A REVIEW OF PROBABILITY FOUNDATIONS

The contents of this class are covered in numerous textbooks and lecture notes, here are just a few of them :

Le Gall "Measure Theory, Probability, and Stochastic Processes" Durrett "Probability : Theory and examples"

Billingsley "Probability and Measure"

Gut "Probability : a graduate course"

1. Basics of measure theory and integration

Definition 1.1. $\mathcal{E} \subset \mathcal{P}(E)$ is a σ -algebra on a set E if :

- $\emptyset \in \mathcal{E}$
- $A \in \mathcal{E} \Rightarrow A^c \in \mathcal{E} \text{ (where } A^c = E \setminus A)$
- If $(A_n)_n$ is a countable family of elements of \mathcal{E} , then $\cup_n A_n \in E$.

The pair (E, \mathcal{E}) is then called a measurable space. Examples : $\{\emptyset, E\}, \mathcal{P}(E)$ are σ -algebras.

Given a family \mathcal{F} of subsets of E, the σ -algebra generated by \mathcal{F} , denoted $\sigma(\mathcal{F})$, is the smallest σ -algebra on E containing \mathcal{F} . Since an intersection of σ -algebras is a σ -algebra, it can in fact be obtained as

$$\sigma(\mathcal{F}) = \bigcap_{\mathcal{E} \ \sigma\text{-algebra}, \mathcal{E} \supset \mathcal{F}} \mathcal{E}.$$

If E is a topological space, with family of open sets \mathcal{O} , the **Borel** σ -algebra, denoted $\mathcal{B}(E)$ is $\sigma(\mathcal{O})$. In the sequel, when we work on \mathbb{R} or more generally \mathbb{R}^d , they will always be equipped with the Borel σ -algebra $\mathcal{B}(\mathbb{R}^d)$.

Definition 1.2. Let (E, \mathcal{E}) and (F, \mathcal{F}) be measurable spaces. A map $f : E \to F$ is called measurable if

$$\forall A \in \mathcal{F}, \ f^{-1}(A) := \{x \in E, \ f(x) \in A\} \in \mathcal{E}.$$

Definition 1.3. A measure μ on a measurable space (E, \mathcal{E}) (where \mathcal{E} is a σ -algebra on E), is a function $\mu : \mathcal{E} \to [0, +\infty]$ such that, if $A_n, n \in \mathbb{N}$ are disjoint elements of \mathcal{E} , it holds that

$$\mu\left(\cup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mu(A_n).$$

The triplet (E, \mathcal{E}, μ) is then called a measured space.

A basic example is the counting measure, i.e. $\mu(A) = card(A)$. Another one is the Dirac mass δ_x at $x \in E$, defined by $\delta_x(A) = 1_A(x)$.

A more interesting example is the **Lebesgue measure** on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, which is the unique measure λ on $\mathcal{B}(\mathbb{R})$ s.t. $\lambda([a, b]) = b - a$ for any $a \leq b$. (Its existence is not a trivial fact !).

Remark : a useful technical tool to prove equality of two measures is the **monotone class theorem** (not defined in these notes, but easy to look up), which has the following consequence.

Proposition 1.1. Let μ , ν be measures on (E, \mathcal{E}) . Assume that $\mathcal{C} \subset \mathcal{E}$ is stable under finite intersections, satisfies $\sigma(\mathcal{C}) = \mathcal{E}$, and $\mu(A) = \nu(A)$ for all $A \in \mathcal{C}$.

If in addition, there is an increasing sequence $(E_n)_n \subset C$, $\bigcup_n E_n = E$ s.t. $\mu(E_n) = \nu(E_n) < \infty$, then it holds that $\mu = \nu$ (on \mathcal{E}).

This allows for instance to prove that the above property characterizes the Lebesgue measure uniquely, or that two finite measures on \mathbb{R} coincide if and only if they agree on sets of the form $(-\infty, a]$, for $a \in \mathbb{R}$.

The main use of measures is that they allow to define integrals $\int f d\mu$ of measurables functions $f: (E, \mathcal{E}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$. More precisely, there exists a unique way of defining, for any non-negative $f, \int f d\mu \in [0, +\infty]$ (also written $\int f(x) d\mu(x)$), s.t. the following is satisfied :

- If $A \in \mathcal{E}$, then $\int 1_A d\mu = \mu(A)$,
- For any measurable $f, g \ge 0$ and $a, b \in \mathbb{R}_+$, $\int (af + bg)d\mu = a \int f d\mu + b \int g d\mu$,
- If $0 \le f \le g$, then $\int f d\mu \le \int g d\mu$.

For \mathbb{R} -valued functions, we then say that f is integrable if $\int |f| d\mu < +\infty$, and we then define $\int f d\mu = \int f_+ d\mu - \inf f_- d\mu$. The set of integrable functions is denoted $L^1(E, \mathcal{E}, \mu)$.

The three following limit theorems are very useful.

Theorem 1.1. (Monotone convergence) Let $f_n \ge 0$ be a non-decreasing sequence of measurable functions, and let $f = \lim_{n\to\infty} f_n$. Then it holds that

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu.$$

(Fatou's lemma) Let $f_n \ge 0$ be measurable functions, then it holds that

$$\int \left(\liminf_{n \to \infty} f_n\right) d\mu \le \liminf_{n \to \infty} \int f_n d\mu.$$

(Dominated convergence) Let f_n be measurable and such that, it holds that

$$\lim_{n \to \infty} f_n(x) = f(x) \text{ for } \mu\text{-a.e. } x,$$

and there exists an integrable function g such that

$$\forall n, |f_n(x)| \leq g(x) \text{ for } \mu\text{-a.e. } x.$$

Then it holds that

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu.$$

Derivation under integral sign :

Proposition 1.2. Let μ be a measure on (E, \mathcal{E}) , and let $f = f(\lambda, x)$ be a function on $I \times E$ (where I is a subinterval of \mathbb{R}) s.t. for some $k \in \{0, 1\}$:

(i) For all λ , $f(\lambda, \cdot)$ is \mathcal{E} -measurable and μ -integrable,

(ii) For μ -a.e. $x, \lambda \mapsto f(\lambda, x)$ is in $C^k(I)$,

(iii) There exists a μ -integrable function g s.t. for μ -a.e. $x, \forall \lambda \in I, |\partial_{\lambda}^{k} f(\lambda, x)| \leq g(x)$. Then

$$F: \lambda \mapsto \int f(\lambda, x) \mu(dx)$$

is in $C^k(I)$, and

$$F^{(k)}(\lambda) = \int (\partial_{\lambda}^{k}) f(\lambda, x) \mu(dx).$$

Definition 1.4. Let (E, \mathcal{E}, μ) and (F, \mathcal{F}, ν) be two measured spaces. We can define the product σ -algebra $\mathcal{E} \otimes \mathcal{F} = \sigma(\mathcal{E} \times \mathcal{F})$. The product measure $\mu \otimes \nu$ is the unique measure on $(E \times F, \mathcal{E} \otimes \mathcal{F})$ such that

$$\forall A \in \mathcal{E}, B \in \mathcal{F}, \ (\mu \otimes \nu)(A \times B) = \mu(A)\nu(B).$$

A measure is said σ -finite if there exists a sequence of measurable sets E_n with $\bigcup_{n \in \mathbb{N}} E_n = E$ and $\mu(E_n) < +\infty$.

Theorem 1.2 (Fubini). Assume that both μ and ν are σ -finite. Let $f : E \times F \to \mathbb{R}$ be a measurable function w.r.t. $\mathcal{E} \otimes \mathcal{F}$. Then the following are equivalent :

(1) f is integrable w.r.t. $\mu \otimes \nu$,

(2) $\int \left(\int |f(x,y)| \, \mu(dx) \right) \nu(dy) < +\infty,$

(3) $\int \left(\int |f(x,y)| \,\nu(dy) \right) \,\mu(dx) < +\infty,$

and if this holds, one has

$$\int f(x,y)(\mu \otimes \nu)(dx,dy) = \int \left(\int f(x,y)\mu(dx)\right)\nu(dy) = \int \left(\int f(x,y)\nu(dy)\right)\mu(dx).$$

The formula above also holds for measurable non-negative f.

Given a measured space (E, \mathcal{E}, μ) and a measurable $f \ge 0$, we can always define a new measure ν on (E, \mathcal{E}) by

$$\nu(A) = \int 1_A(x) f(x) \mu(dx)$$

We say that f is the density of ν w.r.t. μ , also written $\frac{d\nu}{d\mu} = f$.

A measure ν is said to be **absolutely continuous** w.r.t. μ , (written $\nu \ll \mu$) if for all $A \in \mathcal{E}$, $\mu(A) = 0 \Rightarrow \nu(A) = 0$.

It is easy to check that if ν admits a density w.r.t. μ , then $\nu \ll \mu$. The converse turns out to be also true.

Theorem 1.3 (Radon-Nikodym). Let ν and μ be two σ -finite measures on a measured space (E, \mathcal{E}) , s.t. $\nu \ll \mu$. Then ν admits a density f w.r.t. μ .

2. PROBABILITY : RANDOM VARIABLES, INDEPENDENCE,

We will now fix a **probability space**, namely a measured space $(\Omega, \mathcal{F}, \mathbb{P})$ where \mathbb{P} is a **probability measure**, i.e. satisfies $\mathbb{P}(\Omega) = 1$.

In this context, familiar objects from measure theory are given new names :

Definition 2.1. An event is a measurable set $A \in \mathcal{F}$.

An event A holds **almost surely** (abbreviated **a.s.**) if $\mathbb{P}(A) = 1$.

A (E-valued) random variable (abbreviated r.v.) X is a measurable map from (Ω, \mathcal{F}) to a measurable space (E, \mathcal{E}) . (When E is not specified, this will always mean $E = \mathbb{R}$).

The expectation of a non-negative or integrable r.v. X, is $\mathbb{E}[X] = \int X(\omega)\mathbb{P}(d\omega)$.

The law of a E-valued random variable X is the measure image on E, defined for $A \in \mathcal{E}$ by

$$\mathcal{L}^{X}(A) = \mathbb{P} \circ X^{-1}(A) = \mathbb{P}(\{\omega : X(\omega) \in A\}).$$

Note that in probability theory, the underlying set Ω is typically unimportant (and is often not specified). The important objects are random variables and their properties (such as their laws).

The cumulant distribution function (c.d.f.) of a scalar r.v. X is the function $x \in \mathbb{R} \mapsto \mathbb{P}(X \leq x)$. By a remark above, it fully characterizes the law of X. **Proposition 2.1.** Let X be a scalar r.v., $h : \mathbb{R} \to \mathbb{R}$ measurable, s.t. h(X) is integrable. Then

$$\mathbb{E}\left[h(X)\right] = \int h(x)\mathcal{L}^X(dx).$$

For instance, if the law of X admits a density f w.r.t. Lebesgue measure, then

$$\mathbb{E}[h(X)] = \int h(x)f(x)dx$$

Given a r.v. X with values in (E, \mathcal{E}) , the σ -algebra generated by X, denoted $\sigma(X)$, is the smallest σ -subalgebra of \mathcal{F} for which X is measurable, explicitly it can be written as

$$\sigma(X) = \left\{ X^{-1}(A), A \in \mathcal{E} \right\}.$$

Proposition 2.2. Let X be a (E, \mathcal{E}) - valued r.v. and Y be a $\sigma(X)$ -measurable r.v., then there exists a measurable $\psi : E \to \mathbb{R}$ s.t. $Y = \psi(X)$.

Definition 2.2 (L^p spaces). Fix $1 \le p < \infty$. Given a r.v. X, its L^p norm is defined by

$$||X||_{L^p} = \mathbb{E}[|X|^p]^{1/p}$$

Then

$$L^{p}(\Omega) = \left\{ X : \left\| X \right\|_{L^{p}} < \infty \right\} / \sim$$

equipped with
$$\|\cdot\|_{L^p}$$
, is a Banach space. $(X \sim Y \text{ iff } X = Y \mathbb{P} - a.s.).$

We can also define L^{∞} , with norm

$$||X||_{L^{\infty}} = \operatorname{ess\,sup} |X| := \inf\{c \in \mathbb{R}, \mathbb{P}(|X| \le c) = 1\}.$$

We record the following important inequalities for expectations of random variables.

Proposition 2.3. (Jensen) Let $\phi : \mathbb{R} \to \mathbb{R}$ be convex and X a r.v., then

$$\phi\left(\mathbb{E}[X]\right) \le \mathbb{E}\left[\phi(X)\right]$$

(as long as the two expectations above are well-defined).

Cauchy-Schwarz) For any two r.v. X,Y,

$$\begin{split} \mathbb{E}\left[|XY|\right] &\leq \|X\|_{L^{2}} \|Y\|_{L^{2}} \,. \\ (\textit{Hölder}) \ \textit{Fix} \ 1 \leq p,q \leq \infty \ \textit{s.t.} \ \frac{1}{p} + \frac{1}{q} = 1. \ \textit{Then for any two r.v. } X,Y, \\ \mathbb{E}\left[|XY|\right] &\leq \|X\|_{L^{p}} \|Y\|_{L^{q}} \,. \end{split}$$

Note that it follows from Jensen's inequality that $\|\cdot\|_{L^p} \leq \|\cdot\|_{L^q}$ if $p \leq q$.

Definition 2.3. Let $X \in L^1(\Omega)$. The mean of X is simply $\mathbb{E}[X]$. X is centered if its mean is 0. Let $X \in L^2$. The variance of X is defined by

$$Var(X) = \mathbb{E}\left[\left(X - \mathbb{E}[X]\right)^2\right].$$

A simple but often very efficient way of measuring probabilities is given by the following proposition.

Proposition 2.4. Let U be a non-decreasing positive function. Then for any r.v. X s.t. the below expectation make sense, for any $a \in \mathbb{R}$, it holds that

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[U(X)]}{U(a)}.$$

Proof. Follows from taking \mathbb{E} in the inequality $U(a)1_{\{X \ge a\}} \le U(X)$.

This implies the following classical special cases,

$$\begin{aligned} \forall a > 0 \quad \mathbb{P}(|X| \ge a) &\leq \frac{\mathbb{E}[|X|]}{a} \text{ (Markov) }, \mathbb{P}(|X - \mathbb{E}[X]| \ge a) \leq \frac{Var(X)}{a^2} \text{ (Bienaymé-Tchebychev) }, \\ \forall \lambda > 0, \quad \forall a \in \mathbb{R}, \ \mathbb{P}(X \ge a) \leq \mathbb{E}[e^{\lambda X}]e^{-\lambda a} \text{ (Chernoff) }. \end{aligned}$$

Definition 2.4. Two events $A, B \in \mathcal{F}$ are *independent* if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

A family A_i , $i \in I$ of events is independent iff, for any $i_1, \ldots, i_n \in I$,

$$\mathbb{P}(A_{i_1} \cap \dots \cap A_{i_n}) = \mathbb{P}(A_{i_1}) \cdots \mathbb{P}(A_{i_n}).$$

Similarly, two (E, \mathcal{E}) -valued r.v. X and Y are **independent** if

$$\forall A, B \in \mathcal{E}, \ \mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \mathbb{P}(Y \in B).$$

and a family X_i , $i \in I$ of random variables is independent iff, for any $i_1, \ldots, i_n \in I$, any measurable A_1, \ldots, A_n ,

$$\mathbb{P}(X_{i_1} \in A_1, \dots, X_{i_n} \in A_n) = \mathbb{P}(X_{i_1} \in A_1) \cdots \mathbb{P}(X_{i_n} \in A_n).$$

A family \mathcal{G}_i , $i \in I$ of σ -algebras is independent if any family $A_i, i \in I$ of events with $A_i \in \mathcal{G}_i$ is independent.

(Note that independence of a family is stronger than pairwise independence of its elements.)

Note that it is obvious from the definition that X and Y are independent if and only if the law of (X, Y) is the product measure $\mathcal{L}^X \otimes \mathcal{L}^Y$. (A similar result is true for family of random variables). In particular, in conjunction with Proposition 2.1 and Fubini's theorem, this implies that if X, Y are independent, f, g functions, then

$$\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)].$$

Given a sequence $(A_n)_{n \in \mathbb{N}}$ of events, we define

$$\operatorname{im} \sup A_n = \bigcap_{n \ge 0} \left(\bigcup_{k \ge n} A_k \right),$$

this event can alternately be characterized as

$$\limsup A_n = \{ \omega : \omega \in \text{ infinitely many } A_n \text{ 's} \}$$

Proposition 2.5 (Borel-Cantelli). (1) Let A_n , $n \in \mathbb{N}$ be a sequence of events s.t. $\sum_n \mathbb{P}(A_n) < \infty$. Then $\mathbb{P}(\limsup A_n) = 0$.

(2) Let $A_n, n \in \mathbb{N}$ be an independent sequence of events s.t. $\sum_n \mathbb{P}(A_n) = \infty$. Then $\mathbb{P}(\limsup A_n) = 1$.

Proof. (1) By Fubini,

$$\mathbb{E}\left[\sum_{n} 1_{A_n}\right] = \sum_{n} \mathbb{P}(A_n) < \infty,$$

which implies that $\mathbb{P}(\sum_{n} 1_{A_n} < \infty) = 1$, which is the claim.

(2) Note that

$$(\limsup_n A_n)^c = \bigcup_{n \ge 0} \left(\bigcap_{k \ge n} A_k^c \right),$$

and since this is an increasing union, we have

$$\mathbb{P}((\limsup_{n} A_{n})^{c}) = \lim_{n} \mathbb{P}\left(\cap_{k \ge n} A_{k}^{c}\right)$$

each of these can be bounded for $p \ge 0$ by

$$\mathbb{P}\left(\cap_{k\geq n}A_{k}^{c}\right) \leq \mathbb{P}\left(\cap_{k=n}^{n+p}A_{k}^{c}\right) = \left(1 - \mathbb{P}(A_{n})\right) \dots \left(1 - \mathbb{P}(A_{n+p})\right) \leq \exp\left(-\mathbb{P}(A_{n}) - \dots - \mathbb{P}(A_{n+p})\right)$$

where we used independence, and this goes to 0 as $p \to \infty$ by assumption.

In fact, (2) above only holds under pairwise independence. Let us give this an an exercise. We first record the important fact :

Lemma 2.1. Let X_1, \ldots, X_n be pairwise independent elements of $L^2(\Omega)$. Then $Var(X_1 + \ldots + X_n) = \sum_{i=1}^n Var(X_i)$.

Exercise 1. Let A_n be pairwise independent, s.t. $\sum_n \mathbb{P}(A_n) = +\infty$. Let $S_n = \sum_{k=0}^n 1_{A_k}$, $S = \lim_{n \to \infty} S_n$, and $m_n = \mathbb{E}[S_n]$ (which converges to $+\infty$ by assumption). Show that $Var(S_n) \leq m_n$. Deduce from Chebychev's inequality that $\mathbb{P}(S \leq m_n/2) \leq \frac{4}{m_n}$, and conclude that $\mathbb{P}(S = \infty) = 1$.

3. Convergence of random variables

Let X, and $X_n, n \in \mathbb{N}$ be some r.v.'s defined on the same probability space.

Definition 3.1. We say that X_n converges to X:

in probability if $\forall \varepsilon > 0$, $\mathbb{P}(|X_n - X| > \varepsilon) \to_{n \to \infty} 0$. in L^p (for a given $p \ge 1$) if $\mathbb{E}[|X_n - X|^p] \to_{n \to \infty} = 0$. almost surely if $\mathbb{P}(\lim_{n \to \infty} X_n = X) = 1$. in law if for any bounded continuous ϕ , $\mathbb{E}[\phi(X_n)] \to_{n \to \infty} \mathbb{E}[\phi(X)]$.

Note that convergence in law is really a property of the laws of the random variables, not of the r.v.'s themselves, unlike the other modes of convergence.

Proposition 3.1. (1) $X_n \to X$ almost surely or in $L^p \Rightarrow X_n \to X$ in probability.

- (2) $X_n \to X$ in probability \Rightarrow There is a subsequence (n_k) s.t. $X_{n_k} \to X$ almost surely.
- (3) $X_n \to X$ in probability $\Rightarrow X_n \to X$ in law
- (4) If $X \equiv c \in \mathbb{R}$ is constant, then $X_n \to X$ in law $\Rightarrow X_n \to X$ in probability.

Proof. (1) Dominated convergence for 'a.s.', Markov's inequality for L^p .

(2) Since $X_n \to X$ in probability, by a diagonal procedure we can find a subsequence n_k s.t.

$$\mathbb{P}\left(|X_{n_k} - X| \ge \frac{1}{k}\right) \le \frac{1}{k^2}.$$

By the Borel-Cantelli lemma, this implies that a.s., for k large enough, $|X_{n_k} - X| < \frac{1}{k}$ which of course implies that $\lim_k X_{n_k} = X$.

(3) Assume that $X_n \to X$ in probability, but not in law. This implies the existence of ϕ , continuous and bounded, and of a subsequence n_k s.t.

$$\liminf_{k \to \infty} |\mathbb{E}[\phi(X_{n_k})] - \mathbb{E}[\phi(X)]| > 0.$$

On the other hand, by (2), up to taking another subsequence, we can assume that $X_{n_k} \to X$ almost surely. By dominated convergence, this implies $\lim_k \mathbb{E}[\phi(X_{n_k})] = \mathbb{E}[\phi(X)]$, a contradiction with the above.

(4) For $\varepsilon > 0$, let ϕ be a continuous bounded function s.t. $\phi(c) = 0$ and $\phi(x) = 1$ if $|x - c| \ge \varepsilon$. Then $\mathbb{P}(|X_n - c| \ge \varepsilon) \le \mathbb{E}[\phi(X_n)] \to \phi(c) = 0$. In general, there are no other implications between the various notions of convergence. (exercise : find counterexamples).

We will now spend more time on the convergence in law.

The characteristic function of a (law of) r.v. X is defined by

$$\phi_X : t \in \mathbb{R} \mapsto \mathbb{E}[e^{itX}].$$

Note that for any r.v. X, it is a continuous and bounded function on \mathbb{R} .

It can be linked to moments of X in the following way :

Proposition 3.2. Assume that $\mathbb{E}|X|^k < \infty$. Then ϕ_X is C^k on \mathbb{R} , and $\phi^{(k)}(0) = i^k \mathbb{E}[X^k]$.

Proof. Exercise (use differentiation under \mathbb{E})

The main utility of characteristic functions comes from the following result.

Theorem 3.1. The following are equivalent :

- (1) $X_n \to_{n\to\infty} X$ in law,
- (2) $\forall t \in \mathbb{R}, \lim_{n \to \infty} \phi_{X_n}(t) = \phi_X(t).$

Proof. We give the fact that $(2) \Rightarrow (1)$ as an exercise, with main steps sketched :

• Show that

$$\mathbb{P}(|X| \ge r) \le \frac{r}{2} \int_{-2/r}^{2/r} (1 - \Phi_X(t)) dt$$

(Hint : use Fubini's theorem to evaluate $\int_{-c}^{c} (1 - \Phi_X(t)) dt$, and use that $|\sin(x)| \leq \frac{|x|}{2}$ for $|x| \geq 2$.)

- Deduce that if (2) holds, then for any $\varepsilon > 0$, for r large enough, $\limsup_n \mathbb{P}(|X_n| \ge r) \le \varepsilon$.
- Use that for any R > r > 0, functions of the form $\sum_{k=-N}^{N} a_k e^{i\frac{k\pi x}{R}}$ are dense in C([-r,r]), in combination with the previous step, to conclude.

Recall also the cdf of X is defined by $F_X(x) = \mathbb{P}(X \leq x)$. This can also be used for convergence in law.

Theorem 3.2. $X_n \to_{n\to\infty} X$ in law if and only if $\forall x \in \mathbb{R}$, if F_X is continuous at x, then $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$.

Proof. Left in exercise (as in the previous proof : first deal with the tails of the X_n to reduce to a compact set).

We also record the important compactness criterion for weak convergence.

Definition 3.2. A family $\{X_i, i \in I\}$ of random variables is **tight** if, for any $\varepsilon > 0$, there exists a compact K, s.t. $\sup_i \mathbb{P}(X_i \notin K) \leq \varepsilon$.

Note that any finite family is tight. The main interest of this notion is that it characterizes (sequential) compactness for convergence in law.

Theorem 3.3. (1) If $X_n \to X$ in law, then $\{X_n, n \in \mathbb{N}\}$ is tight.

(2) (**Prokhorov**) If $\{X_n, n \in \mathbb{N}\}$ is tight, then there exists a r.v. X (possibly on a different probability space) and a subsequence X_{n_k} s.t. $X_{n_k} \to X$ in law.

We will prove the theorem with the help of the following lemma.

Lemma 3.1. A function $F : \mathbb{R} \to \mathbb{R}$ is the c.d.f. of a random variable X if and only if :

- (1) F in non-decreasing
- (2) F is cadlag (right-continuous and with left limits)
- (3) $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to +\infty} F(x) = 1$

Proof. Exercise. Hint : for the "if" direction, consider, X = G(U), where $G(y) = \sup\{x \ F(x) \le y\}$, and U is a uniform r.v. on [0, 1] (if F is injective, then $G = F^{-1}$). (Note : this may be in practice a useful way to simulate a r.v. whose c.d.f. is known).

Proof of Theorem 3.3. (1) is easier and left as exercise.

(2) (Sketch). By a diagonal procedure, we construct a subsequence n_k s.t. for each rational q, $F_{X_{n_k}}(q)$ converges to some limit $\tilde{F}(q)$. We then let for $x \in \mathbb{R}$, $F(x) := \lim_{q \in \mathbb{Q}, q \downarrow x} \tilde{F}(q)$. We then verify that F satisfies the assumptions of Lemma 3.1 (tightness is only used in point 3.).

4. LLN AND CLT

In this section, we consider a sequence X_n , $n \ge 1$ of independent random variables, s.t. for each n, X_n and X_1 have the same law. We say that this is an **i.i.d.** sequence (for "independent and identically distributed").

4.1. Law of large numbers (LLN).

Theorem 4.1 (Weak LLN). Assume that X_n is an i.i.d. sequence, with $\mathbb{E}|X_1| < \infty$, and let $m = \mathbb{E}[X_1]$. Then

$$\frac{\sum_{k=1}^{n} X_k}{n} \to_{n \to \infty} m \text{ in probability.}$$

Proof. It suffices to check convergence in law, which can be done by the characteristic function :

$$\mathbb{E}\left[\exp(itn^{-1}\sum_{k=1}^{n}X_{k})\right] = \Phi_{X_{1}}(t/n)^{n} = \left(1 + m\frac{t}{n} + o(\frac{t}{n})\right)^{n} \to e^{tm}.$$

In fact, the above can be strenghtened to a.s. convergence.

Theorem 4.2 (Strong LLN). Assume that X_n is an i.i.d. sequence, with $\mathbb{E}|X_1| < \infty$, and let $m = \mathbb{E}[X_1]$. Then

$$\frac{\sum_{k=1}^{n} X_k}{n} \to_{n \to \infty} m \text{ almost surely.}$$

Proof. We sketch a proof due to Etemadi who in fact only uses pairwise independence.

First, considering separately X_n^+ and X_n^- , we may assume that $X_1 \ge 0$ a.s., and we aim to show that letting $S_n = \sum_{k=1}^n X_k$, $S_n/n \to \mathbb{E}[X_1]$ a.s.

We let $Y_n = X_n \mathbb{1}_{\{X_n \leq n\}}$. Show that

$$\sum_{n\geq 1} \mathbb{P}(X_n \neq Y_n) \leq \mathbb{E}[X_1]$$

(this involves rearranging double sums). By Borel-Cantelli, this implies that a.s., for n large enough, $Y_n = X_n$. It therefore suffices to show

almost surely,
$$\lim_{n \to \infty} \frac{\tilde{S}_n}{n} = \mathbb{E}[X_1]$$
, where $\tilde{S}_n = \sum_{k=1}^n Y_k$.

We now fix $\alpha > 1$, and let $k_n = |\alpha^k|$. Then show that for any fixed $\varepsilon > 0$,

$$\sum_{n=1}^{\infty} \mathbb{P}\left(\left| \frac{\tilde{S}_{k_n} - \mathbb{E}[\tilde{S}_{k_n}]}{k_n} \right| > \varepsilon \right) \le C \sum_{n=1}^{\infty} \frac{1}{k_n^2} \sum_{i=1}^{k_n} Var(Y_i) \le \ldots \le C' \mathbb{E}[X_1] < \infty$$

(Again the computation abbreviated as (...) involves re-arranging a double sum). Deduce that a.s.,

 $\underbrace{\frac{\tilde{S}_{k_n}}{k_n}}_{\tilde{k_n}} \to \mathbb{E}[X_1].$ Now for any arbitrary *n*, there exists $k_{n'}$ with $k_{n'} \le n \le k_{n'+1}$ and $n/k_{n'} \le \alpha, n/k_{n'+1} \ge \alpha^{-1}.$ Since \tilde{S}_n is increasing, this implies

a.s.,
$$\alpha^{-1}\mathbb{E}[X_1] \le \liminf_n \frac{\tilde{S}_n}{n} \le \limsup_n \frac{\tilde{S}_n}{n} \le \alpha \mathbb{E}[X_1].$$

Taking a sequence $\alpha_n \downarrow 1$, we conclude that a.s., $\lim_n \frac{\tilde{S}_n}{n} = \mathbb{E}[X_1]$.

4.2. Central Limit Theorem (CLT).

Definition 4.1. The standard Gaussian measure (denoted $\mathcal{N}(0,1)$), is the measure on \mathbb{R} with probability density function given by $f(x) = \sqrt{2\pi}^{-1} e^{-\frac{x^2}{2}}$.

Exercise : check that the above is a well-defined probability measure (hint : compute $\int e^{-x^2-y^2} dx dy$ via polar coordinates). Further check that if Z has law $\mathcal{N}(0,1)$, then $\mathbb{E}[Z] = 0$, $\mathbb{E}[Z^2] = 1$, and the characteristic function is given by $\phi_Z(t) = e^{\frac{-t^2}{2}}$ (hint : use integration by parts to show that $\phi_Z'(t) = -t\phi_Z(t)).$

Theorem 4.3 (CLT). Let X_n be an i.i.d. sequence, with $\mathbb{E}|X_1|^2 < \infty$, and let $m = \mathbb{E}[X_1]$, $\sigma^2 = Var(X_1)$. Then

$$\frac{\sum_{k=1}^{n} (X_k - m)}{\sigma \sqrt{n}} \to_{n \to \infty} \mathcal{N}(0, 1) \text{ in law }.$$

Proof. Let us assume that $m = 0, \sigma = 1$ (the general case follows by considering $Y = (X - m)/\sigma$). Since the X_k are i.i.d., it holds that

$$\phi_{\frac{\sum_{k=1}^{n} X_{k}}{\sqrt{n}}}(t) = \phi_{X_{1}}\left(\frac{t}{\sqrt{n}}\right)^{n} = \left(1 - \frac{1}{2}\frac{t^{2}}{n} + o\left(\frac{t^{2}}{n}\right)\right)^{n} \rightarrow_{n \to \infty} e^{-\frac{t^{2}}{2}}.$$

5. Conditional expectations

Preliminary definitions : let A be an event with $\mathbb{P}(A) > 0$. Then, given another event B, the probability of B conditionally on A is

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$$

and given an integrable r.v. X, we can define the expectation of X, conditionally on A, by

$$\mathbb{E}[X|A] = \frac{\mathbb{E}[X1_A]}{\mathbb{P}(A)}.$$

We can also define in a simple manner conditional expectation w.r.t. a r.v. Y, as long as Y takes countably many values y_1, y_2, \ldots (each with positive probability). Then we let

$$\mathbb{E}[X|Y] = \sum_{k} \mathbb{E}[X|Y = Y_k] \mathbf{1}_{\{Y=y_k\}}.$$

The above definitions can in fact be generalized to a much more complete notion, which will be the subject of this subsection.

Proposition 5.1. Let $\mathcal{G} \subset \mathcal{F}$ be a σ -algebra. Then for any integrable (resp. nonnegative) r.v. X on $(\Omega, \mathcal{F}, \mathbb{P})$, there exists a unique (up to a.s. equality) r.v. Y, s.t.

(1) Y is \mathcal{G} -measurable,

(2) For any \mathcal{G} -measurable Z s.t. XZ is integrable (resp. $Z \ge 0$), it holds that $\mathbb{E}[XZ] = \mathbb{E}[YZ]$.

Proof. We will treat the case where $X \in L^1$.

Uniqueness Let Y = Y' satisfy the above. Since Y, Y' are \mathcal{G} -measurable, the event $\{Y > Y'\}$ is in \mathcal{G} , and it follows that

$$\mathbb{E}[X1_{\{Y>Y'\}}] = \mathbb{E}[X1_{\{Y>Y'\}}] = \mathbb{E}[X1_{\{Y>Y'\}}]$$

which implies $\mathbb{E}\left[(Y - Y')1_{\{Y > Y'\}}\right] = 0$, so that a.s. $Y \leq Y'$. By symmetry the reverse inequality also holds a.s., i.e. Y = Y' almost surely.

Existence Writing $X = X^+ - X^-$, it suffices to treat the case where X is nonnegative. We then check that the map

$$A \in \mathcal{G} \mapsto \mathbb{E}\left[X1_A\right]$$

is a measure on (Ω, \mathcal{G}) , which is absolutely continuous w.r.t. \mathbb{P} . By the Radon-Nikodym theorem, this measure admits a (\mathcal{G} -measurable) density Y, which by definition must satisfy

$$\forall A \in \mathcal{G}, \ \mathbb{E}\left[X1_A\right] = \mathbb{E}\left[Y1_A\right]$$

It follows from an approximation argument that this identity extends with 1_A replaced by arbitrary \mathcal{G} -measurable random variables.

The random variable Y obtained from the above proposition is denoted $\mathbb{E}[X|\mathcal{G}]$, and called conditional expectation of X w.r.t. \mathcal{G} .

Remark : the conditional expectation, when restricted to $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$, coincides with the *orthogonal projection* on the closed subspace $L^2(\Omega, \mathcal{G}, \mathbb{P})$.

We now detail some properties of the conditional expectation.

Proposition 5.2. Assuming that the r.v.'s X, Y are such that the conditional expectations below make sense, we have the following (in)equalities, understood in the a.s. sense.

- (1) (Linearity) If Y, Z are \mathcal{G} -measurable, then $\mathbb{E}[XY + Z|\mathcal{G}] = \mathbb{E}[X|\mathcal{G}] Y + Z$.
- (2) (Monotonicity) If $X \leq Y$ a.s., then $\mathbb{E}[X|\mathcal{G}] \leq \mathbb{E}[Y|\mathcal{G}]$.
- (3) $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[X].$
- (4) $(L^1$ -contraction) $\mathbb{E}[|\mathbb{E}[X|\mathcal{G}]|] \leq \mathbb{E}[|X|].$
- (5) (Tower property) If $\mathcal{G}^1 \subset \mathcal{G}^2$, then $\mathbb{E}[\mathbb{E}[X|\mathcal{G}^2]|\mathcal{G}^1]] = E[X|\mathcal{G}^1]$.
- (6) If X is independent from \mathcal{G} , then $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X]$.
- (7) If X is independent from \mathcal{G} , and Y is \mathcal{G} -measurable, then for any measurable f, it holds that $\mathbb{E}[f(X,Y)|\mathcal{G}] = g(Y)$ where $g(y) = \mathbb{E}[f(X,y)]$, which is often written equivalently as

$$\mathbb{E}[f(X,Y)|\mathcal{G}] = \mathbb{E}[f(X,y)]_{y=Y}.$$

(8) Conditional version of monotone convergence, Fatou's lemma, dominated convergence, Jensen's inequality,...

Proof. Left as exercise.

If Y is a random variable, we define the conditional expectation of X w.r.t. Y by

$$\mathbb{E}[X|Y] := \mathbb{E}[X|\sigma(Y)].$$

Remark : by Proposition 2.2, there exists a function h s.t. $\mathbb{E}[X|Y] = h(Y)$. To prove this identity, by definition it suffices to check that for any measurable (bounded) g, it holds that

$$\mathbb{E}\left[Xg(Y)\right] = \mathbb{E}\left[h(Y)g(Y)\right]$$

Exercise 2. Check that this coincides with the definition given in the beginning of the subsection if Y is discretely valued.

When the considered r.v.'s have densities, conditional expectations can be computed explicitly.

Proposition 5.3. Assume that (X, Y) has a law which admits a density f = f(x, y). (for simplicity wrt dxdy but also holds w.r.t. any measure $\mu(dx) \otimes \nu(dy)$). Then it holds, for any h s.t. $\mathbb{E}[h(X)]$ makes sense :

(5.1)
$$\mathbb{E}[h(X)|Y] = \frac{\int h(x)f(x,Y)dx}{\int f(x,Y)dx} \ a.s.$$

Proof. Under the assumption on (X, Y), Y admits a density given by

$$f_y(y) = \int f(x, y) dx$$

Indeed, for any function ψ , by Fubini,

$$\mathbb{E}[\psi(Y)] = \int \psi(y) f(x, y) dx dy = \int \psi(y) \left(\int f(x, y) dx \right) dy.$$

Denote $h^{Y}(Y)$ the r.h.s. of (5.1). For any bounded function ϕ , we compute (again using Fubini)

$$\mathbb{E}[h(X)\phi(Y)] = \int h(x)\phi(y)f(x,y)dxdy$$
$$= \int \phi(y)\left(\int h(x)f(x,y)dx\right)dy$$
$$= \int \phi(y)h^{Y}(y)f_{y}(y)dy$$
$$= \mathbb{E}[\phi(Y)h^{Y}(Y)],$$

which concludes the proof.

Let us now discuss the notion of **conditional law**.

Definition 5.1. A probability kernel on is a map $\nu : \mathbb{R} \times \mathcal{B}(\mathbb{R})$ such that : (i) for all $y \in \mathbb{R}$, $\nu(y, \cdot)$ is a probability measure on \mathbb{R} , (ii) for all $A \in \mathcal{B}(\mathbb{R})$, $y \mapsto \nu(y, A)$ is measurable.

Theorem 5.1. Let X, Y be two random variables. There exists a probability kernel $\mathcal{L}^{X|Y}$, which is called the **law of** X, conditionally on Y, and which satisfies, for any bounded measurable f,

$$\mathbb{E}\left[f(X)|Y\right] = \int f(x)\mathcal{L}^{X|Y}(Y,dx).$$

Examples :

(1) if X independent from Y, then $\mathcal{L}^{X|Y}(y,\cdot) = \mathcal{L}^X$ for any value of y.

(2) If X = g(Y), then $\mathcal{L}^{X|Y}(y, \cdot) = \delta_{g(y)}$.

(3) If X and Y have a joint density f = f(x, y), the conditional distribution is given by Proposition 5.3.

(4) Exercise : if X = Z, Y = |Z| where $Z \sim \mathcal{N}(0, 1)$, check that $\mathcal{L}^{X|Y}(y, \cdot) = \frac{1}{2}\delta_y + \frac{1}{2}\delta_{-y}$.

6. Martingales in discrete time

Definition 6.1. A filtration on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a sequence $(\mathcal{F}_n)_{n>0}$ of sub- σ algebras of \mathcal{F} , which is non-decreasing i.e. $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ for each $n \geq 0$.

 $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_n)_{n \geq 0})$ is then called a filtered probability space. We fix one in the below. (example : if (X_n) is a sequence of r.v., we can take $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$.)

Definition 6.2. A stochastic process $(X_n)_{n\geq 0}$ (i.e. each X_n is a measurable r.v.) is adapted if, for each n, X_n is \mathcal{F}_n -measurable.

Definition 6.3. A martingale (resp. submartingale, supermartingale) is an adapted process $(M_n)_{n>0}$ s.t.

(1) $\overline{\forall}n \geq 0, \ M_n \in L^1(\mathbb{P}),$ (2) $\forall n \geq 0, \ \mathbb{E}[M_{n+1}|\mathcal{F}_n] = M_n \ (resp. \geq, \leq).$

Note that this implies $\mathbb{E}[M_n | \mathcal{F}_m]$ for each $n \ge m$, and $\mathbb{E}[M_n] = \mathbb{E}[M_0]$. Example : simple random walk. $M_n = \mathbb{E}[Z|\mathcal{F}_n]$.

Definition 6.4. A stopping time τ is a random variable taking values in $\mathbb{N} \cup \{\infty\}$ such that

 $\forall n \geq 0, \ \{\tau \leq n\} \in \mathcal{F}_n.$

(exercise : check that this equivalent to the same definition with \leq replaced by =). Example : if (Y_n) is an adapted process, and A is a Borel subset of \mathbb{R} , then

$$\tau_A := \inf \{ n \ge 0, \ Y_n \in A \}$$

is a stopping time.

Given a stopping time τ and a process M, we let M^{τ} (the stopped process) be defined by $M_n^{\tau} = M_{n \wedge \tau}.$

Proposition 6.1. If M is a martingale (resp. super, sub), then so is M^{τ} for any stopping time τ .

Proof. First, note that

$$M_n^{\tau} = M_n \mathbf{1}_{\{n \le \tau\}} + M_{\tau} \mathbf{1}_{\{\tau < n\}} = M_n \mathbf{1}_{\{n \le \tau\}} + \sum_{k < n} M_k \mathbf{1}_{\{\tau = k\}}$$

is an adapted process, and integrable since $|M_n^{\tau}| \leq \sum_{k=0}^n |M_k|$.

We then write

$$M_{n+1}^{\tau} = M_{n+1} \mathbb{1}_{\{n+1 \le \tau\}} + M_{\tau} \mathbb{1}_{\{\tau < n+1\}} = M_{n+1} \mathbb{1}_{\{n < \tau\}} + M_{\tau} \mathbb{1}_{\{\tau \le n\}}$$

and taking conditional expectation,

$$\mathbb{E}[M_{n+1}^{\tau}|\mathcal{F}_n] = \mathbb{E}[M_{n+1}|\mathcal{F}_n]\mathbf{1}_{\{n<\tau\}} + M_{\tau}\mathbf{1}_{\{\tau\leq n\}} = M_n\mathbf{1}_{\{n<\tau\}} + M_{\tau}\mathbf{1}_{\{\tau\leq n\}} = M_n^{\tau}.$$

Corollary 6.1. If τ is a bounded stopping time, and M is a martingale, then $\mathbb{E}[M_{\tau}] = \mathbb{E}[M_0]$.

Exercise 3. (1) Show that the above also holds if we replace the boundedness assumption on τ by

 $\mathbb{E}[\tau] < +\infty, \quad and \ \exists K \in \mathbb{R}, \forall n \in \mathbb{N}, |M_{n+1} - M_n| \le Ka.s.$

(*Hint* : apply dominated convergence to $M_{n \wedge \tau}$).

(2) Find a martingale M and a stopping time $\tau < \infty$ a.s., and such that $\mathbb{E}[M_{\tau}] \neq \mathbb{E}[M_0]$. (Hint : consider the first time when a simple random walk hits 1).

Definition 6.5. Given a stopping time τ , we define

 $\mathcal{F}_{\tau} = \left\{ A \in \mathcal{F} : \forall n \ge 0, \ A \cap \{\tau = n\} \in \mathcal{F}_n \right\}.$

It is easy to check that this defines a σ -algebra. Also note that this notation is consistent with \mathcal{F}_n (i.e. if $\forall \omega, \tau(\omega) = n$ then $\mathcal{F}_{\tau} = \mathcal{F}_n$).

Check that if (X_n) is an adapted process, then $X_{\tau} \mathbb{1}_{\{\tau < \infty\}}$ is \mathcal{F}_{τ} -measurable. This follows from

$$\{X_{\tau} 1_{\{\tau < \infty\}} \in A, \, \tau = n\} = \{X_n \in A, \, \tau = n\}$$

If $\rho \leq \tau$ are two stopping times, then $\mathcal{F}_{\rho} \subset \mathcal{F}_{\tau}$, since

$$A \cap \{ \tau \le n \} = A \cap \{ \rho \le n \} \cap \{ \tau \le n \}.$$

We then have the following generalization of Corollary 6.1.

Proposition 6.2. Let $\rho \leq \tau$ be two bounded stopping times, and M a martingale. Then

$$\mathbb{E}[M_{\tau}|\mathcal{F}_{\rho}] = M_{\rho}.$$

Proof. First $\mathbb{E}[M_{\tau}|\mathcal{F}_n] = M_{\tau \wedge n}$ by Proposition 6.1, and then, for any $A \in \mathcal{F}_{\rho}$,

$$\mathbb{E}[M_{\tau}1_{A}] = \sum_{n} \mathbb{E}[M_{\tau}1_{A}1_{\rho=n}]$$
$$= \sum_{n} \mathbb{E}[\mathbb{E}[M_{\tau}|\mathcal{F}_{n}]1_{A}1_{\rho=n}]$$
$$= \sum_{n} \mathbb{E}[M_{n}1_{A}1_{\rho=n}]$$
$$= \mathbb{E}[M_{\rho}1_{A}].$$

(We have used that $1_A 1_{\rho=n}$ is \mathcal{F}_n -measurable by definition of \mathcal{F}_ρ)

An important part of martingale theory is their convergence properties when $n \to \infty$. We state the below theorem without proofs.

Theorem 6.1. Let $(M_n)_{n \ge 0}$ be a martingale which is bounded in L^1 (i.e. $\sup_n \mathbb{E}|M_n| < \infty$). Then M_n converges almost surely to a limit M_∞ .

Note the convergence does not hold in L^1 in general. Indeed, let $M_n = U_1 \dots U_n$, where the U_n are i.i.d. with $\mathbb{P}(U_1 = 0) = \mathbb{P}(U_1 = 2) = \frac{1}{2}$. Then $M_n \to 0$ a.s., but $\mathbb{E}[M_n] = 1$ for all n. Note in particular that in that case $M_n \neq \mathbb{E}[M_\infty | \mathcal{F}_n]$.

In order to state conditions under which the convergence holds in L^1 , we need the following (important) notion.

Definition 6.6. A family X_i , $i \in I$ of r.v.'s is uniformly integrable (u.i.) if $\lim_{K \to \infty} \sup_{i \in I} \mathbb{E} \left[|X_i| \mathbf{1}_{\{|X_i| \ge K\}} \right] = 0.$ Note that any u.i. family is bounded in L^1 .

For instance, if $\forall i, |X_i| \leq |Y|$ with Y integrable, then the X_i are uniformly integrable (exercise). A convenient way to check the uniform integrability is via De La Vallée Poussin's criterion, which states that a family is u.i. if and only if there exists Φ with $\lim_{|x|\to\infty} \frac{\Phi(x)}{|x|} = +\infty$ and $\sup_i \mathbb{E}[\Phi(X_i)] < \infty$. (Exercise : prove the "if" part, which is both the simplest and the most useful direction.) For instance, families which are bounded in $L^p, p > 1$ are uniformly integrable.

The importance of the u.i. condition, is the following result, which is an extension of the dominated convergence theorem.

Proposition 6.3. Let $X_n \to X$ a.s., and assume that the $X_n, n \in \mathbb{N}$ are uniformly integrable. Then $\lim_n \mathbb{E}[X_n] = \mathbb{E}[X]$.

Proof. Fix $\varepsilon > 0$, by definition there exists K s.t., letting $X_n^K = X_n \mathbb{1}_{\{|X_n| \le K\}}$, it holds that

$$\sup_{n} \left| \mathbb{E} \left[X_{n} \right] - \mathbb{E} \left[X_{n}^{K} \right] \right| \leq \varepsilon.$$

On the other hand, by dominated convergence, $\lim_n \mathbb{E}[X_n^K] = \mathbb{E}[X^K]$, and we deduce that

$$\limsup_{n} |\mathbb{E}[X_n] - \mathbb{E}[X]| \le 2\varepsilon$$

We conclude by letting $\varepsilon \to 0$.

Theorem 6.2. Let $(M_n)_{n \ge 0}$ be a martingale which is uniformly integrable. Then M_n converges a.s. and in L^1 to a limit M_{∞} . In addition, it holds that $M_n = \mathbb{E}[M_{\infty} | \mathcal{F}_n]$.

Proof. Let M_{∞} be the a.s. limit given by Theorem 6.1. Then L^1 convergence follows from Proposition 6.3 applied to $X_n = |M_n - M_{\infty}|$. To check that $M_n = \mathbb{E}[M_{\infty} | \mathcal{F}_n]$, it suffices to check that for any $A \in \mathcal{F}_n$,

$$\mathbb{E}\left[M_n \mathbf{1}_A\right] = \mathbb{E}\left[\lim_{m \to \infty} M_m \mathbf{1}_A\right]$$

which again follows from Proposition 6.3.

Theorem 6.3. Let $(M_n)_{n \ge 0}$ be a martingale which is bounded in L^p , $1 . Then <math>M_n$ converges a.s. and in L^p to a limit M_{∞} .

Let us prove the L^2 -convergence when p = 2. In that case, recalling that conditional expectations are orthogonal projections, it holds that

$$\forall m \ge n, \| M_m \|_2^2 = \| M_m - M_n \|_2^2 + \| M_n \|_2^2,$$

from which it follows that $||M_n||_2$ is an increasing sequence, which, since it is bounded, must converge to a finite limit. It then also follows that (M_n) is a Cauchy sequence in L^2 , from which we can conclude.

7. Gaussian vectors

In this section, we will work with random vectors, i.e. r.v.'s Y with values in \mathbb{R}^d .

Note that many results stated above in the scalar case remain true in higher dimension. For instance, given a random vector $Y = (Y_1, \ldots, Y_d)$, its characteristic function is defined by

$$\phi_Y: \xi = (\xi_1, \dots, \xi_d) \in \mathbb{R}^d \mapsto \mathbb{E}\left[e^{i\xi \cdot Y} \right]$$

where \cdot is the scalar product $(\xi \cdot X = \sum_{i=1}^{d} \xi_i X_i)$.

14

Then it still holds that a sequence Y_n converges in distribution to Y if and only if its characteristic function converges pointwise. (In particular, if two r.v.'s share the same characteristic function, they have the same law).

Definition 7.1. X , scalar r.v., is a Gaussian, if there exists $m \in \mathbb{R}$, $\sigma > 0$ s.t. X has the same law as $m + \sigma Z$, where $Z \sim \mathcal{N}(0,1)$. This is equivalent to the characteristic function satisfying $\Phi_X(t) = e^{mt - \frac{t^2 \sigma^2}{2}}$. We write $X \sim \mathcal{N}(m, \sigma^2)$.

Definition 7.2. A random vector $Y = (Y^1, \ldots, Y^d)$ is a Gaussian vector (also written : (Y^1, \ldots, Y^d) are jointly Gaussian), if, for each $(\lambda_1, \ldots, \lambda_d) \in \mathbb{R}^d$, the scalar r.v. $\sum_{i=1}^d \lambda_i Y_i$ is Gaussian.

Definition 7.3. Given a Gaussian vector Y, we define its mean $m \in \mathbb{R}^d$ and its covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$ by

$$m_i = \mathbb{E}[Y_i],$$

$$\Sigma_{ij} = cov(Y_iY_j) = \mathbb{E}[(Y_i - \mathbb{E}[Y_i])(Y_j - \mathbb{E}[Y_j])].$$

Proposition 7.1. The law of a Gaussian vector is characterized by its mean m and covariance Σ . More precisely, the characteristic function of Y is then given for $\xi \in \mathbb{R}^d$ by

$$\mathbb{E}[\exp(i\xi \cdot Y)] = \exp\left(m \cdot \xi - \frac{1}{2}\xi \cdot \Sigma\xi\right).$$

(We then write $X \sim \mathcal{N}(m, \Sigma)$).

In addition, if $\Sigma = CC^{T}$ for a matrix C, then

$$Y =^{law} m + \Sigma X,$$

where $X = (X_1, \ldots, X_d)$ with the X_i i.i.d. $\mathcal{N}(0, 1)$.

Proof. For the first part : by assumption, if ξ is in \mathbb{R}^d , $\xi \cdot Y$ is Gaussian, and it is immediate to compute

$$\mathbb{E}[\xi \cdot Y] = \xi \cdot m, \quad Var(\xi \cdot Y) = \sum_{i,j} \xi_i \xi_j \Sigma_{ij} = \xi \cdot \Sigma \xi.$$

The formula then follows from that for the scalar Gaussians.

For the second part, it suffices to check that the r.h.s. is also a Gaussian vector, with same mean and covariance matrix. $\hfill \Box$

Remark : this gives a way to simulate any Gaussian vector. (and there always exists such a C, which can be taken triangular : this is the so-called Cholesky decomposition of symmetric matrices).

Corollary 7.1. Let (Y^1, \ldots, Y^d) be jointly Gaussian. Then Y^1, \ldots, Y^d are independent if and only if they are pairwise uncorrelated.

More generally : if $X \sim \mathcal{N}(m, \Sigma)$, then for any matrix $A \in \mathbb{R}^{d' \times d}$, $AX \sim \mathcal{N}(Am, A\Sigma A^T)$. We now show how, for Gaussian vectors, conditional distributions are easy to compute.

Proposition 7.2. Let Z = (X, Y) be a Gaussian vector in \mathbb{R}^2 , with mean vector $\begin{pmatrix} m_X \\ m_Y \end{pmatrix}$ and covariance matrix $\begin{pmatrix} \sigma_{XX} & \sigma_{XY} \\ \sigma_{XY} & \sigma_{YY} \end{pmatrix}$, and assume that $\sigma_{YY} > 0$. Then it holds that $\mathbb{E}[X|Y] = m_X + \frac{\sigma_{XY}}{\sigma_{YY}}(Y - m_Y)$. More generally, conditionally on Y, X is Gaussian with mean $\mathbb{E}[X|Y]$ and variance $\sigma_{XX} - \frac{\sigma_{XY}}{\sigma_{YY}}$.

Proof. Let

$$W = X - \frac{\sigma_{XY}}{\sigma_{YY}}Y.$$

Then a direct computation gives that cov(W, Y) = 0, and since (W, Y) is Gaussian, W is independent of Y. The result then follows from writing $X = W + \frac{\sigma_{XY}}{\sigma_{YY}}Y$, with the first term of the r.h.s. is independent of Y and the second is $\sigma(Y)$ -measurable.

Note that the above computation extends to vectors of higher dimensions.

Finally, we remark that Gaussian vectors also arise naturally in fluctuation of i.i.d. random vectors.

Theorem 7.1 (CLT in \mathbb{R}^d .). Let X^n be an *i.i.d.* sequence of random vectors, with square integrable entries. Let $M = \mathbb{E}[X^1]$, and $\Sigma = \left(cov(X_i^1, X_j^1)\right)_{1 \le i,j \le d}$. Then

$$\frac{\sum_{k=1}^{n} (X_k - M)}{\sqrt{n}} \to_{n \to \infty} \mathcal{N}(0, \Sigma) \text{ in law }.$$

Proof. Using the characteristic function, this reduces to the scalar CLT.

8. BROWNIAN MOTION : DEFINITION, EXISTENCE

A continuous time stochastic process on a probability space is a family $X = (X_t)_{t \ge 0}$ of random variables indexed by \mathbb{R}_+ .

Definition 8.1. A (standard) **Brownian motion** is a stochastic process $(B_t)_{t>0}$ s.t.

(1a) $B_0 = 0$ a.s.

(1b) For each $0 = t_0 < t_1 < \ldots < t_m$, then $B_{t_1}, B_{t_2} - B_{t_1}, \ldots, B_{t_m} - B_{t_{m-1}}$ are independent, (1c) For each $0 \le s \le t$, $B_t - B_s$ has law $\mathcal{N}(0, t - s)$.

(2) $\forall \omega \in \Omega, t \mapsto B_t \text{ is continuous.}$

Remark 8.1. (Technical remark on continuity of sample paths)

- Condition (2) is sometimes replaced by the weaker condition :
 - (2') There exists a measurable $\Omega_0 \subset \Omega$ with $\mathbb{P}(\Omega_0) = 1$, such that $t \mapsto B_t$ is continuous on Ω_0 .
 - Note that if B satisfies (1) and (2'), we can redefine the B_t to be 0 outside of Ω_0 to obtain a stochastic process satisfying (1)-(2).
- In fact, even though (1) does not imply (2) or (2'), it implies that we can find a modification of B (i.e. a process B̃ such that for all t ≥ 0, a.s., B_t = B̃_t) which is continuous.

(exercise : use for instance a similar construction to what is done below to find a sequence of continuous B^n 's, which almost surely converge uniformly on compacts, and such that for all $t \ge 0$, a.s., $B_t = \lim_{n \to \infty} B_t^n$.)

A stochastic process $(X_t)_{t\geq 0}$ is a **Gaussian process** if for any t_1, \ldots, t_n , $(X_{t_1}, \ldots, X_{t_n})$ is a Gaussian vector.

Proposition 8.1. In the definition of Brownian motion, we can alternatively replace (1) by (1') B is a Gaussian process, with mean function $\mathbb{E}[B_t] = 0$ and covariance $\mathbb{E}[B_sB_t] = s \wedge t$

Proof. (1) \Rightarrow (1') : $(B_{t_1}, \ldots, B_{t_n})$ is a linear function of $(B_{t_1}, B_{t_2} - B_{t_1}, \ldots, B_{t_n} - B_{t_{n-1}})$. Since the latter has independent Gaussian components, it is a Gaussian vector, and so is the former. The mean and covariance computation is immediate

 $(1') \Rightarrow (1)$: (1a) is immediate. For (1b), note that $(B_{t_1}, B_{t_2} - B_{t_1}, \dots, B_{t_m} - B_{t_{m-1}})$ is a Gaussian vector, and it suffices to check that its entries are uncorrelated, which follows from the covariance function. For (1c), again $B_t - B_s$ is Gaussian, and it suffices to check that it has mean 0 and variance t - s.

Proposition 8.2. Let $B = (B_t)_{t \ge 0}$ be a Brownian motion. Then :

- (1) $(-B_t)_{t>0}$ is a Brownian motion,
- (2) For each $\lambda > 0$, $B_t^{\lambda} := \lambda^{-1/2} B_{\lambda t}$ is a Brownian motion. (3) For each T > 0, $B_t^T := B_{T+t} B_T$ is a Brownian motion (independent from $\sigma(B_s, s \le T)$).
- (4) $(tB_{\frac{1}{4}}1_{\{t>0\}})_{t\geq 0}$ is a Brownian motion.

Proof. Straightforward. The only delicate point is to check that in case (4), $\tilde{B}(t) = tB_{\frac{1}{4}}$ is continuous at 0, which is equivalent to

(8.1)
$$\lim_{t \to \infty} \frac{B_t}{t} = 0.$$

Note that it follows from the strong law of large numbers that $\lim_{n \to \infty} \frac{B_n}{n} = 0$. Exercise : prove (8.1), taking for granted that

(8.2)
$$\mathbb{E}\left[\sup_{t\in[0,1]}|B_t|\right] < \infty$$

(and using independence of increments).

The fact that Brownian motions exist is not an obvious fact. We will now present a construction of Brownian motion on [0, 1] due to Paul Lévy. Note that this suffices to define a Brownian motion on \mathbb{R}_+ by "pasting together" successive independent copies.

The construction proceeds by successive approximations, defining the value of B at dyadic points. Let

$$\mathcal{D} = \bigcup_n \mathcal{D}_n, \quad \mathcal{D}_n = \left\{ k 2^{-n}, \quad 0 \le k \le 2^n \right\}.$$

We then fix $(Z_t)_{t \in \mathcal{D}}$, an i.i.d. family of $\mathcal{N}(0,1)$, and define for any $n \geq 0$, the functions F_n on \mathcal{D} by $F_0(0) = 0, F_0(1) = Z_1$, and for $n \ge 1$,

$$F_n(t) = \begin{cases} 2^{-\frac{n+1}{2}} Z_t, & t \in \mathcal{D}_n \setminus \mathcal{D}_{n-1}, \\ 0, & t \in \mathcal{D}_{n-1}, \end{cases}$$

which are then extended to the whole of [0, 1] by linear interpolation. We also let

$$B_n = \sum_{k=0}^n F_k,$$

and aim to show that the B_n (which are continuous functions by definition), almost surely converge uniformly on [0,1] as $n \to \infty$.

We then use the following property of Gaussians : if $Z \sim \mathcal{N}(0,1)$, then for all $x \geq 1$, $\mathbb{P}(|Z| \geq 1)$ $x) < e^{-x^2}.$

It follows that for any c > 0,

$$\mathbb{P}\left(\left\|F_{n}\right\|_{\infty} \geq c\right) = \mathbb{P}\left(\exists t \in \mathcal{D}_{n} - \mathcal{D}_{n-1}, \ 2^{-\frac{n+1}{2}}|Z_{t}| \geq c\right)$$
$$\leq \sum_{t \in \mathcal{D}_{n} - \mathcal{D}_{n-1}} \mathbb{P}\left(\left|Z_{t}\right| \geq c\right) = 2^{n-1}\mathbb{P}\left(\left|Z\right| \geq c2^{\frac{n+1}{2}}\right)$$
$$\leq 2^{n-1}\exp\left(-c^{2}2^{-n-1}\right).$$

Hence, taking $c_n = 2^{-\alpha n}$ (for fixed $\alpha < 1/2$)), it holds that $\sum_{n \ge 0} \mathbb{P}(\|F_n\|_{\infty} \ge c_n) < \infty$. By the Borel-Cantelli lemma, this implies that a.s., for *n* large enough, $\|F_n\|_{\infty} \le c_n$ and in particular, a.s. it holds that $\sum_{n>0} \|F_n\|_{\infty} < \infty$, so that B_n converges uniformly to a limit.

It remains to show that B is a Brownian motion. This is done by first checking that $(B(t))_{t \in \mathcal{D}}$ is a Gaussian process with the correct mean and covariance (this is easily checked on \mathcal{D}_n by an induction on n). The extension to the whole interval is then a consequence of the following lemma.

Lemma 8.1. Let X_n be a sequence of Gaussian vectors with mean M_n and covariance Σ_n , and assume that M_n and Σ_n converge to limits M and Σ as $n \to \infty$. Then X_n converges in distribution to $\mathcal{N}(M, \Sigma)$ as $n \to \infty$.

Proof. This is obvious from the characteristic function.

Exercise 4. Show that there exists constant C > 0 s.t. $\mathbb{P}\left(\sup_{t \in [0,1} |B_t| \ge x\right) \le Ce^{-Cx^2}$. (Hint : use the previous construction and write for any $\lambda > 0$, $\mathbb{E}\left[e^{\lambda \|B\|_{\infty}}\right] \le \prod_{n \ge 0} \mathbb{E}\left[e^{\lambda \|F_n\|_{\infty}}\right]$.) Note that this implies (8.2).

Remark 8.2. Wiener measure (the law of Brownian motion) Let $E = C(\mathbb{R}_+, \mathbb{R})$ (path-space), and \mathcal{E} the Borel σ -algebra for the topology of uniform convergence on compacts.

Then, given a Brownian motion B on $(\Omega, \mathcal{F}, \mathbb{P})$, it can be shown that letting

$$\mathbb{W}: A \in \mathcal{E} \mapsto \mathbb{P}((t \mapsto B_t) \in A)$$

defines a unique measure on (E, \mathcal{E}) . This measure is called the **Wiener measure**.

We conclude this section with a few properties of the paths of Brownian motion.

Proposition 8.3 (Blumenthal's 0-1 law). Let $\mathcal{F}_t = \sigma(B_s; 0 \le s \le t)$, and let $\mathcal{F}_{0+} = \bigcap_{s \ge 0} \mathcal{F}_s$. Then \mathcal{F}_{0+} is trivial in the sense that

$$A \in \mathcal{F}_{0+} \Rightarrow \mathbb{P}(A) = 0 \text{ or } 1.$$

Proof. We show that \mathcal{F}_{0+} is independent from \mathcal{F}_t , for any t > 0. Indeed, let f be a continuous function and $A \in \mathcal{F}_{0+}$, then for any t_1, \ldots, t_n

$$\mathbb{E}\left[\mathbf{1}_{A}f(B_{t_{1}},\ldots,B_{t_{n}})\right] = \lim_{\varepsilon \to 0} \mathbb{E}\left[\mathbf{1}_{A}f(B_{t_{1}+\varepsilon}-B_{\varepsilon},\ldots,B_{t_{n}+\varepsilon}-B_{\varepsilon})\right]$$
$$= \lim_{\varepsilon \to 0} \mathbb{P}(A)\mathbb{E}\left[f(B_{t_{1}+\varepsilon}-B_{\varepsilon},\ldots,B_{t_{n}+\varepsilon}-B_{\varepsilon})\right]$$
$$= \mathbb{P}(A)\mathbb{E}\left[f(B_{t_{1}},\ldots,B_{t_{n}})\right],$$

where in the second equality we have used that $A \in \mathcal{F}_{\varepsilon}$ and independence of increments.

Hence, if $A \in \mathcal{F}_{0+}$, then A is independent of itself, and $\mathbb{P}(A) = \mathbb{P}(A \cap A) = \mathbb{P}(A)^2$, which implies $\mathbb{P}(A) \in \{0, 1\}$.

Remark 8.3 (Kolmogorov's 0-1 law). By time inversion, this also implies that the tail σ -algebra $\cap_{t>0}\sigma(B_s; s \ge t)$ is trivial.

Corollary 8.1. It holds almost surely, that

$$\forall t_0 > 0, \quad \sup_{t \in [0, t_0]} B_t > 0 \ and \ \inf_{t \in [0, t_0]} B_t < 0.$$

Proof. Let $t_n \downarrow 0$, $A_n = \{\sup_{[0,t_n]} B > 0\}$ and $A = \bigcap_n A_n$. Then, since A_n is decreasing (for set inclusion), $A \in \mathcal{F}_{0+}$ and $\mathbb{P}(A) = \lim_n \mathbb{P}(A_n)$. On the other hand, for each n, $\mathbb{P}(A_n) \ge \mathbb{P}(B_{t_n} > 0) = \frac{1}{2}$ since B_{t_n} is a centered Gaussian. It follows that $\mathbb{P}(A) \ge \frac{1}{2}$, and by the 0 - 1 law, this implies $\mathbb{P}(A) = 1$.

The statement on the infimum also holds a.s. by symmetry.

Corollary 8.2. It holds almost surely that

$$\limsup_{t \to +\infty} B_t = +\infty, \quad \liminf_{t \to +\infty} B_t = -\infty$$

Proof. Fix a > 0. By scaling (point (2) in Proposition 8.2), it holds that, for any T > 0,

$$\mathbb{P}\left(\sup_{t\in[0,+\infty)}B_t>a\right)\geq\mathbb{P}\left(\sup_{t\in[0,T]}B_t>a\right)=\mathbb{P}\left(\sup_{t\in[0,1]}B_t>\frac{a}{\sqrt{T}}\right).$$

Letting $T \to \infty$, and using that $\sup_{t \in [0,1]} B_t > 0$ a.s. by the previous corollary, we obtain $\limsup_{t \to +\infty} B_t > a$ a.s., for arbitrary a.

Students interested in learning more on properties of Brownian motion can consult the book "Brownian motion" by Mörters and Peres.