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Rough volatility models

Stochastic volatility models, the (discounted) asset price has dynamics
(under pricing measure)
dSt = O'tStth,

and o; is a process with rough sample paths, typically modelled around a
fractional Brownian motion W* with H € (0, 1), e.g.

[ f(t, WtH),

(where WH and W are correlated).

Bayer-Friz-Gatheral '16 : rough Bergomi model, f(t,x) = {(t)exp(nx).
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fractional Brownian motion

WH fractional Brownian motion (fBm) with Hurst parameter
H e (0,1).

@ Riemann-Liouville fBm :
t
wH = CH/ (t—s)"2dw,,
0

where W standard BM.
@ Gaussian process, explicit covariance function.

@ sample paths are (H — ¢)-Hélder continuous
(H < % : rough(er than standard BM) regime).

o NOT a semimartingale, NOT a Markov process (for H # 1).
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fractional Brownian motion : sample paths

W* fractional Brownian motion (fBm) with Hurst parameter
H e (0,1).
Simulated sample paths with H € {0.1,0.35,0.5,0.75} :

P P
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Advantages of rough volatility models

o historical time-series of observed prices are consistent with a rough
volatility process with H = 0.1 (Gatheral-Jaisson-Rosenbaum '16,...)

@ can reproduce features of observed volatility surfaces, in particular
explosion of ATM skew 7/=1/2 again H ~ 0.1 (Alos-Leon-Vives '07,
Fukasawa '11)

@ arises as scaling limit of microstructure models under natural
assumptions (El Euch-Fukasawa-Rosenbaum '18,
Jusselin-Rosenbaum '20).

A lot of research activity in the last 7 years
(cf. http://sites.google.com/site/roughvol)

However, lack of Markov (and semimartingale) property leads to
complications, from both theoretical and practical perspectives.


http://sites.google.com/site/roughvol

Rough paths and rough volatility

e In general, does not fall in classical rough path setting. But can still
have a rough path type approach

/T W, )dW, ~ Z Z Wf' </ W"dW)
) t t ~ " ti,s s

i 0Kk K

cf. [Bayer, Friz, G., Martin, Stemper, MF, '20], see also
Harang-Tindel-Wang, Bruned-Katsetsiadis, Fukasawa-Takano for related
recent results.

e Useful to obtain precise large deviation estimates, cf. [Friz, G. ,
Pigato, AAP, '21], [Friz, G. , Pigato, QF, '22],

. e NN agpon AX)
(t, ke) ~e—0 P< t2H>t ’ 2N (x)/N(x)v/7

where we combine Laplace method on Wiener space with rough path
type methods (following Azencott, Ben Arous, Aida, Inahama,...).
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Motivation : rough volatility pricing

Rough Bergomi (type) model :

~

dSt/St = Ut(det + ﬁth), Oy = f(t, Wt)a

t
Wt:/ K(t.s)dWs, K(t,s)= (¢ — )" 12,
0

Call prices in this model given by (Romano-Touzi formula)

T 2 AT 2 T
E [CBS (50 exp (p/ F(t, We)dW; — %/ f(t, Wt)zdt) K, %/ f(t, Wt)2dt>]
0 0 0

= E[®(Z,T)]
where

T T
z:/ f(t, W,)dW,, J:/ f(t, W,)2dt
0 0
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Numerical simulation of Z

N—1
I ~ V=) (W) (W, — W)
k=0
The Gaussian vector
(Wtk7 Wtk>k:1 N

has explicit covariance and can be simulated exactly by the Cholesky
method (cost : O(N?) + preliminary O(N3)).
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Strong error vs weak error

T T
I:/ FW)dW,, 1= Zf o) Wy — W) :/ f (W) dW,
0 0

with n(t) = h|t/h].
Strong error

E[@Fff}=AT (FO) = F(W)) | e o2

— strong order H, very slow convergence for H close to 0 !

But what about weak error 7 i.e. given test function ®,

—E[0(D)] - E [o(Z)| s N7

Recall classical case H = 1/2, strong rate = 1/2, weak rate = 1 (classical
works of Talay and co-authors).
For general H 7 Guesses : 2H, H+1/2,1,...7
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A heuristic computation suggesting rate 2H

Asymptotic distribution of the strong error :
. T
AT=T-7= / (f(Wt) — AW, (t))) AW, ~ Vi p(w)Z,
0

where Vi p(w) = Cu( ) f/(W;)2dt)/2N~H and Z ~ N'(0,1) , Z AL W.
(stable convergence, cf. Rootzen '80,...).
This leads to

E [®(Z)] - E [&()] ~ E [¢'(T)AZ] + %E [¢"(Z)(AT)?]
~E[(D)Vin] B[Z) + S E[6" D)V, E[27]
~ C;,H,¢N_2H

This suggests rate 2H...which turns out to be wrong !
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Weak error rate for quadratics (®(x) = x?)

(Computation taken from Bayer-Hall-Tempone '20, attributed to
Neuenkirch)

E[7?] = /0 E[f(W,)2]dt = /O be(t)dt

where ¢¢(t) = E[f?(cyt" Z)], Z ~ N(0,1).
Similarly,

-
E[Z?] = / or(n(t))dt.
0
But ¢ is locally Lipschitz, more precisely 0;¢¢(t) < 1 and

~ T /7 C
B B < g | ool <

For quadratics, weak rate is = 1, much better than 2H !
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Main result : weak rate is (3H + 1/2) A 1 (in some cases)

Theorem (G. '22)

Assume that either :
Q f(x)=x, and ¢ € Cb[%wﬂ,
Q e ox)=x3

Then it holds that

Ep < CN—(3H+1/2)/\1

o Bayer-Hall-Tempone '20 had already proved that (in case (1)), weak
rate was at least H + 1/2, using PDE methods.

@ The proof uses a direct method based on Malliavin integration by
parts, following Clément-Kohatsu-Higa-Lamberton '06.

@ Recently, case (2) has been generalized to ® arbitrary polynomial by
Friz-Salkeld-Wagenhofer. They also prove optimality of the rate.
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Numerical illustration 1
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log-log plot of &y as function of N for ®(x) = x3, f(x) = x.
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Numerical illustration 2
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Elements of proof : Case (1)

Some notations : 7(t) = |nt]/n,

K(t,s)=(t—s)72 K'(t,s) = K(n(t),s), AK =K —K
1 R R 1 R
I:/ Wtth’ I:/ Wﬂ(t)th’
0 0
A~ 1 ~
AT =7T-71= / AW, dW,,
0

1
and for 8 € [0,1], 70 = (1 - 0)1 — 67 = / WE dW,.
0

We have

Eo = /1 dOE [¢'(Z%)AZ].
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Applying the Malliavin integration by parts twice (note AZ is a double
Wiener integral) :

E [¢/(2%)AZ] = /Tdt/t ds IEI DSDt¢/(Ie)] AK(t,s)
/ dt/ ds IE ®)(2%)(Ds I")(DJ")} AK(t,s)
/ dt/ ds E )] K°(t,s)AK(t,s)

Using the continuity (on average) properties of
(s,t) > E [¢<3>(19)(Dsze)(otze)] :
the first term is of order N—3H—1/2,

The second term (integrated in ) is treated by an induction procedure ,
using

//(AK(t,s))zdsdrsN‘z”, //A(K2)(t,s)dsdt§N‘1.
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Elements of proof : Case (2)

Relies on the identity

E(/OTf(Wt th> / dt/ dsE [F(W)(')(We)] K(2. )

and again, the continuity properties in (s, t) of the expectation in the
integral.
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Hybrid scheme

Cholesky method is slow. ( O(N?))
Bennedsen-Lunde-Pakkanen '16 proposed a faster hybrid scheme.
The idea is to approximate for a grid-point t = t,

t
Wt:/ (t —s)"=12dw,
0

by

t k—r—1 tiia
W; = / (l’ _ S)H—I/QdWS + Z kaj (/ dW5>
t—kh t

j=0 j

where £ is a fixed (small) parameter, and Ki_; ~ (t, — s)"~1/2 for
s€ [tja tj+1]

(This requires to simulate N independent copies of a xk + 1-dimensional
Gaussian, and perform a convolution — O(N log N)).

We then consider

N~

;
1= / F(Wpye)) dWs.
0
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Need to choose K, to approximate r#=1/2 r ¢ [(¢ — 1)h, (h].
Possible choice of weights :

o left-point : K, = (¢h)"—1/2
e mid-point : K, = ((¢ — 1/2)h)H~1/2
@ minimizing MSE : K, = h™1 f(llhfl)h rH=1/24r.
1/
@ matching the second moment : K, = (h’l (iil)h(rH71/2)2dr)

For the first three choices, E[W?] — E[W?2] ~ N=2H which leads to weak
error rate of order 2H for quadratics — not good !

For the last choice however, E[W?] = E[W?] for grid-points t, and, like
in the Cholesky case, this gives

E[7%] - E[Z?] < N7L.

(This choice of weights was first proposed in
Horvath-Jacquier-Muguruza '17)
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Choice of weights : Numerical illustration
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log-log plot of £,2 as a function of N for H =0.02, x = 1.
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Weak rate for hybrid scheme is H +1/2

Theorem (G. '22)

Assume that either :
© f(x)=x and e CF 1™
Q fe (3 d(x)=x3,

Then, with second moment matching weights, it holds that

E[®(Z)] — E[¢(Z)] < CN~(H+1/2)

@ The proof is similar as before

@ The weaker rate comes from the fact that it is not possible to match
both second and first moments of the kernel.

@ Practical remark : for cubic test functions, the constant in front of
N—(H+1/2) can be computed and is very small. In that case, for
practical values of N the weak error of the hybrid scheme seems
roughly the same as that of the Cholesky method.
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Conclusion

Discretization error of rough volatility models :
@ Strong rate : always H

e Weak rate : (3H 4 1/2) A1 for exact left-point discretization,
H + 1/2 for the hybrid scheme with well-chosen weights,
2H for the hybrid scheme with "bad" choice of weights.

Future work and open questions :
@ Weak error for less smooth test functions 7
@ Practical implications ?

@ Can we obtain (weak rate) >> 2x(strong rate) in other contexts ?
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