
A REVIEW OF PROBABILITY FOUNDATIONS

The contents of this class are covered in numerous textbooks and lecture notes, here are just a
few of them :

Le Gall ”Measure Theory, Probability, and Stochastic Processes”
Durrett ”Probability : Theory and examples”
Billingsley ”Probability and Measure”
Gut ”Probability : a graduate course”

1. Basics of measure theory and integration

Definition 1.1. E ⊂ P(E) is a σ-algebra on a set E if :

• ∅ ∈ E
• A ∈ E ⇒ Ac ∈ E (where Ac = E \A)
• If (An)n is a countable family of elements of E, then ∪nAn ∈ E.

The pair (E, E) is then called a measurable space. Examples : {∅, E}, P(E) are σ-algebras.
Given a family F of subsets of E, the σ-algebra generated by F , denoted σ(F), is the smallest

σ-algebra on E containing F . Since an intersection of σ-algebras is a σ-algebra, it can in fact be
obtained as

σ(F) =
⋂

E σ-algebra,E⊃F

E .

If E is a topological space, with family of open sets O, the Borel σ-algebra, denoted B(E) is
σ(O). In the sequel, when we work on R or more generally Rd, they will always be equipped with
the Borel σ-algebra B(Rd).

Definition 1.2. Let (E, E) and (F,F) be measurable spaces. A map f : E → F is called measurable
if

∀A ∈ F , f−1(A) := {x ∈ E, f(x) ∈ A} ∈ E .

Definition 1.3. A measure µ on a measurable space (E, E) (where E is a σ-algebra on E), is a
function µ : E → [0,+∞] such that, if An, n ∈ N are disjoint elements of E, it holds that

µ (∪n∈NAn) =
∑
n∈N

µ(An).

The triplet (E, E , µ) is then called a measured space.
A basic example is the counting measure, i.e. µ(A) = card(A). Another one is the Dirac mass

δx at x ∈ E, defined by δx(A) = 1A(x).
A more interesting example is the Lebesgue measure on (R,B(R)), which is the unique measure

λ on B(R) s.t. λ([a, b]) = b− a for any a ≤ b. (Its existence is not a trivial fact !).
Remark : a useful technical tool to prove equality of two measures is the monotone class

theorem (not defined in these notes, but easy to look up), which has the following consequence.

Proposition 1.1. Let µ, ν be measures on (E, E). Assume that C ⊂ E is stable under finite
intersections, satisfies σ(C) = E, and µ(A) = ν(A) for all A ∈ C.
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2 A REVIEW OF PROBABILITY FOUNDATIONS

If in addition, there is an increasing sequence (En)n ⊂ C, ∪nEn = E s.t. µ(En) = ν(En) < ∞,
then it holds that µ = ν (on E).

This allows for instance to prove that the above property characterizes the Lebesgue measure
uniquely, or that two finite measures on R coincide if and only if they agree on sets of the form
(−∞, a], for a ∈ R.

The main use of measures is that they allow to define integrals
∫
fdµ of measurables functions

f : (E, E) → (R,B(R)). More precisely, there exists a unique way of defining, for any non-negative
f ,
∫
fdµ ∈ [0,+∞] (also written

∫
f(x)dµ(x)), s.t. the following is satisfied :

• If A ∈ E , then
∫
1Adµ = µ(A),

• For any measurable f, g ≥ 0 and a, b ∈ R+,
∫
(af + bg)dµ = a

∫
fdµ+ b

∫
gdµ,

• If 0 ≤ f ≤ g, then
∫
fdµ ≤

∫
gdµ.

For R-valued functions, we then say that f is integrable if
∫
|f |dµ < +∞, and we then define∫

fdµ =
∫
f+dµ− inf f−dµ. The set of integrable functions is denoted L1(E, E , µ).

The three following limit theorems are very useful.

Theorem 1.1. (Monotone convergence) Let fn ≥ 0 be a non-decreasing sequence of measurable
functions, and let f = limn→∞ fn. Then it holds that

lim
n→∞

∫
fndµ =

∫
fdµ.

(Fatou’s lemma) Let fn ≥ 0 be measurable functions, then it holds that∫ (
lim inf
n→∞

fn

)
dµ ≤ lim inf

n→∞

∫
fndµ.

(Dominated convergence) Let fn be measurable and such that, it holds that

lim
n→∞

fn(x) = f(x) for µ-a.e. x,

and there exists an integrable function g such that

∀n, |fn(x)| ≤ g(x) for µ-a.e. x.

Then it holds that

lim
n→∞

∫
fndµ =

∫
fdµ.

Derivation under integral sign :

Proposition 1.2. Let µ be a measure on (E, E), and let f = f(λ, x) be a function on I×E (where
I is a subinterval of R) s.t. for some k ∈ {0, 1} :

(i) For all λ, f(λ, ·) is E-measurable and µ-integrable,
(ii) For µ-a.e. x, λ 7→ f(λ, x) is in Ck(I),
(iii) There exists a µ-integrable function g s.t. for µ-a.e. x, ∀λ ∈ I,

∣∣∂kλf(λ, x)∣∣ ≤ g(x).
Then

F : λ 7→
∫
f(λ, x)µ(dx)

is in Ck(I), and

F (k)(λ) =

∫
(∂kλ)f(λ, x)µ(dx).
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Definition 1.4. Let (E, E , µ) and (F,F , ν) be two measured spaces. We can define the product
σ-algebra E ⊗F = σ(E ×F). The product measure µ⊗ ν is the unique measure on (E ×F, E ⊗F)
such that

∀A ∈ E , B ∈ F , (µ⊗ ν)(A×B) = µ(A)ν(B).

A measure is said σ-finite if there exists a sequence of measurable sets En with ∪n∈NEn = E
and µ(En) < +∞.

Theorem 1.2 (Fubini). Assume that both µ and ν are σ-finite. Let f : E×F → R be a measurable
function w.r.t. E ⊗ F . Then the following are equivalent :

(1) f is integrable w.r.t. µ⊗ ν ,
(2)

∫ (∫
|f(x, y)|µ(dx)

)
ν(dy) < +∞,

(3)
∫ (∫

|f(x, y)| ν(dy)
)
µ(dx) < +∞,

and if this holds, one has∫
f(x, y)(µ⊗ ν)(dx, dy) =

∫ (∫
f(x, y)µ(dx)

)
ν(dy) =

∫ (∫
f(x, y)ν(dy)

)
µ(dx).

The formula above also holds for measurable non-negative f .

Given a measured space (E, E , µ) and a measurable f ≥ 0, we can always define a new measure
ν on (E, E) by

ν(A) =

∫
1A(x)f(x)µ(dx).

We say that f is the density of ν w.r.t. µ, also written dν
dµ = f .

A measure ν is said to be absolutely continuous w.r.t. µ, (written ν ≪ µ) if for all A ∈ E ,
µ(A) = 0 ⇒ ν(A) = 0.

It is easy to check that if ν admits a density w.r.t. µ, then ν ≪ µ. The converse turns out to be
also true.

Theorem 1.3 (Radon-Nikodym). Let ν and µ be two σ-finite measures on a measured space (E, E),
s.t. ν ≪ µ. Then ν admits a density f w.r.t. µ.

2. Probability : random variables, independence,

We will now fix a probability space, namely a measured space (Ω,F ,P) where P is a proba-
bility measure, i.e. satisfies P(Ω) = 1.

In this context, familiar objects from measure theory are given new names :

Definition 2.1. An event is a measurable set A ∈ F .
An event A holds almost surely (abbreviated a.s.) if P(A) = 1.
A (E-valued) random variable (abbreviated r.v.) X is a measurable map from (Ω,F) to a

measurable space (E, E). (When E is not specified, this will always mean E = R).
The expectation of a non-negative or integrable r.v. X, is E[X] =

∫
X(ω)P(dω).

The law of a E-valued random variable X is the measure image on E, defined for A ∈ E by

LX(A) = P ◦X−1(A) = P({ω : X(ω) ∈ A}).

Note that in probability theory, the underlying set Ω is typically unimportant (and is often not
specified). The important objects are random variables and their properties (such as their laws).

The cumulant distribution function (c.d.f.) of a scalar r.v. X is the function x ∈ R 7→ P(X ≤ x).
By a remark above, it fully characterizes the law of X.
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Proposition 2.1. Let X be a scalar r.v., h : R → R measurable, s.t. h(X) is integrable. Then

E [h(X)] =

∫
h(x)LX(dx).

For instance, if the law of X admits a density f w.r.t. Lebesgue measure, then

E[h(X)] =

∫
h(x)f(x)dx.

Given a r.v. X with values in (E, E), the σ-algebra generated by X, denoted σ(X), is the smallest
σ-subalgebra of F for which X is measurable, explicitely it can be written as

σ(X) =
{
X−1(A), A ∈ E

}
.

Proposition 2.2. Let X be a (E, E)- valued r.v. and Y be a σ(X)-measurable r.v., then there
exists a measurable ψ : E → R s.t. Y = ψ(X).

Definition 2.2 (Lp spaces). Fix 1 ≤ p <∞. Given a r.v. X, its Lp norm is defined by

∥X∥Lp = E [|X|p]1/p .
Then

Lp(Ω) = {X : ∥X∥Lp <∞} / ∼
equipped with ∥ · ∥Lp , is a Banach space. (X ∼ Y iff X = Y P− a.s.).

We can also define L∞, with norm

∥X∥L∞ = ess sup |X| := inf{c ∈ R,P(|X| ≤ c) = 1}.

We record the following important inequalities for expectations of random variables.

Proposition 2.3. (Jensen) Let ϕ : R → R be convex and X a r.v., then

ϕ (E[X]) ≤ E [ϕ(X)]

(as long as the two expectations above are well-defined).
Cauchy-Schwarz) For any two r.v. X,Y ,

E [|XY |] ≤ ∥X∥L2 ∥Y ∥L2 .

(Hölder) Fix 1 ≤ p, q ≤ ∞ s.t. 1
p + 1

q = 1. Then for any two r.v. X,Y ,

E [|XY |] ≤ ∥X∥Lp ∥Y ∥Lq .

Note that it follows from Jensen’s inequality that ∥ · ∥Lp ≤ ∥ · ∥Lq if p ≤ q.

Definition 2.3. Let X ∈ L1(Ω). The mean of X is simply E[X]. X is centered if its mean is 0.
Let X ∈ L2. The variance of X is defined by

V ar(X) = E
[
(X − E[X])

2
]
.

A simple but often very efficient way of measuring probabilities is given by the following propo-
sition.

Proposition 2.4. Let U be a non-decreasing positive function. Then for any r.v. X s.t. the below
expectation make sense, for any a ∈ R, it holds that

P (X ≥ a) ≤ E[U(X)]

U(a)
.
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Proof. Follows from taking E in the inequality U(a)1{X≥a} ≤ U(X). □

This implies the following classical special cases,

∀a > 0 P(|X| ≥ a) ≤ E[|X|]
a

(Markov) ,P(|X − E[X]| ≥ a) ≤ V ar(X)

a2
(Bienaymé-Tchebychev) ,

∀λ > 0, ∀a ∈ R, P(X ≥ a) ≤ E[eλX ]e−λa (Chernoff) .

Definition 2.4. Two events A,B ∈ F are independent if

P(A ∩B) = P(A)P(B).

A family Ai, i ∈ I of events is independent iff, for any i1, . . . , in ∈ I,

P(Ai1 ∩ · · · ∩Ain) = P(Ai1) · · ·P(Ain).

Similarly, two (E, E)-valued r.v. X and Y are independent if

∀A,B ∈ E , P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

and a family Xi, i ∈ I of random variables is independent iff, for any i1, . . . , in ∈ I, any measurable
A1, . . . , An,

P(Xi1 ∈ A1, . . . , Xin ∈ An) = P(Xi1 ∈ A1) · · ·P(Xin ∈ An).

A family Gi, i ∈ I of σ-algebras is independent if any family Ai, i ∈ I of events with Ai ∈ Gi is
independent.

(Note that independence of a family is stronger than pairwise independence of its elements.)
Note that it is obvious from the definition that X and Y are independent if and only if the law of

(X,Y ) is the product measure LX ⊗ LY . (A similar result is true for family of random variables).
In particular, in conjunction with Proposition 2.1 and Fubini’s theorem, this implies that if X,Y
are independent, f, g functions , then

E[f(X)g(Y )] = E[f(X)]E[g(Y )].

Given a sequence (An)n∈N of events, we define

lim sup
n

An = ∩n≥0 (∪k≥nAk) ,

this event can alternately be characterized as

lim sup
n

An = {ω : ω ∈ infinitely many An ’s} ,

Proposition 2.5 (Borel-Cantelli). (1) Let An, n ∈ N be a sequence of events s.t.
∑

n P(An) <∞.
Then P(lim supAn) = 0.

(2) Let An, n ∈ N be an independent sequence of events s.t.
∑

n P(An) = ∞. Then P(lim supAn) =
1.

Proof. (1) By Fubini,

E

[∑
n

1An

]
=
∑
n

P(An) <∞,

which implies that P(
∑

n 1An
<∞) = 1, which is the claim.

(2) Note that

(lim sup
n

An)
c = ∪n≥0 (∩k≥nA

c
k) ,
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and since this is an increasing union, we have

P((lim sup
n

An)
c) = lim

n
P (∩k≥nA

c
k)

each of these can be bounded for p ≥ 0 by

P (∩k≥nA
c
k) ≤ P

(
∩n+p
k=nA

c
k

)
= (1− P(An)) . . . (1− P(An+p)) ≤ exp (−P(An)− . . .− P(An+p))

where we used independence, and this goes to 0 as p→ ∞ by assumption. □

In fact, (2) above only holds under pairwise independence. Let us give this an an exercise.
We first record the important fact :

Lemma 2.1. Let X1, . . . , Xn be pairwise independent elements of L2(Ω). Then V ar(X1 + . . . +
Xn) =

∑n
i=1 V ar(Xi).

Exercise 1. Let An be pairwise independent, s.t.
∑

n P(An) = +∞. Let Sn =
∑n

k=0 1Ak
, S =

limn→∞ Sn, and mn = E[Sn] (which converges to +∞ by assumption). Show that V ar(Sn) ≤ mn.
Deduce from Chebychev’s inequality that P(S ≤ mn/2) ≤ 4

mn
, and conclude that P(S = ∞) = 1.

3. Convergence of random variables

Let X, and Xn, n ∈ N be some r.v.’s defined on the same probability space.

Definition 3.1. We say that Xn converges to X :
in probability if ∀ε > 0, P(|Xn −X| > ε) →n→∞ 0.
in Lp (for a given p ≥ 1) if E[|Xn −X|p] →n→∞= 0.
almost surely if P(limn→∞ Xn = X) = 1.
in law if for any bounded continuous ϕ, E[ϕ(Xn)] →n→∞ E[ϕ(X)].

Note that convergence in law is really a property of the laws of the random variables, not of the
r.v.’s themselves, unlike the other modes of convergence.

Proposition 3.1. (1) Xn → X almost surely or in Lp ⇒ Xn → X in probability.
(2) Xn → X in probability ⇒ There is a subsequence (nk) s.t. Xnk

→ X almost surely.
(3) Xn → X in probability ⇒ Xn → X in law
(4) If X ≡ c ∈ R is constant, then Xn → X in law ⇒ Xn → X in probability.

Proof. (1) Dominated convergence for ’a.s.’, Markov’s inequality for Lp.
(2) Since Xn → X in probability, by a diagonal procedure we can find a subsequence nk s.t.

P
(
|Xnk

−X| ≥ 1

k

)
≤ 1

k2
.

By the Borel-Cantelli lemma, this implies that a.s., for k large enough, |Xnk
− X| < 1

k which of
course implies that limkXnk

= X.
(3) Assume that Xn → X in probability, but not in law. This implies the existence of ϕ,

continuous and bounded, and of a subsequence nk s.t.

lim inf
k

|E[ϕ(Xnk
)]− E[ϕ(X)]| > 0.

On the other hand, by (2), up to taking another subsequence, we can assume that Xnk
→ X almost

surely. By dominated convergence, this implies limk E[ϕ(Xnk
)] = E[ϕ(X)], a contradiction with the

above.
(4) For ε > 0, let ϕ be a continuous bounded function s.t. ϕ(c) = 0 and ϕ(x) = 1 if |x− c| ≥ ε.

Then P(|Xn − c| ≥ ε) ≤ E[ϕ(Xn)] → ϕ(c) = 0. □
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In general, there are no other implications between the various notions of convergence. (exercise
: find counterexamples).

We will now spend more time on the convergence in law.
The characteristic function of a (law of) r.v. X is defined by

ϕX : t ∈ R 7→ E[eitX ].

Note that for any r.v. X, it is a continuous and bounded function on R.
It can be linked to moments of X in the following way :

Proposition 3.2. Assume that E|X|k <∞. Then ϕX is Ck on R, and ϕ(k)(0) = ikE[Xk].

Proof. Exercise (use differentiation under E) □

The main utility of characteristic functions comes from the following result.

Theorem 3.1. The following are equivalent :
(1) Xn →n→∞ X in law,
(2) ∀t ∈ R, limn→∞ ϕXn

(t) = ϕX(t).

Proof. We give the fact that (2) ⇒ (1) as an exercise, with main steps sketched :

• Show that

P(|X| ≥ r) ≤ r

2

∫ 2/r

−2/r

(1− ΦX(t)) dt

(Hint : use Fubini’s theorem to evaluate
∫ c

−c
(1− ΦX(t))dt, and use that | sin(x)| ≤ |x|

2 for

|x| ≥ 2.)
• Deduce that if (2) holds, then for any ε > 0, for r large enough, lim supn P(|Xn| ≥ r) ≤ ε.

• Use that for any R > r > 0, functions of the form
∑N

k=−N ake
i kπx

R are dense in C([−r, r]),
in combination with the previous step, to conclude.

□

Recall also the cdf of X is defined by FX(x) = P(X ≤ x). This can also be used for convergence
in law.

Theorem 3.2. Xn →n→∞ X in law if and only if ∀ x ∈ R, if FX is continuous at x, then
limn→∞ FXn(x) = FX(x).

Proof. Left in exercise (as in the previous proof : first deal with the tails of the Xn to reduce to a
compact set). □

We also record the important compactness criterion for weak convergence.

Definition 3.2. A family {Xi, i ∈ I} of random variables is tight if, for any ε > 0, there exists a
compact K, s.t. supi P(Xi /∈ K) ≤ ε.

Note that any finite family is tight. The main interest of this notion is that it characterizes
(sequential) compactness for convergence in law.

Theorem 3.3. (1) If Xn → X in law, then {Xn, n ∈ N} is tight.
(2) (Prokhorov) If {Xn, n ∈ N} is tight, then there exists a r.v. X (possibly on a different

probability space) and a subsequence Xnk
s.t. Xnk

→ X in law.

We will prove the theorem with the help of the following lemma.
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Lemma 3.1. A function F : R → R is the c.d.f. of a random variable X if and only if :

(1) F in non-decreasing
(2) F is cadlag (right-continuous and with left limits)
(3) limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1

Proof. Exercise. Hint : for the ”if” direction, consider, X = G(U), where G(y) = sup{x F (x) ≤ y},
and U is a uniform r.v. on [0, 1] (if F is injective, then G = F−1). (Note : this may be in practice
a useful way to simulate a r.v. whose c.d.f. is known). □

Proof of Theorem 3.3. (1) is easier and left as exercise.
(2) (Sketch). By a diagonal procedure, we construct a subsequence nk s.t. for each rational q,

FXnk
(q) converges to some limit F̃ (q). We then let for x ∈ R, F (x) := limq∈Q,q↓x F̃ (q). We then

verify that F satisfies the assumptions of Lemma 3.1 (tightness is only used in point 3.). □

4. LLN and CLT

In this section, we consider a sequence Xn, n ≥ 1 of independent random variables, s.t. for each
n, Xn and X1 have the same law. We say that this is an i.i.d. sequence (for ”independent and
identically distributed”).

4.1. Law of large numbers (LLN).

Theorem 4.1 (Weak LLN). Assume that Xn is an i.i.d. sequence, with E|X1| < ∞, and let
m = E[X1]. Then ∑n

k=1Xk

n
→n→∞ m in probability.

Proof. It suffices to check convergence in law, which can be done by the characteristic function :

E

[
exp(itn−1

n∑
k=1

Xk)

]
= ΦX1(t/n)

n =

(
1 +m

t

n
+ o(

t

n
)

)n

→ etm.

□

In fact, the above can be strenghtened to a.s. convergence.

Theorem 4.2 (Strong LLN). Assume that Xn is an i.i.d. sequence, with E|X1| < ∞, and let
m = E[X1]. Then ∑n

k=1Xk

n
→n→∞ m almost surely.

Proof. We sketch a proof due to Etemadi who in fact only uses pairwise independence.
First, considering separately X+

n and X−
n , we may assume that X1 ≥ 0 a.s., and we aim to show

that letting Sn =
∑n

k=1Xk, Sn/n→ E[X1] a.s.
We let Yn = Xn1{Xn≤n}. Show that∑

n≥1

P(Xn ̸= Yn) ≤ E[X1]

(this involves rearranging double sums). By Borel-Cantelli, this implies that a.s., for n large enough,
Yn = Xn. It therefore suffices to show

almost surely, lim
n→∞

S̃n

n
= E[X1], where S̃n =

n∑
k=1

Yk.
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We now fix α > 1, and let kn = ⌊αk⌋. Then show that for any fixed ε > 0,

∞∑
n=1

P

(∣∣∣∣∣ S̃kn
− E[S̃kn

]

kn

∣∣∣∣∣ > ε

)
≤ C

∞∑
n=1

1

k2n

kn∑
i=1

V ar(Yi) ≤ . . . ≤ C ′E[X1] <∞.

(Again the computation abbreviated as (. . .) involves re-arranging a double sum). Deduce that a.s.,
S̃kn

kn
→ E[X1].

Now for any arbitrary n, there exists kn′ with kn′ ≤ n ≤ kn′+1 and n/kn′ ≤ α, n/kn′+1 ≥ α−1.

Since S̃n is increasing, this implies

a.s., α−1E[X1] ≤ lim inf
n

S̃n

n
≤ lim sup

n

S̃n

n
≤ αE[X1].

Taking a sequence αn ↓ 1, we conclude that a.s., limn
S̃n

n = E[X1]. □

4.2. Central Limit Theorem (CLT).

Definition 4.1. The standard Gaussian measure (denoted N (0, 1)), is the measure on R with

probability density function given by f(x) =
√
2π

−1
e−

x2

2 .

Exercise : check that the above is a well-defined probability measure (hint : compute
∫
e−x2−y2

dxdy
via polar coordinates). Further check that if Z has law N (0, 1), then E[Z] = 0, E[Z2] = 1, and

the characteristic function is given by ϕZ(t) = e
−t2

2 (hint : use integration by parts to show that
ϕ′Z(t) = −tϕZ(t)).

Theorem 4.3 (CLT). Let Xn be an i.i.d. sequence, with E|X1|2 < ∞, and let m = E[X1],
σ2 = V ar(X1). Then ∑n

k=1(Xk −m)

σ
√
n

→n→∞ N (0, 1) in law .

Proof. Let us assume that m = 0, σ = 1 (the general case follows by considering Y = (X −m)/σ).
Since the Xk are i.i.d., it holds that

ϕ∑n
k=1

Xk√
n

(t) = ϕX1

(
t√
n

)n

=

(
1− 1

2

t2

n
+ o

(
t2

n

))n

→n→∞ e−
t2

2 .

□

5. Conditional expectations

Preliminary definitions : let A be an event with P(A) > 0. Then, given another event B, the
probability of B conditionally on A is

P(B|A) = P(A ∩B)

P(A)

and given an integrable r.v. X, we can define the expectation of X, conditionally on A, by

E[X|A] = E[X1A]

P(A)
.
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We can also define in a simple manner conditional expectation w.r.t. a r.v. Y , as long as Y takes
countably many values y1, y2, . . . (each with positive probability). Then we let

E[X|Y ] =
∑
k

E[X|Y = Yk]1{Y=yk}.

The above definitions can in fact be generalized to a much more complete notion, which will be
the subject of this subsection.

Proposition 5.1. Let G ⊂ F be a σ-algebra. Then for any integrable (resp. nonnegative) r.v. X
on (Ω,F ,P), there exists a unique (up to a.s. equality) r.v. Y , s.t.

(1) Y is G-measurable,
(2) For any G-measurable Z s.t. XZ is integrable (resp. Z ≥ 0), it holds that E[XZ] = E[Y Z].

Proof. We will treat the case where X ∈ L1.
Uniqueness Let Y = Y ′ satisfy the above. Since Y, Y ′ are G-measurable, the event {Y > Y ′}

is in G, and it follows that

E[X1{Y >Y ′}] = E[X1{Y >Y ′}] = E[X1{Y >Y ′}]

which implies E
[
(Y − Y ′)1{Y >Y ′}

]
= 0, so that a.s. Y ≤ Y ′. By symmetry the reverse inequality

also holds a.s., i.e. Y = Y ′ almost surely.
Existence Writing X = X+ − X−, it suffices to treat the case where X is nonnegative. We

then check that the map

A ∈ G 7→ E [X1A]

is a measure on (Ω,G), which is absolutely continuous w.r.t. P. By the Radon-Nikodym theorem,
this measure admits a (G-measurable) density Y , which by definition must satisfy

∀A ∈ G, E [X1A] = E [Y 1A] .

It follows from an approximation argument that this identity extends with 1A replaced by arbitrary
G-measurable random variables. □

The random variable Y obtained from the above proposition is denoted E[X|G], and called
conditional expectation of X w.r.t. G.

Remark : the conditional expectation, when restricted to X ∈ L2(Ω,F ,P), coincides with the
orthogonal projection on the closed subspace L2(Ω,G,P).

We now detail some properties of the conditional expectation.

Proposition 5.2. Assuming that the r.v.’s X,Y are such that the conditional expectations below
make sense, we have the following (in)equalities, understood in the a.s. sense.

(1) (Linearity) If Y , Z are G-measurable, then E[XY + Z|G] = E[X|G] Y + Z.
(2) (Monotonicity) If X ≤ Y a.s., then E[X|G] ≤ E[Y |G].
(3) E[E[X|G]] = E[X].
(4) (L1-contraction) E [ |E [X|G]|] ≤ E [|X|].
(5) (Tower property) If G1 ⊂ G2, then E[E[X|G2]|G1]] = E[X|G1].
(6) If X is independent from G, then E[X|G] = E[X].
(7) If X is independent from G, and Y is G-measurable, then for any measurable f , it holds

that E[f(X,Y )|G] = g(Y ) where g(y) = E[f(X, y)], which is often written equivalently as

E[f(X,Y )|G] = E[f(X, y)]y=Y .
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(8) Conditional version of monotone convergence, Fatou’s lemma, dominated convergence, Jensen’s
inequality,...

Proof. Left as exercise. □

If Y is a random variable, we define the conditional expectation of X w.r.t. Y by

E[X|Y ] := E[X|σ(Y )].

Remark : by Proposition 2.2, there exists a function h s.t. E[X|Y ] = h(Y ). To prove this
identity, by definition it suffices to check that for any measurable (bounded) g, it holds that

E [Xg(Y )] = E [h(Y )g(Y )] .

Exercise 2. Check that this coincides with the definition given in the beginning of the subsection
if Y is discretely valued.

When the considered r.v.’s have densities, conditional expectations can be computed explicitely.

Proposition 5.3. Assume that (X,Y ) has a law which admits a density f = f(x, y). (for simplicity
wrt dxdy but also holds w.r.t. any measure µ(dx) ⊗ ν(dy)). Then it holds, for any h s.t. E[h(X)]
makes sense :

(5.1) E[h(X)|Y ] =

∫
h(x)f(x, Y )dx∫
f(x, Y )dx

a.s.

Proof. Under the assumption on (X,Y ), Y admits a density given by

fy(y) =

∫
f(x, y)dx

Indeed, for any function ψ, by Fubini,

E[ψ(Y )] =

∫
ψ(y)f(x, y)dxdy =

∫
ψ(y)

(∫
f(x, y)dx

)
dy.

Denote hY (Y ) the r.h.s. of (5.1). For any bounded function ϕ, we compute (again using Fubini)

E[h(X)ϕ(Y )] =

∫
h(x)ϕ(y)f(x, y)dxdy

=

∫
ϕ(y)

(∫
h(x)f(x, y)dx

)
dy

=

∫
ϕ(y)hY (y)fy(y)dy

= E[ϕ(Y )hY (Y )],

which concludes the proof. □

Let us now discuss the notion of conditional law.

Definition 5.1. A probability kernel on is a map ν : R × B(R) such that : (i) for all y ∈ R,
ν(y, ·) is a probability measure on R, (ii) for all A ∈ B(R), y 7→ ν(y,A) is measurable.

Theorem 5.1. Let X,Y be two random variables. There exists a probability kernel LX|Y , which
is called the law of X, conditionally on Y , and which satisfies, for any bounded measurable f ,

E [f(X)|Y ] =

∫
f(x)LX|Y (Y, dx).
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Examples :
(1) if X independent from Y , then LX|Y (y, ·) = LX for any value of y.
(2) If X = g(Y ), then LX|Y (y, ·) = δg(y).
(3) If X and Y have a joint density f = f(x, y), the conditional distribution is given by Propo-

sition 5.3.
(4) Exercise : if X = Z, Y = |Z| where Z ∼ N (0, 1), check that LX|Y (y, ·) = 1

2δy +
1
2δ−y.

6. Martingales in discrete time

Definition 6.1. A filtration on a probability space (Ω,F ,P) is a sequence (Fn)n≥0 of sub-σ-
algebras of F , which is non-decreasing i.e. Fn ⊂ Fn+1 for each n ≥ 0.

(Ω,F ,P, (Fn)n≥0) is then called a filtered probability space. We fix one in the below.
(example : if (Xn) is a sequence of r.v., we can take Fn = σ(X1, . . . , Xn).)

Definition 6.2. A stochastic process (Xn)n≥0 (i.e. each Xn is a measurable r.v.) is adapted if,
for each n, Xn is Fn-measurable.

Definition 6.3. A martingale (resp. submartingale, supermartingale) is an adapted process
(Mn)n≥0 s.t.

(1) ∀n ≥ 0, Mn ∈ L1(P),
(2) ∀n ≥ 0, E[Mn+1|Fn] =Mn (resp. ≥, ≤).

Note that this implies E[Mn|Fm] for each n ≥ m, and E[Mn] = E[M0].
Example : simple random walk. Mn = E[Z|Fn].

Definition 6.4. A stopping time τ is a random variable taking values in N ∪ {∞} such that

∀n ≥ 0, {τ ≤ n} ∈ Fn.

(exercise : check that this equivalent to the same definition with ≤ replaced by = ).
Example : if (Yn) is an adapted process, and A is a Borel subset of R, then

τA := inf {n ≥ 0, Yn ∈ A}
is a stopping time.

Given a stopping time τ and a process M , we let Mτ (the stopped process) be defined by
Mτ

n =Mn∧τ .

Proposition 6.1. If M is a martingale (resp. super, sub), then so is Mτ for any stopping time τ .

Proof. First, note that

Mτ
n =Mn1{n≤τ} +Mτ1{τ<n} =Mn1{n≤τ} +

∑
k<n

Mk1{τ=k}

is an adapted process, and integrable since |Mτ
n ≤

∑n
k=0 |Mk|.

We then write

Mτ
n+1 =Mn+11{n+1≤τ} +Mτ1{τ<n+1} =Mn+11{n<τ} +Mτ1{τ≤n}

and taking conditional expectation,

E[Mτ
n+1|Fn] = E[Mn+1|Fn]1{n<τ} +Mτ1{τ≤n} =Mn1{n<τ} +Mτ1{τ≤n} =Mτ

n .

□
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Corollary 6.1. If τ is a bounded stopping time, and M is a martingale, then E[Mτ ] = E[M0].

Exercise 3. (1) Show that the above also holds if we replace the boundedness assumption on τ by

E[τ ] < +∞, and ∃K ∈ R,∀n ∈ N, |Mn+1 −Mn| ≤ Ka.s.

(Hint : apply dominated convergence to Mn∧τ ).
(2) Find a martingale M and a stopping time τ <∞ a.s., and such that E[Mτ ] ̸= E[M0]. (Hint

: consider the first time when a simple random walk hits 1).

Definition 6.5. Given a stopping time τ , we define

Fτ = {A ∈ F : ∀n ≥ 0, A ∩ {τ = n} ∈ Fn} .

It is easy to check that this defines a σ-algebra. Also note that this notation is consistent with
Fn (i.e. if ∀ω, τ(ω) = n then Fτ = Fn).

Check that if (Xn) is an adapted process, then Xτ1{τ<∞} is Fτ -measurable. This follows from{
Xτ1{τ<∞} ∈ A, τ = n

}
= {Xn ∈ A, τ = n} .

If ρ ≤ τ are two stopping times, then Fρ ⊂ Fτ , since

A ∩ { τ ≤ n} = A ∩ { ρ ≤ n} ∩ {τ ≤ n}.
We then have the following generalization of Corollary 6.1.

Proposition 6.2. Let ρ ≤ τ be two bounded stopping times, and M a martingale. Then

E[Mτ |Fρ] =Mρ.

Proof. First E[Mτ |Fn] =Mτ∧n by Proposition 6.1, and then, for any A ∈ Fρ,

E[Mτ1A] =
∑
n

E[Mτ1A1ρ=n]

=
∑
n

E[E[Mτ |Fn]1A1ρ=n]

=
∑
n

E[Mn1A1ρ=n]

= E[Mρ1A].

(We have used that 1A1ρ=n is Fn-measurable by definition of Fρ) □

An important part of martingale theory is their convergence properties when n→ ∞. We state
the below theorem without proofs.

Theorem 6.1. Let (Mn)n ≥0 be a martingale which is bounded in L1 (i.e. supn E|Mn| < ∞).
Then Mn converges almost surely to a limit M∞.

Note the convergence does not hold in L1 in general. Indeed, let Mn = U1 . . . Un, where the Un

are i.i.d. with P(U1 = 0) = P(U1 = 2) = 1
2 . Then Mn → 0 a.s., but E[Mn] = 1 for all n. Note in

particular that in that case Mn ̸= E[M∞ |Fn].
In order to state conditions under which the convergence holds in L1, we need the following

(important) notion.

Definition 6.6. A family Xi, i ∈ I of r.v.’s is uniformly integrable (u.i.) if

lim
K→∞

sup
i∈I

E
[
|Xi| 1{|Xi|≥K}

]
= 0.
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Note that any u.i. family is bounded in L1.
For instance, if ∀i, |Xi| ≤ |Y | with Y integrable, then the Xi are uniformly integrable (exercise).
A convenient way to check the uniform integrability is via De La Vallée Poussin’s criterion,

which states that a family is u.i. if and only if there exists Φ with lim|x|→∞
Φ(x)
|x| = +∞ and

supi E[Φ(Xi)] <∞. (Exercise : prove the ”if” part, which is both the simplest and the most useful
direction.) For instance, families which are bounded in Lp, p > 1 are uniformly integrable.

The importance of the u.i. condition, is the following result, which is an extension of the
dominated convergence theorem.

Proposition 6.3. Let Xn → X a.s., and assume that the Xn, n ∈ N are uniformly integrable.
Then limn E[Xn] = E[X].

Proof. Fix ε > 0, by definition there exists K s.t., letting XK
n = Xn1{|Xn|≤K}, it holds that

sup
n

∣∣E [Xn] − E
[
XK

n

]∣∣ ≤ ε.

On the other hand, by dominated convergence, limn E[XK
n ] = E[XK ], and we deduce that

lim sup
n

|E[Xn]− E[X]| ≤ 2ε.

We conclude by letting ε→ 0. □

Theorem 6.2. Let (Mn)n ≥0 be a martingale which is uniformly integrable. Then Mn converges
a.s. and in L1 to a limit M∞. In addition, it holds that Mn = E[M∞ | Fn].

Proof. Let M∞ be the a.s. limit given by Theorem 6.1. Then L1 convergence follows from Propo-
sition 6.3 applied to Xn = |Mn −M∞|. To check that Mn = E[M∞ | Fn], it suffices to check that
for any A ∈ Fn,

E [Mn1A] = E
[

lim
m→∞

Mm1A

]
,

which again follows from Proposition 6.3. □

Theorem 6.3. Let (Mn)n ≥0 be a martingale which is bounded in Lp, 1 < p < ∞. Then Mn

converges a.s. and in Lp to a limit M∞.

Let us prove the L2-convergence when p = 2. In that case, recalling that conditional expectations
are orthogonal projections, it holds that

∀m ≥ n, ∥ Mm∥22 = ∥Mm −Mn∥22 + ∥Mn∥22,

from which it follows that ∥Mn∥2 is an increasing sequence, which, since it is bounded, must
converge to a finite limit. It then also follows that (Mn) is a Cauchy sequence in L2, from which
we can conclude.

7. Gaussian vectors

In this section, we will work with random vectors, i.e. r.v.’s Y with values in Rd.
Note that many results stated above in the scalar case remain true in higher dimension. For

instance, given a random vector Y = (Y1, . . . , Yd), its characteristic function is defined by

ϕY : ξ = (ξ1, . . . , ξd) ∈ Rd 7→ E
[
eiξ·Y

]
where · is the scalar product (ξ ·X =

∑d
i=1 ξiXi).
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Then it still holds that a sequence Yn converges in distribution to Y if and only if its characteristic
function converges pointwise. (In particular, if two r.v.’s share the same characteristic function,
they have the same law).

Definition 7.1. X , scalar r.v., is a Gaussian, if there exists m ∈ R, σ > 0 s.t. X has the same
law as m + σZ, where Z ∼ N (0, 1). This is equivalent to the characteristic function satisfying

ΦX(t) = emt− t2σ2

2 . We write X ∼ N (m,σ2).

Definition 7.2. A random vector Y = (Y 1, . . . , Y d) is a Gaussian vector (also written :

(Y 1, . . . , Y d) are jointly Gaussian), if, for each (λ1, . . . , λd) ∈ Rd, the scalar r.v.
∑d

i=1 λiYi
is Gaussian.

Definition 7.3. Given a Gaussian vector Y , we define its mean m ∈ Rd and its covariance matrix
Σ ∈ Rd×d by

mi = E[Yi],
Σij = cov(YiYj) = E[(Yi − E[Yi])(Yj − E[Yj ])].

Proposition 7.1. The law of a Gaussian vector is characterized by its mean m and covariance Σ.
More precisely, the characteristic function of Y is then given for ξ ∈ Rd by

E[exp(iξ · Y )] = exp

(
m · ξ − 1

2
ξ · Σξ

)
.

(We then write X ∼ N (m,Σ)).
In addition, if Σ = CCT for a matrix C, then

Y =law m+ΣX,

where X = (X1, . . . , Xd) with the Xi i.i.d. N (0, 1).

Proof. For the first part : by assumption, if ξ is in Rd, ξ · Y is Gaussian, and it is immediate to
compute

E[ξ · Y ] = ξ ·m, V ar(ξ · Y ) =
∑
i,j

ξiξjΣij = ξ · Σξ.

The formula then follows from that for the scalar Gaussians.
For the second part, it suffices to check that the r.h.s. is also a Gaussian vector, with same mean

and covariance matrix. □

Remark : this gives a way to simulate any Gaussian vector. (and there always exists such a C,
which can be taken triangular : this is the so-called Cholesky decomposition of symmetric matrices).

Corollary 7.1. Let (Y 1, . . . , Y d) be jointly Gaussian. Then Y 1, . . . , Y d are independent if and
only if they are pairwise uncorrelated.

More generally : if X ∼ N (m,Σ), then for any matrix A ∈ Rd′×d, AX ∼ N (Am,AΣAT ).
We now show how, for Gaussian vectors, conditional distributions are easy to compute.

Proposition 7.2. Let Z = (X,Y ) be a Gaussian vector in R2, with mean vector

(
mX

mY

)
and

covariance matrix

(
σXX σXY

σXY σY Y

)
, and assume that σY Y > 0.

Then it holds that
E [X|Y ] = mX +

σXY

σY Y
(Y −mY ) .
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More generally, conditionally on Y , X is Gaussian with mean E [X|Y ] and variance σXX − σXY

σY Y
.

Proof. Let

W = X − σXY

σY Y
Y.

Then a direct computation gives that cov(W,Y ) = 0, and since (W,Y ) is Gaussian, W is indepen-
dent of Y . The result then follows from writing X = W + σXY

σY Y
Y , with the first term of the r.h.s.

is independent of Y and the second is σ(Y )-measurable. □

Note that the above computation extends to vectors of higher dimensions.
Finally, we remark that Gaussian vectors also arise naturally in fluctuation of i.i.d. random

vectors.

Theorem 7.1 (CLT in Rd.). Let Xn be an i.i.d. sequence of random vectors, with square integrable
entries. Let M = E[X1], and Σ =

(
cov(X1

i , X
1
j )
)
1≤i,j≤d

. Then∑n
k=1(Xk −M)√

n
→n→∞ N (0,Σ) in law .

Proof. Using the characteristic function, this reduces to the scalar CLT. □

8. Brownian motion : definition, existence

A continuous time stochastic process on a probability space is a family X = (Xt)t≥0 of random
variables indexed by R+.

Definition 8.1. A (standard) Brownian motion is a stochastic process (Bt)t≥0 s.t.
(1a) B0 = 0 a.s.
(1b) For each 0 = t0 < t1 < . . . < tm, then Bt1 , Bt2 − Bt1 , . . . , Btm − Btm−1 are independent,

(1c) For each 0 ≤ s ≤ t, Bt −Bs has law N (0, t− s).
(2) ∀ω ∈ Ω, t 7→ Bt is continuous.

Remark 8.1. (Technical remark on continuity of sample paths)

• Condition (2) is sometimes replaced by the weaker condition :
(2’) There exists a measurable Ω0 ⊂ Ω with P(Ω0) = 1, such that t 7→ Bt is continuous

on Ω0.
Note that if B satisfies (1) and (2’), we can redefine the Bt to be 0 outside of Ω0 to

obtain a stochastic process satisfying (1)-(2).
• In fact, even though (1) does not imply (2) or (2’), it implies that we can find a modification

of B (i.e. a process B̃ such that for all t ≥ 0, a.s., Bt = B̃t) which is continuous.
(exercise : use for instance a similar construction to what is done below to find a sequence

of continuous Bn’s, which almost surely converge uniformly on compacts, and such that for
all t ≥ 0, a.s., Bt = limnB

n
t .)

A stochastic process (Xt)t≥0 is a Gaussian process if for any t1, . . . , tn, (Xt1 , . . . , Xtn) is a
Gaussian vector.

Proposition 8.1. In the definition of Brownian motion, we can alternatively replace (1) by
(1’) B is a Gaussian process, with mean function E[Bt] = 0 and covariance E[BsBt] = s ∧ t
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Proof. (1) ⇒ (1’) : (Bt1 , . . . , Btn) is a linear function of (Bt1 , Bt2 − Bt1 , . . . , Btn − Btn−1). Since
the latter has independent Gaussian components, it is a Gaussian vector, and so is the former. The
mean and covariance computation is immediate

(1’)⇒ (1) : (1a) is immediate. For (1b), note that (Bt1 , Bt2−Bt1 , . . . , Btm−Btm−1
) is a Gaussian

vector, and it suffices to check that its entries are uncorrelated, which follows from the covariance
function. For (1c), again Bt − Bs is Gaussian, and it suffices to check that it has mean 0 and
variance t− s. □

Proposition 8.2. Let B = (Bt)t≥0 be a Brownian motion. Then :
(1) (−Bt)t≥0 is a Brownian motion,

(2) For each λ > 0, Bλ
t := λ−1/2Bλt is a Brownian motion.

(3) For each T > 0, BT
t := BT+t −BT is a Brownian motion (independent from σ(Bs, s ≤ T )).

(4) (tB 1
t
1{t>0})t≥0 is a Brownian motion.

Proof. Straightforward. The only delicate point is to check that in case (4), B̃(t) = tB 1
t
is contin-

uous at 0, which is equivalent to

(8.1) lim
t→∞

Bt

t
= 0.

Note that it follows from the strong law of large numbers that limn
Bn

n = 0. Exercise : prove (8.1),
taking for granted that

(8.2) E

[
sup

t∈[0,1]

|Bt|

]
<∞

(and using independence of increments). □

The fact that Brownian motions exist is not an obvious fact. We will now present a construction
of Brownian motion on [0, 1] due to Paul Lévy. Note that this suffices to define a Brownian motion
on R+ by ”pasting together” successive independent copies.

The construction proceeds by successive approximations, defining the value of B at dyadic points.
Let

D = ∪nDn, Dn =
{
k2−n, 0 ≤ k ≤ 2n

}
.

We then fix (Zt)t∈D, an i.i.d. family of N (0, 1), and define for any n ≥ 0, the functions Fn on D
by F0(0) = 0, F0(1) = Z1, and for n ≥ 1,

Fn(t) =

{
2−

n+1
2 Zt, t ∈ Dn \ Dn−1,

0, t ∈ Dn−1,

which are then extended to the whole of [0, 1] by linear interpolation. We also let

Bn =

n∑
k=0

Fk,

and aim to show that the Bn (which are continuous functions by definition), almost surely converge
uniformly on [0, 1] as n→ ∞.

We then use the following property of Gaussians : if Z ∼ N (0, 1), then for all x ≥ 1, P(|Z| ≥
x) ≤ e−x2

.
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It follows that for any c > 0,

P (∥Fn∥∞ ≥ c) = P
(
∃t ∈ Dn −Dn−1, 2−

n+1
2 |Zt| ≥ c

)
≤

∑
t∈Dn−Dn−1

P(|Zt| ≥ c) = 2n−1P(|Z| ≥ c2
n+1
2 )

≤ 2n−1 exp
(
−c22−n−1

)
.

Hence, taking cn = 2−αn (for fixed α < 1/2)), it holds that
∑

n≥0 P (∥Fn∥∞ ≥ cn) < ∞. By the

Borel-Cantelli lemma, this implies that a.s., for n large enough, ∥Fn∥∞ ≤ cn and in particular, a.s.
it holds that

∑
n≥0 ∥Fn∥∞ <∞, so that Bn converges uniformly to a limit.

It remains to show that B is a Brownian motion. This is done by first checking that (B(t))t∈D
is a Gaussian process with the correct mean and covariance (this is easily checked on Dn by an
induction on n). The extension to the whole interval is then a consequence of the following lemma.

Lemma 8.1. Let Xn be a sequence of Gaussian vectors with mean Mn and covariance Σn, and
assume that Mn and Σn converge to limits M and Σ as n→ ∞. Then Xn converges in distribution
to N (M,Σ) as n→ ∞.

Proof. This is obvious from the characteristic function. □

Exercise 4. Show that there exists constant C > 0 s.t. P
(
supt∈[0,1 |Bt| ≥ x

)
≤ Ce−Cx2

. (Hint :

use the previous construction and write for any λ > 0, E
[
eλ∥B∥∞

]
≤ Πn≥0E

[
eλ∥Fn∥∞

]
.) Note that

this implies (8.2).

Remark 8.2. Wiener measure (the law of Brownian motion) Let E = C(R+,R) (path-space), and
E the Borel σ-algebra for the topology of uniform convergence on compacts.

Then, given a Brownian motion B on (Ω,F ,P), it can be shown that letting

W : A ∈ E 7→ P((t 7→ Bt) ∈ A)

defines a unique measure on (E, E). This measure is called the Wiener measure.

We conclude this section with a few properties of the paths of Brownian motion.

Proposition 8.3 (Blumenthal’s 0 − 1 law). Let Ft = σ (Bs; 0 ≤ s ≤ t), and let F0+ = ∩s≥0Fs.
Then F0+ is trivial in the sense that

A ∈ F0+ ⇒ P(A) = 0 or 1.

Proof. We show that F0+ is independent from Ft, for any t > 0. Indeed, let f be a continuous
function and A ∈ F0+, then for any t1, . . . , tn

E [1Af(Bt1 , . . . , Btn)] = lim
ε→0

E [1Af(Bt1+ε −Bε, . . . , Btn+ε −Bε)]

= lim
ε→0

P(A)E [f(Bt1+ε −Bε, . . . , Btn+ε −Bε)]

= P(A)E [f(Bt1 , . . . , Btn)] ,

where in the second equality we have used that A ∈ Fε and independence of increments.
Hence, if A ∈ F0+, then A is independent of itself, and P(A) = P(A∩A) = P(A)2, which implies

P(A) ∈ {0, 1}. □

Remark 8.3 (Kolmogorov’s 0− 1 law). By time inversion, this also implies that the tail σ-algebra
∩t≥0σ (Bs; s ≥ t) is trivial.
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Corollary 8.1. It holds almost surely, that

∀t0 > 0, sup
t∈[0,t0]

Bt > 0 and inf
t∈[0,t0]

Bt < 0.

Proof. Let tn ↓ 0, An = {sup[0,tn]B > 0} and A = ∩nAn. Then, since An is decreasing (for set

inclusion), A ∈ F0+ and P(A) = limn P(An). On the other hand, for each n, P(An) ≥ P(Btn > 0) =
1
2 since Btn is a centered Gaussian. It follows that P(A) ≥ 1

2 , and by the 0 − 1 law, this implies
P(A) = 1.

The statement on the infimum also holds a.s. by symmetry. □

Corollary 8.2. It holds almost surely that

lim sup
t→+∞

Bt = +∞, lim inf
t→+∞

Bt = −∞.

Proof. Fix a > 0. By scaling (point (2) in Proposition 8.2), it holds that, for any T > 0,

P

(
sup

t∈[0,+∞)

Bt > a

)
≥ P

(
sup

t∈[0,T ]

Bt > a

)
= P

(
sup

t∈[0,1]

Bt >
a√
T

)
.

Letting T → ∞, and using that supt∈[0,1]Bt > 0 a.s. by the previous corollary, we obtain
lim supt→+∞Bt > a a.s., for arbitrary a. □

Students interested in learning more on properties of Brownian motion can consult the book
”Brownian motion” by Mörters and Peres.
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