For general H ? Guesses : 2H, H + 1/2, 1, . . . ?
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A heuristic computation suggesting rate 2H

Asymptotic distribution of the strong error :

∆I = I − Î =

∫ T

0

(
f (Ŵt)− f (Ŵη(t))

)
dWt ≈ Vf ,H(ω)Z ,

where Vf ,H(ω) = CH(
∫ T

0 f ′(Ŵt)
2dt)1/2N−H and Z ∼ N (0, 1) , Z ⊥⊥ W .

(stable convergence, cf. Rootzen ’80,...).
This leads to

E
[
Φ(I)

]
− E

[
Φ(Î)

]
≈ E

[
Φ′(I)∆I

]
+

1
2
E
[
Φ′′(Î)(∆I)2

]
≈ E

[
Φ′(I)Vf ,H

]
E
[
Z
]
+

1
2
E
[
Φ′′(I)V 2

f ,H

]
E
[
Z 2]

∼ C ′
f ,H,ΦN

−2H

This suggests rate 2H...which turns out to be wrong !
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Weak error rate for quadratics (Φ(x) = x2)

(Computation taken from Bayer-Hall-Tempone ’20, attributed to
Neuenkirch)

E[I2] =

∫ T

0
E[f (Ŵt)

2]dt =

∫ T

0
ϕf (t)dt

where ϕf (t) = E[f 2(cHt
HZ )], Z ∼ N (0, 1).

Similarly,

E[Î2] =

∫ T

0
ϕf (η(t))dt.

But ϕ is locally Lipschitz, more precisely ∂tϕf (t) ≲ tH−1 and

E[I2]− E[Î2] ⩽
T

N

∫ T

0
|∂tϕf (t)|dt ⩽

C

N

For quadratics, weak rate is = 1, much better than 2H !
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Main result : weak rate is (3H + 1/2) ∧ 1 (in some cases)

Theorem (G. ’22)

Assume that either :

1 f (x) = x , and Φ ∈ C
⌈ 1

2H ⌉+4
b ,

2 f ∈ C 2
b , Φ(x) = x3.

Then it holds that
EΦ ⩽ CN−(3H+1/2)∧1

Bayer-Hall-Tempone ’20 had already proved that (in case (1)), weak
rate was at least H + 1/2, using PDE methods.
The proof uses a direct method based on Malliavin integration by
parts, following Clément-Kohatsu-Higa-Lamberton ’06.
Recently, case (2) has been generalized to Φ arbitrary polynomial by
Friz-Salkeld-Wagenhofer. They also prove optimality of the rate.
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Numerical illustration 1

log-log plot of EΦ as function of N for Φ(x) = x3, f (x) = x .
(Note : E[I3], E[Î3] can be exactly computed in this case)
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Numerical illustration 2

log-log plot of EΦ as function of N for Φ(x) = (x + 2)3, f (x) = x .
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Elements of proof : Case (1)

Some notations : η(t) = ⌊nt⌋/n,

K (t, s) = (t − s)
H−1/2
+ , K ′(t, s) = K (η(t), s), ∆K = K ′ − K

I =

∫ 1

0
ŴtdWt , Î =

∫ 1

0
Ŵη(t)dWt ,

∆I = Î − I =

∫ 1

0
∆ŴtdWt ,

and for θ ∈ [0, 1], Iθ = (1 − θ)Î − θI =

∫ 1

0
Ŵ θ

t dWt .

We have

EΦ =

∫ 1

0
dθE

[
Φ′(Iθ)∆I

]
.
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Applying the Malliavin integration by parts twice (note ∆I is a double
Wiener integral) :

E
[
Φ′(Iθ)∆I

]
=

∫ T

0
dt

∫ t

0
ds E

[
DsDtΦ

′
(Iθ)

]
∆K (t, s)

=

∫ T

0
dt

∫ t

0
ds E

[
Φ(3)(Iθ)(DsIθ)(DtIθ)

]
∆K (t, s)

+

∫ T

0
dt

∫ t

0
ds E

[
Φ

′′
(Iθ)

]
K θ(t, s)∆K (t, s)

Using the continuity (on average) properties of

(s, t) 7→ E
[
Φ(3)(Iθ)(DsIθ)(DtIθ)

]
,

the first term is of order N−3H−1/2.

The second term (integrated in θ) is treated by an induction procedure ,
using∫ ∫

(∆K (t, s))2dsdt ≲ N−2H ,

∫ ∫
∆(K 2)(t, s)dsdt ≲ N−1.



Rough volatility Weak error rates for left-point discretization Weak error rates for the hybrid scheme

Elements of proof : Case (2)

Relies on the identity

E

(∫ T

0
f (Ŵt)dWt

)3

=

∫ T

0
dt

∫ t

0
ds E

[
f (Ŵs)(ff

′)(Ŵt)
]
K (t, s),

and again, the continuity properties in (s, t) of the expectation in the
integral.
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Hybrid scheme

Cholesky method is slow. ( O(N2))
Bennedsen-Lunde-Pakkanen ’16 proposed a faster hybrid scheme.
The idea is to approximate for a grid-point t = tk ,

Ŵt =

∫ t

0
(t − s)H−1/2dWs

by

W̌t =

∫ t

t−κh

(t − s)H−1/2dWs +
k−κ−1∑
j=0

Ǩk−j

(∫ tj+1

tj

dWs

)

where κ is a fixed (small) parameter, and Ǩk−j ≈ (tk − s)H−1/2 for
s ∈ [tj , tj+1]
(This requires to simulate N independent copies of a κ+ 1-dimensional
Gaussian, and perform a convolution → O(N logN)).
We then consider

Ǐ =

∫ T

0
f (W̌η(t))dWt .
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Need to choose Ǩℓ to approximate rH−1/2, r ∈ [(ℓ− 1)h, ℓh].
Possible choice of weights :

left-point : Kℓ = (ℓh)H−1/2

mid-point : Kℓ = ((ℓ− 1/2)h)H−1/2

minimizing MSE : Kℓ = h−1
∫ ℓh

(ℓ−1)h r
H−1/2dr .

matching the second moment : Kℓ =
(
h−1

∫ ℓh

(ℓ−1)h(r
H−1/2)2dr

)1/2

For the first three choices, E[W̌ 2
t ]−E[Ŵ 2

t ] ∼ N−2H , which leads to weak
error rate of order 2H for quadratics → not good !

For the last choice however, E[W̌ 2
t ] = E[Ŵ 2

t ] for grid-points t, and, like
in the Cholesky case, this gives

E[I2]− E[Ǐ2] ≲ N−1.

(This choice of weights was first proposed in
Horvath-Jacquier-Muguruza ’17)
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Choice of weights : Numerical illustration

log-log plot of Ex2 as a function of N for H = 0.02, κ = 1.
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Weak rate for hybrid scheme is H + 1/2

Theorem (G. ’22)

Assume that either :

1 f (x) = x , and Φ ∈ C
⌈ 1

2H ⌉+4
b ,

2 f ∈ C 3
b , Φ(x) = x3,

Then, with second moment matching weights, it holds that

E[Φ(I)]− E[Φ(Ǐ)] ⩽ CN−(H+1/2)

The proof is similar as before
The weaker rate comes from the fact that it is not possible to match
both second and first moments of the kernel.
Practical remark : for cubic test functions, the constant in front of
N−(H+1/2) can be computed and is very small. In that case, for
practical values of N the weak error of the hybrid scheme seems
roughly the same as that of the Cholesky method.
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log-log plot of Ex3 as a function of N for H = 0.15, κ = 1.
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Conclusion

Discretization error of rough volatility models :
Strong rate : always H

Weak rate : (3H + 1/2) ∧ 1 for exact left-point discretization,
H + 1/2 for the hybrid scheme with well-chosen weights,
2H for the hybrid scheme with ”bad” choice of weights.

Future work and open questions :
Weak error for less smooth test functions ?
Practical implications ?
Can we obtain (weak rate) >> 2×(strong rate) in other contexts ?
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