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Abstract

In this paper, we examine the question of the boundary controllability of the one-dimensional non-
isentropic Euler equation for compressible polytropic gas, in the context of weak entropy solutions. We
consider the system in Eulerian coordinates and the one in Lagrangian coordinates. We obtain for both sys-
tems a result of controllability toward constant states (with the limitation γ < 5

3 on the adiabatic constant
for the Lagrangian system). The solutions that we obtain remain of small total variation in space if the initial
condition is itself of sufficiently small total variation.
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1. Introduction

1.1. General presentation

This paper examines the question of boundary controllability of the non-isentropic Euler equa-
tion for polytropic compressible fluids in one space dimension, in both Eulerian and Lagrangian
forms. The two systems under view are the following hyperbolic 3× 3 systems of conservation
laws, which in our problem are considered in a space interval (0,L). First, the usual form of the
system, in Eulerian coordinates, is as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tρ + ∂x(ρv)= 0,

∂t (ρv)+ ∂x
(
ρv2 + P )= 0,

∂t

(
γ − 1

2
ρv2 + P

)
+ ∂x

(
γ − 1

2
ρv3 + γPv

)
= 0.

(1.1)

In this system, ρ = ρ(t, x) > 0 describes the local density of the fluid at time t ∈ (0, T ) and
position x ∈ (0,L), v is the local velocity of the fluid, P > 0 is the pressure. Here γ > 1 is
the adiabatic constant. These three equations describe respectively the conservation of mass,
momentum and energy. In particular the specific total energy E of the system is described as

E = 1

2
v2 + e,

the internal energy e being connected to the pressure P by

e= P

(γ − 1)ρ
. (1.2)

In Lagrangian coordinates, the system is written as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t τ − ∂yv = 0,

∂t v + ∂yP = 0,

∂t

(
e+ v2

2

)
+ ∂y(Pv)= 0.

(1.3)

Here τ := 1/ρ is the specific volume and e is consequently written as e = Pτ
γ−1 . This system is

obtained from (1.1) through the change of variable

y =
x∫

x(t)

ρ(t, s) ds, (1.4)

where x(t) is a time-dependent path satisfying

x′(t)= v
(
t, x(t)

)
.
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Regular solutions of (1.1) and of (1.3) are equivalent through the above change of coordinates,
but this turns out to be true even in the case of weak (entropy) solutions (see Wagner [41]) that
are under view in this paper. However the controllability problems described below are different,
since they occur in the fixed space domain (0,L), with boundary controls. This domain is not
invariant through the change of variables (1.4).

Of particular importance in the study of compressible fluids is the physical entropy function.
Setting without loss of generality the usual coefficient cv to 1, this function of state reads:

S := log

(
P

(γ − 1)ργ

)
= log

(
Pτγ

γ − 1

)
. (1.5)

Regular solutions of (1.1) and (1.3) then satisfy respectively the systems

⎧⎨
⎩
∂tρ + ∂x(ρv)= 0,

∂t v+ v∂xv+ (∂xP )/ρ = 0,

∂tS + v∂xS = 0,

(1.6)

and ⎧⎨
⎩
∂t τ − ∂yv = 0,

∂t v + ∂yP = 0,

∂tS = 0.

(1.7)

However, in the context of weak entropy solutions, systems (1.6) and (1.7) are no longer equiva-
lent to (1.1) and (1.3).

Before describing the problem in detail, let us specify the type of solutions that we consider.
As is well-known, these two systems belong to the class of nonlinear hyperbolic systems of
conservation laws

Ut + f (U)x = 0, f :Ω ⊂R
n→R

n, (1.8)

satisfying the (strict) hyperbolicity condition that at each point df has n distinct real eigenvalues
λ1, . . . , λn. These scalar functions are the characteristic speeds at which the system propagates. It
is classical that in such systems, singularities may appear in finite time even if the initial condition
is smooth. Hence it is natural from both mathematical and physical viewpoints to consider weak
solutions, in which discontinuities such as shock fronts may appear. But since uniqueness is in
general lost at this level of regularity, one has to consider solutions that satisfy additional entropy
conditions aimed at singling out the physically relevant solution. This paper focuses on entropy
solutions with bounded variation. The initial state will be supposed to have small total variation
as in the framework of Glimm [24].

We investigate these two systems from the point of view of control theory, and more precisely
we consider the issue of controllability through boundary controls. This problem is to determine,
given an initial state of the system u0 = (ρ0, v0,P0) or u0 = (τ0, v0,P0), which final states u1 can
be reached at some time T > 0 by choosing relevant boundary conditions at x = 0 and x = L

(given a notion of such boundary conditions). We emphasize that in our problem, boundary
conditions on both sides of the domain can be prescribed. However the question of determining
exactly the set of reachable states seems very difficult, since the nature of the system suggests
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that one has to require additional conditions on u1 for it to be reachable (this is in particular
connected to an effect of these systems known as the decay of positive waves, see in particular
Bressan’s monograph [7]). Here we will concentrate on the question of controllability to constant
states. In other words, we aim at proving that given an initial data u0 in some functional class, it
is possible to find a solution bringing the state to a constant. Moreover, we would like to focus
on the property that the solution should remain of small total variation whenever the initial data
is of small variation.

1.2. Mathematical framework

As mentioned before, we consider in this paper weak entropy solutions, which may present
discontinuities, in particular shock waves. Let us describe exactly this type of solutions by re-
calling the basic definitions.

It will be useful to work with both conservative variables U = (ρ,ρv,ρE) and U = (τ, v,E)

(respectively for systems (1.1) and (1.3)) and primitive variables u= (ρ, v,P ) and u= (τ, v,P ).
The solutions that we consider will be of bounded variation in space uniformly in time, that

is in the space L∞(0, T ;BV (0,L)) and will not meet the vacuum in the sense that ρ will be
strictly separated from 0 (and τ bounded). The regularity will be automatically valid for both
conservative and primitive variables since BV is an algebra. Using the equation leads to the fact
that these solutions have a time-regularity of class Lip(0, T ;L1(0,L)). We will denote Ω the
domain where the solutions live. It is given by {(ρ, v,P ) / ρ > 0 and P > 0} for system (1.1),
and by {(τ, v,P ) / τ > 0 and P > 0} for system (1.3). With a slight abuse of notations, we will
write U ∈Ω for the conservative variables as well.

Now we can consider weak solutions of (1.8) in the sense of distributions; but as mentioned
before we have to add entropy conditions to the solution in order to retrieve the correct solution.
First, recall that an entropy/entropy flux couple for a hyperbolic system of conservation laws (1.8)
is defined as a couple of regular functions (η, q) :Ω→R satisfying:

∀U ∈Ω, Dη(U) ·Df (U)=Dq(U). (1.9)

Of course (η, q) = (±Id,±f ) are entropy/entropy flux couples. Then we have the following
definition:

Definition 1. A function U ∈ L∞(0, T ;BV (0,L)) ∩ Lip(0, T ;L1(0,L)) is called an entropy
solution of (1.8) when, for any entropy/entropy flux couple (η, q), with η convex, one has in the
sense of measures

η(U)t + q(U)x ≤ 0, (1.10)

that is, for all ϕ ∈D((0, T )× (0,L)) with ϕ ≥ 0,

∫
(0,T )×(0,L)

(
η
(
U(t, x)

)
ϕt (t, x)+ q

(
U(t, x)

)
ϕx(t, x)

)
dx dt ≥ 0. (1.11)

Now we notice that in Definition 1, we do not mention boundary conditions, which are how-
ever of primary importance since they compose the control in our problem. Boundary conditions
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for hyperbolic systems of conservation laws are a tedious question, especially when considering
entropy solutions. A precise meaning of such boundary conditions can be given, see for instance
Dubois–LeFloch [20], Sablé-Tougeron [36] and Amadori [1] and references therein. However in
order to avoid this issue, we will rephrase the problem into an equivalent one which does not use
boundary conditions explicitly. We fix an initial condition as above, and consider (1.1) and (1.3)
as under-determined systems (without boundary conditions). The question is to determine for
which states u1 there exists a solution u = (ρ, v,P ) or u = (τ, v,P ) in (0, T ) × (0,L), with
initial state u0 and with u1 as final state at time T . The corresponding boundary values can then
be retrieved by taking the corresponding traces at x = 0 and x = L. At the level of regularity that
we consider, this is not problematic.

1.3. Results

The two results that we establish in this paper are the following. We begin with the result
concerning the system in Eulerian coordinates.

Theorem 1. Let u0 := (ρ0, v0,P 0) ∈R3 with ρ0,P 0 > 0. Let η > 0. There exists ε > 0 such that
for any u0 = (ρ0, v0,P0) ∈ BV (0,L;R3) such that

‖u0 − u0‖L∞(0,L) + T V (u0)≤ ε, (1.12)

for any u1 = (ρ1, v1,P 1) with ρ1,P 1 > 0, there exist T > 0 and a weak entropy solution of
system (1.1) u ∈ L∞(0, T ;BV (0,L))∩Lip([0, T ];L1(0,L)) such that

u|t=0 = u0 and u|t=T = u1, (1.13)

and

T V
(
u(t, ·))≤ η, ∀t ∈ (0, T ). (1.14)

Our second result concerns the system with Lagrangian coordinates. This result is different
from at least two viewpoints: the range of admissible γ , and the role played by the physical
entropy.

Theorem 2. Suppose that γ ∈ (1, 5
3 ). Let η > 0. Let u0 := (τ 0, v0,P 0) ∈R3 with τ 0,P 0 > 0 and

let u1 = (τ 1, v1,P 1) with τ 1,P 1 > 0, such that

S(u1) > S(u0). (1.15)

There exist ε > 0 and T > 0 such that for any u0 = (τ0, v0,P0) ∈ BV (0,L;R3) such that

‖u0 − u0‖L∞(0,L) + T V (u0)≤ ε, (1.16)

there is a weak entropy solution u ∈ L∞(0, T ;BV (0,L))∩Lip([0, T ];L1(0,L)) of system (1.3)
such that

u|t=0 = u0 and u|t=T = u1, (1.17)
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and

T V
(
u(t, ·))≤ η, ∀t ∈ (0, T ). (1.18)

Remark 1.1. Since −S is a convex entropy for (1.3) in the sense of (1.9), associated with the
entropy flux q = 0, the condition (1.15) is necessary (or at least, the non-strict inequality is).

Remark 1.2. We conjecture the result to be false for γ > 5
3 in the same spirit as in Bressan and

Coclite’s paper [8]. See Section 1.4 below for a brief description of the result of [8].

Remark 1.3. Even in the case where γ ∈ (1, 5
3 ), the controllability of system (1.3) is surprising,

due to the fact that the second characteristic family of the Lagrangian system has constant char-
acteristic speed 0. Of course, this is the worst case scenario for boundary controllability, since
this means that there is no propagation from the boundary to the interior of the domain. Hence
one has to rely on the interactions of the other characteristic families to act indirectly on the sec-
ond one. Note that in the context of regular solutions of class C1, the equivalent result is false,
since one cannot modify the physical entropy: see (1.7). It is the only example that we know,
where there exists a result of boundary controllability in the context of entropy solutions, while
the equivalent fails in the C1 framework.

1.4. Previous studies

Let us say a few words about previous studies on connected subjects. Questions of boundary
controllability of one-dimensional hyperbolic systems of conservation laws have been studied in
two different frameworks, which give rather different results.

The first one consists in considering classical solutions of these systems, by which we mean
of class C1([0, T ] × [0,L]). Since such systems develop in general singularities in finite time,
the solutions which are considered are in general small perturbations in C1 of a constant state,
which ensures a sufficient lifetime of the solution for the controllability property to hold. Re-
sults of controllability for one-dimensional systems of conservation laws and more generally
quasilinear hyperbolic systems in this framework of classical solutions can be traced back to the
pioneering work of Cirinà [12]. Many results of very general nature have been obtained in this
framework since, see in particular Li and Rao [32] for an important work on this problem and the
more recent monograph by Li [31]. This framework allows to work with very general hyperbolic
systems (including those in non-conservative form), the main condition being that the character-
istic speeds are strictly separated from zero, see again [32,31] and references therein. A result
which considers the case of a possibly vanishing (but not identically vanishing) characteristic
speed is due to Coron, Wang and the author [16]; as we will see, it can be applied to (1.1), but
not to (1.3); and it considers regular solutions for which the theory is rather different from the
one considered here.

The second framework in which the boundary controllability of one-dimensional hyperbolic
systems of conservation laws has been studied is the one of entropy solutions. One has to under-
line that the situation is very different in both contexts, and not a mere difference of regularity.
One of the reasons for that is that systems (1.8) cease to be reversible in the context of entropy
solutions. The reversibility or the irreversibility of a system is of central importance in control-
lability problems.
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Concerning weak entropy solutions, the study of controllability problems for conservation
laws has been initiated by Ancona and Marson [3], in the case of scalar (n = 1) convex con-
servation laws. Then Horsin [27] obtained further results on Burgers’ equation, by using the
return method, which was introduced by Coron in [13] (see also Coron’s book [14]) and which
is also an important inspiration here. Another result in the scalar case was recently obtained by
Perrollaz [35] when an additional control appears in the right hand side.

In the case of systems (n ≥ 2), controllability issues has been first studied by Bressan and
Coclite [8]. For general strictly hyperbolic systems of conservation laws with genuinely nonlinear
or linearly degenerate characteristic fields and characteristic speeds strictly separated from zero,
it is shown that one can drive a small BV state to a constant state, asymptotically in time, by
an open-loop control. Another result in [8], especially important for our study, is a negative
controllability result in finite time. This result concerns a class of 2 × 2 systems containing
the system below (which was introduced by Di Perna [19]), and which is close to isentropic
dynamics:

⎧⎨
⎩
∂tρ + ∂x(ρu)= 0,

∂tu+ ∂x
(
u2

2
+ K2

γ − 1
ργ−1

)
= 0.

(1.19)

The authors prove that there are initial conditions, with arbitrarily small total variation, and for
which no entropy solution remaining of small total variation for all t , reaches a constant state.
An important property of system (1.19) to establish this result, is that the interaction of two
shocks associated to a characteristic family generates a shock in the other family. In particular
this allows to prove that, starting from some initial data having a dense distribution of shocks,
this density propagates over time provided that the total variation of the solution remains small.
Consequently, the system cannot reach a constant state in this case. However this property is
not shared by the actual isentropic Euler equation, and this was used by the author in [21] in
order to establish a result on the controllability of this 2× 2 system. The present paper can be
seen as a sequel to [21]. Note that this property of two shocks of a family generating a shock
in the other family is true for the first and third fields of (1.1) and (1.3) when γ > 5

3 (at least
for weak shocks), but when γ ≤ 5

3 such an interaction generates a rarefaction wave in the other
family (see in particular Chen, Endres and Jenssen [10]), a fact which is crucial in the proof of
Theorem 2. The behavior for γ > 5

3 explains our conjecture of Remark 1.2. We were not able
to prove estimates of decay of positive waves as precise as in [8] for 3 × 3 systems; hence a
generalization of [8] to system (1.3) seems difficult for the moment.

Other important results in the field are due to Ancona and Coclite [2], in which they investigate
the controllability properties for the Temple class systems and to Ancona and Marson [4], in
which they consider the time asymptotic problem, controlled from only one side of the interval.

1.5. Short description of the approaches

The main part of the proof consists in proving the following weaker statements.

Theorem 3. Let u0 := (ρ0, v0,P 0) ∈ R3 with ρ0,P 0 > 0. Let η > 0. There exist ε > 0 and
T > 0 such that for any u0 = (ρ0, v0,P0) ∈ BV (0,L) satisfying (1.12), there exist a state u1
with ρ1,P 1 > 0 and a weak entropy solution u ∈ L∞(0, T ;BV (0,L)) ∩ Lip([0, T ];L1(0,L))
of system (1.1) satisfying (1.13) and (1.14).
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Theorem 4. Suppose that γ ∈ (1, 5
3 ). Let η > 0 and δ > 0. Let u0 := (τ 0, v0,P 0) ∈ R3 with

τ 0,P 0 > 0. There exist ε > 0 and T > 0 such that for any u0 = (τ0, v0,P0) ∈ BV (0,L) satisfy-
ing (1.16), there exist a state u1 ∈R3 with τ 1,P 1 > 0 satisfying

|u1 − u0| ≤ δ, (1.20)

and a weak entropy solution u ∈ L∞(0, T ;BV (0,L)) ∩ Lip([0, T ];L1(0,L)) of system (1.3)
satisfying (1.17) and (1.18).

When one has succeeded in reaching one constant state, reaching any constant by remaining
of small total variation is simple, especially in the case of system (1.1), where this can be seen as
an immediate consequence of the results [32] and [16] concerning the controllability of hyper-
bolic systems of conservation laws in the framework of regular solutions. System (1.3) having
a characteristic field with constant zero velocity does not enter this framework though, and the
proof needs an additional argument; in particular this is where (1.15) intervenes. Precisely, we
will show the following two statements.

Proposition 1.1. Given ua and ub two constant states in Ω and η > 0, there exist T > 0 and
u ∈ C1([0, T ] × [0,L]) a regular solution of (1.1) such that u(0, ·)= ua , u(T , ·)= ub in [0,L]
and

‖u‖C0([0,T ];C1([0,L])) ≤ η. (1.21)

Proposition 1.2. Given ua and ub two constant states in Ω such that

S(ub) > S(ua),

and given η > 0, there exist T > 0 and u ∈ C1([0, T ] × [0,L]) a regular solution of (1.3) such
that u(0, ·)= ua , u(T , ·)= ub in [0,L], and

‖u‖C0([0,T ];C1([0,L])) ≤ η. (1.22)

Consequently the main objective of this paper will be to prove Theorems 3 and 4. In both
cases, we use an idea that was already present in [21], that is to use strong discontinuities. By
strong, we mean discontinuities that are not intended to be of small amplitude, or to be more
accurate that are not seen as small. This may seem strange to introduce such material in view
of (1.14) and (1.18) in Theorems 1 and 2. In fact, we will use discontinuities that we will con-
sider large during the main part of the proof; our analysis relies on interaction estimates due to
Schochet [38]. Only in a final step, we will explain why these discontinuities can be taken not so
large after all.

In the case of Theorem 3, the construction relies on a contact discontinuity of the second
characteristic family, which crosses the domain. Then we use additional waves and cancellation
effects to kill the waves inside the domain along this strong discontinuity, so that in the end the
state in the domain is constant.

In the case of Theorem 4, the construction relies on two shocks of the first and third character-
istic families, which cross the domain one after another. In the case of system (1.3), the second
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family cannot be used, having identically zero characteristic speed. The first shock is used to fil-
ter some waves, so that along the second one one can get rid of the remaining waves, still relying
on cancellation effects.

The method that we employ to construct solutions is an adaptation of the wave front tracking
algorithm, inspired in particular by Bressan’s version of the method [6]. It should be underlined
that there are other methods to establish the existence of entropy solutions of conservation laws,
in particular Glimm’s random choice method [24] and the vanishing viscosity method, see the
very general result of Bianchini and Bressan [5]. But we have no idea how to use these approaches
in the context of controllability problems for conservation laws. The random choice method can
be seen however as a method to discretize the control in some cases where the limit system
is known to be controllable, see Coron, Ervedoza and the author [15]. In the same spirit, the
question of being able to pass to the vanishing viscosity limit in controllability problems for
conservation laws is an active research field, limited for the moment to cases where the limit
equation is known from the beginning to be controllable, see in particular [17,25,23,22,29,33].

1.6. Structure of the paper

The paper is organized as follows. In Section 2, we recall some basic tools of the theory of
one-dimensional hyperbolic systems of conservation laws, and introduce some objects which
are needed in the construction. In Section 3, we introduce some other objects which are more
specific to systems (1.1) and (1.3). In Section 4, we describe the construction for system (1.1).
In Section 5, we describe the construction for system (1.3). It should be underlined that the
construction in the Lagrangian case is also valid for the Eulerian case when γ < 5

3 . In Section 6
we prove the convergence of the front-tracking approximations constructed in Sections 4 and 5
and conclude the proofs of results presented above. Finally in Section 7 we make some remarks
on the size of the solution and on the time of controllability.

2. Some tools for systems of conservation laws

In this section, we recall and introduce some general material for hyperbolic systems of con-
servation laws which is not specific to systems (1.1) and (1.3). We assume that the reader is
familiar with the basic theory of one-dimensional systems of conservation laws; we refer to
Bressan [7], Dafermos [18], Lax [28], LeFloch [30], Serre [39] or Smoller [40].

2.1. Notations

It is useful to put systems (1.1) and (1.3) in the following form rather than in the form (1.8):

ϕ(u)t + f (u)x = 0, (2.1)

where at each point u in the state domain Ω

the matrix
∂ϕ

∂u
is invertible. (2.2)

This allows to work with primitive variables and to apply the results of Schochet [38]. These
systems are strictly hyperbolic away from vacuum, that is,
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(
∂ϕ

∂u

)−1
∂f

∂u
has n distinct real eigenvalues λ1(u) < · · ·< λn(u), (2.3)

which are the characteristic speeds of the system. To each i = 1, . . . , n is associated the right
eigenvector ri , determined up to a multiplicative constant; then we define the eigenvectors in
terms of the ϕ variables:

Ri := ∂ϕ

∂u
ri, (2.4)

and then the corresponding families of left eigenvectors �i and Li which satisfy

�i · rj = Li ·Rj = δij . (2.5)

The systems under view satisfy the property that

each field is either genuinely nonlinear (GNL) or linearly degenerate (LD), (2.6)

which corresponds respectively to

ri · ∇λi 
≡ 0 and to ri · ∇λi ≡ 0 in Ω.

In the former case, we will systematically normalize the eigenvectors ri in order for

ri · ∇λi = 1 in Ω, (2.7)

to be satisfied. In the latter, we will moreover suppose that

in the coordinates given by u, the vector field ri is constant with |ri | = 1. (2.8)

We denote Ri =Ri (σi, u−) the rarefaction curves, that is, the orbits of the vector fields ri . The
part corresponding to σi ≥ 0 is composed of points u+ which can be connected to u− from left
to right by a rarefaction wave. We will refer to couples (u−, u+) with u+ =Ri (σi, u−), σi ≤ 0
as compression waves. We denote Si = Si (σi, u−) the i-th branch of the Hugoniot locus, which
is the set of solutions u+ ∈Ω of the Rankine–Hugoniot equations:

f (u+)− f (u−)= s
(
ϕ(u+)− ϕ(u−)

)
, s ∈R. (2.9)

As usual, given a discontinuity between two states u− and u+, we write [g] for g(u+)− g(u−)
and the shock speed is denoted as s = s(u−, u+). We recall that on Si , one has (see e.g. [18,
(8.1.9)])

s = 1

2

(
λi(u−)+ λi(u+)

)+O
(|u+ − u−|2). (2.10)

The curve Si is parameterized in order that admissible shocks correspond to negative values of
the parameter σi . All along this half curve, these shocks satisfy Lax’s inequality
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λi(u+) < s < λi(u−), (2.11)

and the discontinuity (u−, u+) traveling at shock speed satisfies (1.10) (see also (3.25) and Sec-
tion 6.2.3 below).

We recall that for LD fields, the curves Ri and Si coincide and correspond to states connected
to u− via a contact discontinuity (whatever the sign of the parameter).

We denote by Ti = Ti(σi, u) the wave curve associated to the i-th characteristic field. We
recall that for GNL fields, it is composed of the curves Ri for σi ≥ 0 and Si for σi ≤ 0. For LD
fields, it is composed of the coinciding curves Ri and Si .

Let us now be more specific about the parameterization of the curves Ri , Si and Ti . For the
linearly degenerate fields, the three curves coincide and, using that in the cases considered here
these fields moreover satisfy ri · ∇ri = 0, one sets

Ti(σi, u)= u+ σiri . (2.12)

For the genuinely nonlinear fields the curves are parameterized so that (for instance in the case
of Ti ):

λi
(
Ti(σi, u)

)− λi(u)= σi. (2.13)

This parameterization, with the normalization (2.7), ensures that the wave curves Ti are of class
C2,1 and satisfy

∂Ti

∂σi
(0, u)= ri(u) and

∂2Ti

∂σ 2
i

(0, u)= (ri · ∇)ri(u). (2.14)

This is a standard computation, see e.g. [7, Section 5.2]. Another important consequence of this
choice of parameterization is that

u=Ri (−σ, ·) ◦Ri (σ, ·)u, u= Si (−σ, ·) ◦ Si (σ, ·)u and

u= Ti(−σ, ·) ◦ Ti(σ, ·)u. (2.15)

We will denote by σ = (σi, . . . , σn) the wave vector of a complete Riemann problem and write

T (σ, ·) := Tn(σn, ·) ◦ · · · ◦ T1(σ1, ·).

It will be useful to use the notation Υi for the wave curve from the right associated to the i-th
characteristic field:

Υi(σ, ·) := Ti(−σ, ·), that is, ul = Υi(σi, ur) ⇔ ur = Ti(σi, ul), (2.16)

and

Υ (σ, ·) := Υ1(σ1, ·) ◦ · · · ◦Υn(σn, ·).

Note that
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Υ
(
σ,T (σ,u)

)= u. (2.17)

Solving the Riemann problem consists in two parts. First, given u− and u+ in Ω , one finds a
vector σ such that

u+ = T (σ,u−).

This is possible at least when u− and u+ are close enough (at a distance one from another which
is uniform as u− lies in a compact of Ω) and in that case we denote

σ =Σ(u−, u+).

Then in a second time, one constructs a self-similar function u(t, x) = U(x/t) as follows. One
sets

u0 = u−, ui = Ti(σi, ·) ◦ · · · ◦ T1(σ1, ·)u0,

and determines U by:

• U(x/t)= ui for x/t ∈ [λi(ui), λi+1(ui)],
• for x/t ∈ [λi(ui−1), λi(ui)]: when the i-th characteristic field is LD or is GNL and σi ≤ 0

one writes the contact discontinuity/shock:

U(x/t)= ui−1 for
x

t
< s(ui−1, ui) and ui for

x

t
> s(ui−1, ui), (2.18)

and when the i-th characteristic field is GNL and σi ≥ 0 one writes the rarefaction wave:

U(x/t)=Ri (σ̃, ui−1) for
x

t
= λi

(
Ri (σ̃, ui−1)

)
, σ̃ ∈ [0, σi]. (2.19)

We also recall that a Majda-stable shock [34] is a solution (u−, u+) of the Rankine–Hugoniot
equations (2.9) satisfying moreover that

s is not an eigenvalue of

(
∂ϕ

∂u

)−1
∂f

∂u
(u±), (2.20)

{
Rj (u+), λj (u+) > s

}∪ {ϕ(u+)− ϕ(u−)}∪ {Rj (u−), λj (u−) < s
}

is a basis of Rn. (2.21)

The Majda stability conditions (2.20)–(2.21) are stronger than Lax entropy inequalities, and are
satisfied by all Lax shocks in systems (1.1) and (1.3) (see [38]). Majda’s condition for contact
discontinuities (of family k) is the following:

{
rj (u+), j < k

}∪ {u+ − u−} ∪ {rj (u+), j > k
}

is a basis of Rn. (2.22)

This condition is satisfied by any non-trivial contact discontinuity in systems (1.1) and (1.3).



JID:YJDEQ AID:7465 /FLA [m1+; v 1.191; Prn:5/05/2014; 15:56] P.14 (1-82)

14 O. Glass / J. Differential Equations ••• (••••) •••–•••
2.2. Interactions of weak waves, permutations of characteristic families and cancellation waves

In this section, we consider the estimates for interaction of weak waves, that is, waves that are
small. We begin by recalling the celebrated Glimm estimates.

Proposition 2.1. (See [24] & [18, Theorem 9.9.1].) We assume that system (1.8) is strictly hy-
perbolic and satisfies (2.6). Consider (u1, u2, u3) ∈Ω3, and suppose

u2 = T
(
σ ′, u1

)
, u3 = T

(
σ ′′, u2

)
, and u3 = T (σ,u1).

Then

∑
i

(
σi − σ ′i − σ ′′i

)
ri =

∑
j<i

σ ′i σ ′′j [ri , rj ] +O
(∣∣σ ′∣∣∣∣σ ′′∣∣[∣∣σ ′∣∣+ ∣∣σ ′′∣∣]). (2.23)

Moreover the “O” is uniform as u1, u2 and u3 belong to a compact set of Ω .

By the uniformity of the “O” as u1, u2 and u3 belong to a compact set of Ω , we mean that, for
some constant C > 0 depending only on the compact K ⊂Ω where u1, u2 and u3 are chosen,
one has ∣∣∣∣∑

i

(
σi − σ ′i − σ ′′i

)
ri −

∑
j<i

σ ′i σ ′′j [ri , rj ]
∣∣∣∣≤ C∣∣σ ′∣∣∣∣σ ′′∣∣[∣∣σ ′∣∣+ ∣∣σ ′′∣∣].

Note that the “−” sign in the right hand side in [18, Theorem 9.9.1] comes from its convention
(7.2.15) on the Lie bracket: [ri , rj ] = (rj ·∇)ri−(ri ·∇)rj ; here we prefer (as in [24] for instance)
the convention

[ri , rj ] = (ri · ∇)rj − (rj · ∇)ri .

Remark 2.1. The point where ri and [ri , rj ] are evaluated (among u1, u2 and u3) has no impor-
tance since the difference can be included in the term O(|σ ′||σ ′′|[|σ ′| + |σ ′′|]).

Now an essential remark for the analysis developed here, is that it has no importance in
Proposition 2.1, that the characteristic families (λi, ri) and the Lax curves Ti are sorted in in-
creasing order of the characteristic speed. This ordering of characteristic speeds only matters
when translating the relation “ur = Tn(σn, ·) ◦ · · · ◦ T1(σ1, ·)ul” into an actual Riemann prob-
lem “find a self-similar entropy solution of the system with initial data u(0, x) = ul for x < 0
and u(0, x) = ur for x > 0”. Incidentally, it is not important either that we use the usual wave
curves Ti rather than the wave curves from the right Υi (which is clear with our parameterization,
see (2.15)) or the rarefaction curves Ri .

A consequence of this is that one can permute the characteristic families, replace some Ti by
Υi or Ri , and still get a result in terms of compositions of Tk(·), Υk(·) or Rk(·). Let us state this
precisely. Let Sn be the n-th symmetric group. Given a permutation π ∈ Sn and ξ ∈ {−1,0,1}n,
we let

T π,ξ (σ,u)= T
ξπ(n)

(σπ(n), ·) ◦ · · · ◦ T ξπ(1)
(σπ(1), ·)u, σ ∈Rn, u ∈Ω,
π(n) π(1)
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where we denote

T 1
i := Ti, T −1

i := Υi and T 0
i :=Ri .

One can locally solve the “(π, ξ)-swapped” Riemann problem exactly as in the classical case
π = id, ξ = (1, . . . ,1) (this case corresponds also to π : k �→ n− k, ξ = (−1, . . . ,−1)): given
u− and u+ in Ω , close enough (at a distance which is uniform as u− lies in a compact of Ω),
there exists σ ∈Rn such that

u+ = T π,ξ (σ,u−).

Indeed, all the maps involved are C2,1-regular as in the classical case. The argument relying on
the implicit function theorem can be used without change. We denote

σ =Σπ,ξ (u−, u+), σi =Σ
π,ξ
i (u−, u+).

Now one can follow the proof of Proposition 2.1 in [18, Theorem 9.9.1] to check that the ordering
according to the characteristic speeds does not intervene, and that the replacement of Ti with Υi
merely implies to put a − sign before ri in the estimates (due to the parameterization (2.16)
of Υi ). We obtain the following.

Proposition 2.2. Let π ∈ Sn and ξ ∈ {−1,0,1}n. We assume that system (1.8) is strictly hyper-
bolic and satisfies (2.6). Consider (u1, u2, u3) ∈Ω , and suppose

u2 = T π,ξ
(
σ ′, u1

)
, u3 = T π,ξ

(
σ ′′, u2

)
, and u3 = T π,ξ (σ,u1).

Then

∑
i

(
σi − σ ′i − σ ′′i

)
ri =

∑
π(j)<π(i)

(−1)δ−1,ξπ(i)+δ−1,ξπ(j) σ ′π(i)σ
′′
π(j)[rπ(i), rπ(j)]

+O
(∣∣σ ′∣∣∣∣σ ′′∣∣[∣∣σ ′∣∣+ ∣∣σ ′′∣∣]). (2.24)

Moreover the “O” is uniform as u1, u2 and u3 belong to a compact set of Ω .

When ξ = (0, . . . ,0), this is the classical formula for permutations of flows of vector fields.
An immediate corollary is that many waves conserve their nature (shock/rarefaction, increas-

ing/decreasing contact discontinuity, compression wave/rarefaction wave) across an “interac-
tion”. Actually, concerning systems (1.1) and (1.3), one knows now in great details the result
of the interaction of waves with large size: see in particular Chang and Hsiao [9] and Chen, En-
ders and Jenssen [10]. One of the issues in these papers is the possible appearance of vacuum,
which is avoided here.

Corollary 2.1. There is some κ > 0 uniform as u1 belongs to a compact set of Ω , for which if

u2 = T
π,ξ (

σ ′, u1
)
, u3 = T

π,ξ (
σ ′′, u2

)
, and u3 = T π,ξ (σ,u1),
i i j j
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Fig. 1. A cancellation k-wave.

with max(|σ ′i |, |σ ′′j |)≤ κ , and if i 
= j (resp. if i = j and σ ′i , σ ′′j have the same sign), then σi has
the same sign as σ ′i (resp. as σ ′i , σ ′′j ).

We can deduce from Proposition 2.2 the existence of cancellation waves. By cancellation
wave, we mean here a simple wave (ur , ũr ), associated to two simple waves (ul, um) and
(um,ur) and designed in order that, in the outgoing Riemann problem (ul, ũr ), the wave associ-
ated to the characteristic family k vanishes. Here this simple wave takes the form of a rarefaction
or compression wave. Precisely we obtain the following.

Corollary 2.2. Suppose that n≥ 3. We assume that system (1.8) is strictly hyperbolic and satis-
fies (2.6). Consider (u1, u2, u3) ∈Ω , and suppose

u2 = Ti(αi, u1), u3 = Tj (βj , u2),

with αi and βi small. Let k ∈ {1, . . . , n} \ {i, j}. There exists γk ∈ R such that, denoting σ =
Σ(u1,Rk(γk, u3)), one has

σk = 0,

and additionally

|σi − αi | + |σj − βj | =O
(|αi ||βj |),

γk =−αiβj �k · [ri , rj ] +O
(|αi ||βj |[|αi | + |βj |]). (2.25)

Moreover the “O” is uniform as u1, u2 and u3 belong to compact sets of Ω .

We represent the result of Corollary 2.2 in Fig. 1, where the waves are represented as single
discontinuities. There can also be outgoing waves of “uninvolved” families, though we did not
represent them. The case i = j is included in the result.

Remark 2.2. As for Corollary 2.1, we can deduce from Proposition 2.2 some information on the
nature of the additional wave (u3, Tk(u3)): assuming that �k · [ri , rj ] does not vanish on some
connected compact set K of Ω , there is some κ > 0 such that if max(|αi |, |βj |)≤ κ and u1 ∈K,
then γk has the same sign as −αiβj �k · [ri , rj ]. In the same way, reducing κ if necessary, σi
(resp. σj ) has the same sign as αi (resp. βj ).



JID:YJDEQ AID:7465 /FLA [m1+; v 1.191; Prn:5/05/2014; 15:56] P.17 (1-82)

O. Glass / J. Differential Equations ••• (••••) •••–••• 17
We introduce also another type of cancellation wave in a sideways framework, which makes
an “incoming” wave vanish.

Corollary 2.3. We assume n= 3 and that system (1.8) is strictly hyperbolic and satisfies (2.6).
Consider (u1, u2, u3) ∈Ω , and suppose

u2 =R1(−α1, u1), u3 = T2(β2, u2).

Then for some σ ∈R3, one has

u3 =R1(−σ1, ·) ◦ T3(σ3, ·) ◦ T2(σ2, ·)u1, (2.26)

and additionally

|σ1 − α1| + |σ2 − β2| =O
(|α1||β2|

)
,

σ3 = α1β2�3 · [r1, r2] +O
(|α1||β2|

[|α1| + |β2|
])
. (2.27)

Moreover the “O” is uniform as u1, u2 and u3 belong to compact sets of Ω .

See Fig. 12(c) below for a graphic representation — there ul , um and ur replace u1, u2 and u3.

Remark 2.3. As before, assuming that �3 · [r1, r2] does not vanish on some connected compact
set K of Ω , there is some κ > 0 such that if max(|α1|, |β2|)≤ κ and u1 ∈K, then σ1, σ2 and σ3
have the same sign as α1, β2 and −α1β2�3 · [r1, r2], respectively.

Proof of Corollaries 2.2 and 2.3. Corollary 2.2 is obtained by using the permutation

π =
(

1 . . . k − 1 k . . . n− 1 n

1 . . . k − 1 k + 1 . . . n k

)
,

and the vector ξ = (1, . . . ,1,0). Note in particular that one has u2 = T π,ξ (σ ′, u1)with σ ′k = δkiαi

and u3 = T π,ξ (σ ′′, u2) with σ ′′k = δkjβj . Then

γk := −Σπ,ξ
n (u1, u3)

satisfies the properties.
Corollary 2.3 is obtained by using the permutation

π =
(

1 2 3
2 3 1

)
,

and the vector ξ = (1,1,0). �
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2.3. Strong discontinuities, Riemann problem and interaction estimates

Now we present some material allowing to work with strong discontinuities (shocks or contact
discontinuities) in BV solutions. The material that we present here is mainly extracted from
Schochet [38]; we recall it for better readability and to be able to be more specific on some
particular aspect (see Remark 2.6 below).

The first point is that the Riemann problem is locally solvable near a Majda-stable shock or a
Majda-stable contact discontinuity.

Proposition 2.3. We assume that the system (1.8) is strictly hyperbolic and satisfies (2.6), as well
as (2.8) for linearly degenerate fields. Consider (u−, u+) which is either a Majda-stable shock
or a Majda-stable contact discontinuity:

u+ = T (σ ,u−), σ := (0, . . . ,0, σ k,0, . . . ,0).

There exist two neighborhoods ω− and ω+ of u− and u+ respectively, a neighborhood S of σ ,
such that for any u− ∈ ω−, any u+ ∈ ω+, the Riemann problem (u−, u+) is uniquely solvable
with a wave vector in S . Moreover there is a constant C > 0 such that for all u1−, u2− in ω−, all
u1+, u+2 in ω+, if

ui+ = Tn
(
σ in, ·

) ◦ · · · ◦ T1
(
σ i1, ·

)
ui−, i = 1,2,

for wave vectors (σ 1
j )j=1...n and (σ 2

j )j=1...n in S , then

n∑
j=1

∣∣σ 2
j − σ 1

j

∣∣≤ C(∣∣u2− − u1−
∣∣+ ∣∣u2+ − u1+

∣∣). (2.28)

Proof. As in Lax’s proof in the case where all waves have small amplitude, this is a consequence
of the inverse mapping theorem. To establish the first claim, it suffices to check that

∂T

∂σ
(σ ,u−) is non-singular. (2.29)

It is elementary to check that

∂T

∂σi
(σ ,u−)=

{
ri(u+) for i > k,
∂Tk(σ k,·)
∂u− ri(u−) for i < k.

(2.30)

• Now let us begin with the case of a shock. To compute ∂Tk
∂u− (σ ,u−) and ∂T

∂σk
(σ ,u−) =

∂Tk
∂σk

(σ ,u−), one differentiates the Rankine–Hugoniot relation (2.9) to get

∂Tk

∂σk
(σ ,u−)= ∂sk

∂σk

{
∂f

∂u
− s ∂ϕ

∂u

}−1

+

[
ϕ(u)

]
, (2.31)

∂Tk(σ , ·)
∂u

(u−)=
{
∂f

∂u
− s ∂ϕ

∂u

}−1({
∂f

∂u
− s ∂ϕ

∂u

}
+ [

ϕ(u)
]⊗ ∂sk

∂u

)
. (2.32)
− + − −
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Here we used the notations

[
ϕ(u)

]= ϕ(u+)− ϕ(u−), (2.33)

and sk = sk(σk, u−) = s(u−, Tk(σk, u−)) and the index +/− means that the function has to be
computed at u+/u−. Recall from (2.2) and (2.20) that the matrices { ∂f

∂u
− s ∂ϕ

∂u
}± are non-singular.

We deduce that

{
∂f

∂u
− s ∂ϕ

∂u

}
+
∂T

∂σi
(σ ,u−)=

⎧⎨
⎩
(λi(u+)− s)Ri(u+) for i > k,
∂sk
∂σk
[ϕ(u)] for i = k,

(λi(u−)− s)Ri(u−)+ (ri · ∇usk)[ϕ(u)] for i < k.

(2.34)

The assertion (2.29) is now a direct consequence of (2.21): by the inverse mapping theorem, the
mapping

Λ : (u−, σ ) �→
(
u−, T (σ,u−)

)
(2.35)

is locally invertible near (u−, σ ).
• For what concerns the case of a contact discontinuity, one has

∂T

∂σi
(σ ,u−)=

{
ri(u+) for i ≥ k,
∂Tk(σ k,·)

∂u
ri(u−) for i < k.

Using (2.12), we infer

∂T

∂σi
(σ ,u−)=

⎧⎨
⎩
ri(u+) for i > k,

rk for i = k,

ri(u−) for i < k,

(2.36)

and one can conclude using (2.22).
Now as before we denote Σ the above mentioned inverse of Λ, that is, the mapping

(u−, u+) ∈ ω− ×ω+ → S defined by

σ =Σ(u−, u+) ⇔ u+ = T (σ,u−).

Then estimate (2.28) is just a consequence of the Lipschitz character of Σ . �
Remark 2.4. Shrinking ω− and ω+ if necessary, we can assume that any simple wave with
endpoints in ω− and ω+ is automatically a Majda-stable discontinuity of family k and that each
Riemann problem between two states in ω− or between two states in ω+ is solvable.

Remark 2.5. Equivalent formulas can be derived for wave curves from the right.

The next point is to give interaction estimates for such large discontinuities.
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Lemma 2.1. We assume that the system (1.8) is strictly hyperbolic and satisfies (2.6), as well
as (2.8) for linearly degenerate fields. Consider (u−, u+) ∈ ω− × ω+ which is either a Majda-
stable shock or a Majda-stable contact discontinuity:

u+ = T (σ ,u−), σ := (0, . . . ,0, σ k,0, . . . ,0). (2.37)

1. (Interaction on the right) Let ur be in ω+, and introduce σ ′ := Σ(u+, ur) and σ̂ :=
Σ(u−, ur). Then

σ̂ = σ +
(
∂T

∂σ

)−1
(

n∑
i=1

σ ′i ri(u+)
)
+O

(|ur − u+|2). (2.38)

2. (Interaction on the left) Let ul be in ω−, and introduce σ ′ :=Σ(ul, u−) and σ̂ :=Σ(ul, u+).
Then

σ̂ = σ +
(
∂T

∂σ

)−1(
∂T

∂u

)( n∑
i=1

σ ′i ri(u−)
)
+O

(|u− − ul |2). (2.39)

Proof. This is a direct consequence of Taylor’s formula for Σ , whose partial derivatives are
easily computed from (2.35), and of Lax’s estimates

ur − u+ =
n∑
i=1

σ ′i ri(u+)+O
(|ur − u+|2), or

u− − ul =−
n∑
i=1

σ ′i ri(u−)+O
(|u− − ul |2). �

Remark 2.6. We notice that it has no importance that the actual wave curves Ti are used in the
Riemann problem σ ′ :=Σ(u2, u3). We could replace them by Ri without change or by Υi with
a mere change of sign on ri . In other words, we could consider σ ′ :=Σπ,ξ (u2, u3) instead and
obtain the same result on σ̂ :=Σ(u1, u3), up to a change of sign if ξi =−1. The same is valid
for an interaction on the left.

Remark 2.7. Note that from (2.17), one infers

(
∂T

∂σ

)−1

+
(
∂Υ

∂σ

)−1(
∂T

∂u+

)
= 0. (2.40)

Hence the two formulas (2.38) and (2.39) are “inverted” when one replaces T with Υ .

Now we distinguish the cases of a shock and of a contact discontinuity.

Lemma 2.2. In the situation where the k-th family is GNL and that (u−, u+) is a Majda-stable
shock, we have σ̂ = σ + σ , with:
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• Case 1, Interaction on the right:

{
∂f

∂u
− s ∂ϕ

∂u

}
+

(
∂T

∂σ

)
σ =

n∑
i=1

σ ′i
(
λi(u+)− s

)
Ri(u+)+O

(∣∣σ ′∣∣2), (2.41)

• Case 2, Interaction on the left:

{
∂f

∂u
− s ∂ϕ

∂u

}
+

(
∂T

∂σ

)
σ =

n∑
i=1

σ ′i
{(
λi(u−)− s

)
Ri(u−)+

(
ri(u−) · ∇sk

)[
ϕ(u)

]}

+O
(∣∣σ ′∣∣2). (2.42)

Moreover the “O” are uniform as ul, u− and u+, ur belong to compact sets of ω− and ω+.

Proof. This is a direct consequence of Lemma 2.1 and of (2.31)–(2.32). �
Lemma 2.3. In the situation where the k-th family is LD, that (2.8) is satisfied and that (u−, u+)
is a Majda-stable contact discontinuity, we have σ̂ = σ + σ , with in the case of an interaction
on the right, respectively on the left:

(
∂T

∂σ

)
σ =

n∑
i=1

σ ′i ri(u+)+O
(∣∣σ ′∣∣2), resp.

(
∂T

∂σ

)
σ =

n∑
i=1

σ ′i ri(u−)+O
(∣∣σ ′∣∣2). (2.43)

Moreover the “O” are uniform as ul, u− and u+, ur belong to compact sets of ω− and ω+.

Proof. This is a consequence of Lemma 2.1 and of (2.36). �
Note that the matrices appearing in Lemmas 2.2 and 2.3 have been computed in the proof of

Proposition 2.3, and that one can use Υ rather than T , which in some situations can simplify the
writing.

3. About systems (1.1) and (1.3)

3.1. Some characteristic elements of systems (1.1) and (1.3)

3.1.1. Eulerian system (1.1)
For the Eulerian system (1.1) one fixes:

u=
(
ρ

v

P

)
, u ∈Ω =R

+ ×R×R
+, (3.1)

ϕ(u)=
(

ρ

ρv
γ−1

2 ρv2 + P

)
, f (u)=

(
ρv

ρv2 + P
γ−1

2 ρv3 + γPv

)
, (3.2)

so that ϕ maps primitive coordinates to conservative ones. We have
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dϕ(u)=
( 1 0 0

v ρ 0
γ−1

2 v2 (γ − 1)ρv 1

)
, dϕ−1(u)=

( 1 0 0
−v/ρ 1/ρ 0
γ−1

2 v2 −(γ − 1)v 1

)
, (3.3)

df (u)=
(

v ρ 0
v2 2ρv 1

γ−1
2 ρv3 3

2 (γ − 1)ρv2 + γP γ v

)
, (dϕ)−1df (u)=

(
v ρ 0
0 v 1/ρ
0 γP v

)
.

(3.4)

The characteristic speeds (i.e. the eigenvalues of (dϕ)−1df ) are given by

λ1 = v − c, λ2 = v, λ3 = v + c, (3.5)

with the speed of sound c given by

c=
√
γP

ρ
. (3.6)

The eigenvectors of (dϕ)−1df (u) are given by:

r1 = 2

γ + 1

(−ρ/c
1
−ρc

)
, r2 =

(1
0
0

)
, r3 = 2

γ + 1

(
ρ/c

1
ρc

)
, (3.7)

and those in terms of the ϕ variable (that is, the eigenvectors of df (dϕ)−1, i.e. Ri = dϕ · ri ):

R1 = 2ρ

(γ + 1)c

( 1
c+ v

(γ − 1)vc+ c2 + γ−1
2 v2

)
, R2 =

( 1
v

γ−1
2 v2

)
,

R3 = 2ρ

(γ + 1)c

( 1
c+ v

(γ − 1)vc− c2 − γ−1
2 v2

)
.

These eigenvectors ri , i = 1,3, satisfy in particular (2.7). The corresponding left eigenvectors of
(dϕ)−1df (u) are

�1 = γ + 1

2

(
0,

1

2
,− 1

2ρc

)
, �2 =

(
1,0,− 1

c2

)
, �3 = γ + 1

2

(
0,

1

2
,

1

2ρc

)
. (3.8)

It will be useful to extend the definition of the shock speed to rarefactions/compression waves. If
u2 =Ri (σi, u1), ui = (ρi, vi,Pi), i = 1,2, we set

s(u1, u2) := ρ2v2 − ρ1v1

ρ2 − ρ1
=

∫ σi
0 λi(Ri (σ, u1))R

1
i (Ri (σ, u1)) dσ∫ σi

0 R1
i (Ri (σ, u1)) dσ

, (3.9)

where R1
i stands for the first coordinate of Ri . This obviously gives the shock speed for ac-

tual shocks as well. It is clear that this shock speed also satisfies (2.10), with an O uniform on
compacts of Ω and that
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s(u1, u2) ∈
[
λi(u1), λi(u2)

]∪ [λi(u2), λi(u1)
]
. (3.10)

Note finally that in the coordinates given by (3.1), the 2-contact discontinuities are given by

u+ = u− + σr2, σ ∈R,

and in particular v and P are preserved across the discontinuity.

3.1.2. Lagrangian system (1.3)
For the Lagrangian system (1.3) one fixes:

u=
(
τ

v

P

)
, ϕ(u)=

(
τ

v
Pτ
γ−1 + v2

2

)
, f (u)=

(−v
P

Pv

)
, u ∈Ω =R

+ ×R×R
+.

(3.11)

We have

dϕ(u)=
( 1 0 0

0 1 0
P
γ−1 v τ

γ−1

)
, dϕ−1(u)=

( 1 0 0
0 1 0
−P

τ
−(γ − 1) v

τ
γ−1
τ

)
, (3.12)

df (u)=
(0 −1 0

0 0 1
0 P v

)
, (dϕ)−1df (u)=

(0 −1 0
0 0 1
0 γP

τ
0

)
. (3.13)

The characteristic speeds are given by

λ1 =−
√
γP

τ
=− c

τ
, λ2 = 0, λ3 =

√
γP

τ
= c

τ
(3.14)

with c given again by (3.6), that is

c=√
γPτ .

The eigenvectors of (dϕ)−1df (u) are given by:

r1 = 2

γ + 1

⎛
⎝ τ 2

c
τ

−c

⎞
⎠ , r2 =

(1
0
0

)
, r3 = 2

γ + 1

⎛
⎝− τ 2

c
τ

c

⎞
⎠ . (3.15)

These eigenvectors ri , i = 1,3 satisfy (2.7). The eigenvectors in terms of the ϕ variable (that is,
the eigenvectors of df (dϕ)−1, i.e. Ri = dϕ · ri ) by:

R1 = 2τ 2

(γ + 1)c

( 1
c
τ

cv

)
, R2 =

( 1
0
P

)
, R3 = 2τ 2

(γ + 1)c

( −1
c
τ
cv

)
. (3.16)
−P +
τ γ−1 P +

τ
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The left eigenvectors of (dϕ)−1df (u) are

�1 = γ + 1

2

(
0,

1

2τ
,− 1

2c

)
, �2 =

(
1,0,

τ

γ P

)
, �3 = γ + 1

2

(
0,

1

2τ
,

1

2c

)
, (3.17)

and the ones of df (dϕ)−1 (i.e. Li = �i · (dϕ)−1):

L1 = γ + 1

4τ

(
c

γ τ
,1+ (γ − 1)

v

c
,−γ − 1

c

)
, (3.18)

L2 =
(
γ − 1

γ
,−(γ − 1)

v

γP
,
γ − 1

γP

)
, (3.19)

L3 = γ + 1

4τ

(
− c

γ τ
,1− (γ − 1)

v

c
,
γ − 1

c

)
. (3.20)

Here we extend the shock speed to rarefactions/compression waves as follows: if u2 =
Ri (σi, u1), ui = (τi, vi,Pi), i = 1,2, we set

s(u1, u2) := −v2 − v1

τ2 − τ1
=

∫ σi
0 λi(Ri (σ, u1))R

1
i (Ri (σ, u1)) dσ∫ σi

0 R1
i (Ri (σ, u1)) dσ

, (3.21)

where R1
i stands for the first coordinate of Ri . Of course, (2.10) and (3.10) apply here as well.

Finally it will be useful to have the shock/rarefaction curves described in the Lagrangian case
(though in fact they coincide with the ones in the Eulerian case after change of variables). They
can be parameterized through the coefficient

x = P+
P−

as follows (see e.g. [40, Section 18.B], [11, Section 6.4]): the shock curves are given by u+ =
Si (x, u−) with

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P+ = xP−,
τ+
τ−
= β + x
βx + 1

,

v+ = v− ± c−
√

2

γ (γ − 1)

1− x√
βx + 1

,

(3.22)

with x > 1 and the + sign for the 1-shocks, with x < 1 and the − sign for the 3-shocks; we have
put

β := γ + 1

γ − 1
. (3.23)

Note that
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[P ]> 0, [τ ]< 0, [v]< 0 across a 1-shock,

[P ]< 0, [τ ]> 0, [v]< 0 across a 3-shock. (3.24)

The corresponding shock speed is given by

s =∓ c−
τ−

√
1+ βx
1+ β =∓

c+
τ+

√
β + x

(1+ β)x . (3.25)

The rarefaction curves parameterized by x are given by u+ =Ri (x;u−)⎧⎪⎪⎪⎨
⎪⎪⎪⎩
P+ = xP−,
τ+ = x−1/γ τ−,

v+ = v− ± 2c−
γ − 1

(
xζ − 1

)
,

(3.26)

with x < 1 and the− sign for the 1-rarefactions, with x > 1 and the+ sign for the 3-rarefactions;
we have put

ζ := γ − 1

2γ
. (3.27)

Rarefactions of the non-isentropic Euler actually coincide with curves of the isentropic model;
the physical entropy S is conserved along those curves.

The family of 2-contacts discontinuities is simply described by u+ = u− + σr2, so that one
has

[P ] = 0, [v] = 0 across a 2-contact discontinuity. (3.28)

3.1.3. Commutation of rarefaction and compression waves of families 1 and 3
An important relation satisfied by both systems is that

�2 · [r1, r3] = 0. (3.29)

This does not mean that r1 and r3 commute, but they satisfy the integrability condition of Frobe-
nius’ theorem. It follows that the curves R1 and R3 locally define a submanifold of R3 of
dimension 2, on which (σ1, σ3) �→R1(σ1, ·) ◦R3(σ3, ·)u and (σ1, σ3) �→R3(σ1, ·) ◦R1(σ1, ·)u
give local diffeomorphisms. A consequence is the following.

Lemma 3.1. Consider both systems (1.1) and (1.3). Let ul ∈Ω and σ1 ∈ R and σ3 ∈ R small.
Let π ∈ S3 and ξ = (0,0,0). If ur =R1(σ1, ·)◦R3(σ3, ·)ul or ur =R3(σ3, ·)◦R1(σ1, ·)ul , then
Σ
π,ξ
2 (ul, ur)= 0, where Σπ,ξ

2 designates the second component of Σπ,ξ .

In other words, the interaction of rarefaction/compression waves of families 1 and 3 does not
generate a 2-contact discontinuity (as long as one considers the Riemann problem in terms of
compression waves rather than in terms of shocks). Note that for large rarefactions, one has to be
careful about the possible appearance of the vacuum (see [10]).
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Another way to look at Lemma 3.1 is to notice that the physical entropy S is constant along the
curves Ri , i = 1,3. This can be seen by a direct computation or relying on (1.6) and (1.7) which
are deduced from (1.1) and (1.3) for regular solutions. Hence the submanifold mentioned above
is a level surface of S (on which the solutions of the isentropic equations live, by the way). But
it is obvious that following the wave curve T2 =R2 of the second family increases/decreases S,
so there cannot be a non-trivial second component in Σπ,ξ .

3.1.4. Notations for the elementary waves
We will use the same notations as [11] and [10] to describe elementary waves. The notations

are as follows: S will designate a shock, R a rarefaction wave (either of the first or of the third
characteristic family), J will designate a contact discontinuity (of the second family). We add
C to designate a compression wave. Waves of the first family will be more precisely described
as

↼

S,
↼

R and
↼

C, those of the third family
⇀

S,
⇀

R and
⇀

C. We will distinguish between the contact
discontinuities satisfying τ− < τ+ where τ− (resp. τ+) is the specific volume on the left (resp. on
the right) of the discontinuity, which we denote by

<

J , and those for which τ− > τ+, denoted
>

J .
We underline that we use this notation including for the system in Eulerian coordinates for which
we rather use ρ as an unknown; in particular a

<

J satisfies ρ− > ρ+ and it corresponds to u+ =
T2(σ2, u−) with σ2 < 0.

In the figures, in order to emphasize the waves that we consider strong, we will put in this case
these letters in blackboard bold style. In those figures, we may also use the letter A to designate
“artificial” waves (see below).

3.2. Some coefficients for interactions with strong discontinuities

Here, we compute several coefficients allowing to estimate the strength (and the nature) of
outgoing waves for some particular strong discontinuity/weak waves interactions, using the tools
of Section 2.3. In the case of the Eulerian system, we are particularly interested in the interaction
of a small 3-wave with a strong 2-contact discontinuity. In the case of Lagrangian coordinates
we are particularly interested in the interaction of a small 3-wave with a strong 3-shock (or the
interaction of a small 1-wave with a strong 1-shock which can be deduced from the latter through
the change of variable x↔−x associated with (τ, v,P )↔ (τ,−v,P )).

Notation. The coefficients that we will introduce connect the strength σ ′j of a weak wave of
family j , interacting with a strong wave of family k (of strength σ̂k), with the strength σi of the
outgoing wave of family i. This will be written as

σi = δikσ̂k +
(
αik,j or αij,k

)
σ ′j +O

(∣∣σ ′j ∣∣2),
where αk,j (respectively αj,k) means that the j -wave interacts with the strong k-wave from the
right (resp. left). The coefficient δik is Kronecker’s symbol. For instance in (3.31) below, the
coefficient αi3,2 appears when computing the strength of the outgoing wave of the i-th family as
one considers the interaction of a weak wave of the third family with a strong wave of the second
family, the weak wave being the left one.

3.2.1. Eulerian case
Here we consider, in the case of system (1.1), the interaction of a 2-contact discontinuity

(u−, u+) (considered as strong) with a wave of the third family, situated on its left. Of course
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the case of a strong 2-contact discontinuity interacting with a 1-wave on its right is similar (and
obtained via the change of variable x↔−x). We prove the following.

Proposition 3.1. In system (1.1), let u− = (ρ−, v−,P−) and u+ = (ρ+, v+,P+) be two states
in Ω =R+ ×R×R+ joined through a 2-contact-discontinuity:

u+ = T (σ ,u−), σ = (0, σ 2,0), σ 2 
= 0.

We consider ω− and ω+ as in Proposition 2.3. Let ul , u− be in ω− and u+ in ω+ satisfying

u+ = T (σ̂, u−), σ̂ = (0, σ̂2,0), σ̂2 
= 0,

ul = Υ
(
σ ′, u−

)
, σ ′ = (

0,0, σ ′3
)
.

Then one has

Σ(ul, u+)= σ̂ + σ, (3.30)

with

σ1 = α1
3,2σ

′
3 +O

(
σ ′ 23

)
, σ2 = α2

3,2σ
′
3 +O

(
σ ′ 23

)
, σ3 = α3

3,2σ
′
3 +O

(
σ ′ 23

)
, (3.31)

where

α1
3,2 =

√
ρ+ −√ρ−√
ρ+ +√ρ− , α2

3,2 =
2
√
ρ+(
√
ρ− −√ρ+)√

ρ+ +√ρ− , α3
3,2 =

2
√
ρ−√

ρ+ +√ρ− . (3.32)

Moreover the “O” are uniform as ul, u− and u+ belong to compact sets of ω− and ω+.

Note in particular that α1
3,2 > 0 (resp. α1

3,2 < 0) when ρ− < ρ+ (resp. when ρ− > ρ+).

Proof of Proposition 3.1. First, it is straightforward to see that Majda’s stability condition (2.22)
is satisfied by (u−, u+). Now according to Lemma 2.3 and to (2.36), one has Σ(ul, u+)= σ +σ ,
with

σ1r1(u−)+ σ2r2 + σ3r3(u+)= σ ′3r3(u−)+O
(∣∣σ ′3∣∣2).

We consider the matrix

P :=
(
�1(u−) · r1(u−) �1(u−) · r2 �1(u−) · r3(u+)
�2(u−) · r1(u−) �2(u−) · r2 �2(u−) · r3(u+)
�3(u−) · r1(u−) �3(u−) · r2 �3(u−) · r3(u+)

)
=
(1 0 �1(u−) · r3(u+)

0 1 �2(u−) · r3(u+)
0 0 �3(u−) · r3(u+)

)
,

so that one has Pσ = σ ′ +O(|σ ′3|2). Inverting P , we finally end up with (3.31) with

α1
3,2 =−

�1(u−) · r3(u+)
, α2

3,2 =−
�2(u−) · r3(u+)

, α3
3,2 =

1
,

�3(u−) · r3(u+) �3(u−) · r3(u+) �3(u−) · r3(u+)
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the denominator being always positive. Computing these coefficients leads to

α1
3,2 =

ρ+c+ − ρ−c−
ρ−c− + ρ+c+ , α2

3,2 =
2ρ−ρ+(c2+ − c2−)
c+(ρ−c− + ρ+c+) , α3

3,2 =
2ρ−c−

(ρ−c− + ρ+c+) .

But since the pressure is constant across a 2-contact discontinuity, these formulae simplify
to (3.32). �
Remark 3.1. The situation where a 1-wave interacts with a 2-discontinuity from the right is
exactly symmetric. Note that in the symmetry x↔−x, a wave 1-wave (resp. 2-wave, 3-wave) is
transformed into a 3-wave (resp. 2-wave, 1-wave) with the same (resp. opposite, same) strength.
Hence one gets the same result as Proposition 3.1 with

α1
2,1 =

2
√
ρ+√

ρ− +√ρ+ , α2
2,1 =

2
√
ρ−(
√
ρ− −√ρ+)√

ρ− +√ρ+ , α3
2,1 =

√
ρ− −√ρ+√
ρ− +√ρ+ , (3.33)

so α3
2,1 > 0 (resp. α3

2,1 < 0) when ρ− > ρ+ (resp. when ρ− < ρ+).

Remark 3.2. Shrinking ω− and ω+ if necessary, we can ensure that, in the case of the interaction
of a 3-wave on the left (resp. a 1-wave on the right) of the strong 2-discontinuity, σ1 has the same
sign as α1

3,2σ
′
3 (resp. α1

2,1σ
′
1) and σ3 has the same sign as α3

3,2σ
′
3 (resp. α3

2,1σ
′
1).

Remark 3.3. Using the notation f =Θ(g) to express that there exist c,C > 0 (possibly depend-
ing on u−) such that, for small values of the variables,

cg ≤ f ≤ Cg, (3.34)

we have, for ρ− > ρ+ that α1
3,2 =Θ(−σ̂2), α1

3,2 =Θ(σ̂2) and α3
3,2 =Θ(1).

3.2.2. Lagrangian case
Here we consider, in the case of system (1.3), the interaction of a 1-shock (u−, u+) (consid-

ered as strong) with a wave of the first family, situated on its right. Again, we are interested in
estimating the resulting outgoing waves using the tools of Section 2.3. Of course the case of a
strong 3-shock interacting with a 3-wave on its left is again obtained via the change of variable
x↔−x, (τ, v,P )↔ (τ,−v,P ). We prove the following.

Proposition 3.2. In system (1.3), let u− = (τ−, v−,P−) and u+ = (τ+, v+,P+) be two states
in Ω =R+ ×R×R+ joined through a 1-shock:

u+ = T (σ ,u−), σ = (σ 1,0,0), σ 1 < 0.

We consider ω− and ω+ as in Proposition 2.3. Let u− be in ω− and u+, ur in ω+ satisfying

u+ = T (σ̂, u−), σ̂ = (σ̂1,0,0), σ̂1 < 0,

ur := T
(
σ ′, u+

)
, σ ′ = (

σ ′,0,0
)
. (3.35)
1
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Then one has

Σ(u−, ur )= σ̂ + σ, (3.36)

with

σ1 = α1
1,1σ

′
1 +O

(
σ ′ 21

)
, σ2 = α2

1,1σ
′
1 +O

(
σ ′ 21

)
, σ3 = α3

1,1σ
′
1 +O

(
σ ′ 21

)
, (3.37)

where, denoting s = s(u−, u+),

α1
1,1 =

1
∂s
∂σ̂1

L1(u+) · [ϕ(u)]
, α2

1,1 =
L2(u+) · [ϕ(u)]
L1(u+) · [ϕ(u)]

λ1(u+)− s
s

,

α3
1,1 =−

L3(u+) · [ϕ(u)]
L1(u+) · [ϕ(u)]

λ1(u+)− s
λ3(u+)− s . (3.38)

Moreover the “O” are uniform as u− and u+, ur belong to compact sets of ω− and ω+.

Proof. It is straightforward to see that Majda’s stability condition (2.20)–(2.21) is satisfied by
any 1-shock (u−, u+). We use Lemma 2.2 and (2.34); we have

σ1
∂s

∂σ̂1

[
ϕ(u)

]− sσ2R2(u+)+ σ3
(
λ3(u+)− s

)
R3(u+)= σ ′1

(
λ1(u+)− s

)
R1(u+)+O

(∣∣σ ′1∣∣2).
We consider the matrix (using again the notation (2.33))

P =
⎛
⎜⎝

∂s
∂σ̂1

L1(u+) · [ϕ(u)] −sL1(u+) ·R2(u+) (λ3(u+)− s)L1(u+) ·R3(u+)
∂s
∂σ̂1

L2(u+) · [ϕ(u)] −sL2(u+) ·R2(u+) (λ3(u+)− s)L2(u+) ·R3(u+)
∂s
∂σ̂1

L3(u+) · [ϕ(u)] −sL3(u+) ·R2(u+) (λ3(u+)− s)L3(u+) ·R3(u+)

⎞
⎟⎠

=
⎛
⎜⎝

∂s
∂σ̂1

L1(u+) · [ϕ(u)] 0 0

∂s
∂σ̂1

L2(u+) · [ϕ(u)] −s 0

∂s
∂σ̂1

L3(u+) · [ϕ(u)] 0 λ3(u+)− s

⎞
⎟⎠ .

Inverting P , we obtain (3.37) with the coefficients given in (3.38). �
Now we focus on the coefficients α2

1,1 and α3
1,1. One has the following result.

Lemma 3.2. Any 1-shock (3.35) satisfies

α2
1,1 > 0. (3.39)

Moreover, for γ < 5
3 , any 1-shock (3.35) satisfies

α3 < 0. (3.40)
1,1
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Shrinking ω− and ω+ if necessary, these coefficients are uniformly strictly separated from zero,
and in (3.37), σk has the same sign as αk1,1σ

′
1, k = 2,3.

Proof. First one has clearly

λ1(u+)− s < 0, s < 0 and λ3(u+)− s > 0,

since the Lax inequalities are valid on the whole shock curve (see (3.25)). Now let us determine
the signs of the various Li(u+) · [ϕ(u)]; actually it will be a bit simpler to work with sLi(u+) ·
[ϕ(u)] = Li(u+) · [f (u)]. Using the Rankine–Hugoniot relation, we find that

[
f (u)

]=
(−[v]
[P ]
[Pv]

)
= [v]

( −1
s

P− + sv+

)
.

Now one computes sL1(u+) · [ϕ(u)] as follows:

sL1(u+) ·
[
ϕ(u)

]= γ + 1

4τ+
[v]

(
− c+
γ τ+

+ s − γ − 1

c+
P−

)
.

Note that each term inside the parentheses is negative.
Concerning sL2(u+) · [ϕ(u)], one has:

sL2(u+) ·
[
ϕ(u)

]=−γ − 1

γ
(v+ − v−)− (γ − 1)

v+
γP+

(P+ − P−)+ γ − 1

γP+
(P+v+ − P−v−)

= γ − 1

γ
(v+ − v−)

(
P−
P+
− 1

)
.

Using (3.24), we deduce (3.39).
The factor L3(u+) · [ϕ(u)] is the one sensitive to γ . One has

sL3(u+) ·
[
ϕ(u)

]= γ + 1

4τ+
[v]

(
c+
γ τ+

+ s + γ − 1

c+
P−

)

= (γ + 1)c+
4γ τ 2+

[v]
(
(γ − 1)

P−
P+
+ 1+ γ τ

+s
c+

)
.

Now we use the representation (3.22) of the 1-shock curve. We find that

sL3(u+) ·
[
ϕ(u)

]= (γ + 1)c+
4γ τ 2+

[v]
(
γ − 1

x
+ 1− γ

√
β + x

(1+ β)x
)
.

To determine the sign of the last factor, we parameterize the function by t = 1/x and hence
consider only t ∈ (0,1). The function

h(t) := (γ − 1)t + 1− γ
√

1+ βt
(1+ β)
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vanishes at 1; its derivative

h′(t) := (γ − 1)− γβ

2
√

1+ β
1√

1+ βt
is increasing and

h′(1)= γ − 1+ γ + 1

4
< 0 ⇔ γ <

5

3
.

It follows that for γ < 5
3 , h′ < 0 on (0,1) and consequently h > 0 on (0,1). Hence we find

that (3.40) holds for γ < 5
3 .

Finally, we obtain a negative upper bound for the coefficients α2
1,1 and α3

1,1 by choosing small
compact neighborhoods ω̃− and ω̃+ of u− and u+ inside of ω− and ω+ such that any 1-shock
from ω̃− to ω̃+ satisfies

λ1(u+)− s ≤−κ < 0, s ≤−κ < 0 and λ3(u+)− s ≥ κ > 0. �
Remark 3.4. This implies in particular that the interaction of a strong 1-shock with a small
1-shock generates a rarefaction wave in the third characteristic family, a fact that is well known,
see e.g. [40, Theorem 18.8]. For γ > 5

3 , this generates a shock, but the interaction of two strong
shocks can be more complex, see Chen, Endres and Jenssen [10].

Remark 3.5. With the notation of Remark 3.3, using (2.10), we can see following the lines above
that α1

1,1 =Θ(1), α2
1,1 =Θ(σ̂ 2

1 ) and (for γ < 5
3 ) α3

1,1 =Θ(−σ̂ 2
1 ).

We will be also interested in the result of the interaction of such a strong 1-shock with a weak
simple wave (of family 1, 2 or 3) on its left.

Proposition 3.3. In system (1.3), let u− and u+ be two states in Ω = R+ × R × R+ joined
through a 1-shock:

u+ = T (σ ,u−), σ = (σ 1,0,0), σ 1 < 0.

We consider ω− and ω+ as in Proposition 2.3. Let i ∈ {1,2,3}. Let u−, ul be in ω− and u+ in
ω+ satisfying

u+ = T (σ̂, u−), σ̂ = (σ̂1,0,0), σ̂1 < 0, (3.41)

ul := Υi
(
σ ′i , u−

)
. (3.42)

Then one has

Σ(ul, u+)= σ̂ + σ, (3.43)

with
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σ1 = α1
i,1σ

′
i +O

(
σ ′ 2i

)
, σ2 = α2

i,1σ
′
i +O

(
σ ′ 2i

)
, σ3 = α3

i,1σ
′
i +O

(
σ ′ 2i

)
, (3.44)

where

α2
1,1 > 0, α3

1,1 < 0

(
if γ <

5

3

)
, α2

2,1 > 0, α3
2,1 < 0,

α2
3,1 < 0 and α3

3,1 > 0. (3.45)

The coefficients αki,2 are bounded and bounded away from zero uniformly and the “O” are uni-
form as ul, u− and u+ belong to compact sets of ω− and ω+. Moreover, shrinking ω− and ω+ if
necessary, σk has the same sign as αki,1σ

′
i in (3.44).

Remark 3.6. We can deduce as before the equivalent for weak waves interacting on the right of
a strong 3-shock through the change of variables x↔−x. Recall that this transforms a 1-wave
(resp. 2-wave, 3-wave) into a 3-wave (resp. 2-wave, 1-wave) with the same (resp. opposite, same)
strength.

Proof of Proposition 3.3. We follow the same lines as before, applying Lemma 2.2 and the
formula (2.34). We get that

σ1
∂s

∂σ̂1

[
ϕ(u)

]+ 3∑
j=2

σj
(
λj (u+)− s

)
Rj (u+)

=−σ ′i
(
λi(u−)− s

){
Ri(u−)+

(
ri(u−) · ∇us

)[
ϕ(u)

]}+O
(∣∣σ ′i ∣∣2).

The matrix whose columns are formed by [ϕ(u)], R2(u+) and R3(u+) is invertible. Hence we
find that (3.44) holds, and in particular we can compute the coefficients

α2
i,1 =

λi(u−)− s
−s

det(Ri(u−),R3(u+), [ϕ])
det(R2(u+),R3(u+), [ϕ]) and

α3
i,1 =−

λi(u−)− s
λ3(u+)− s

det(Ri(u−),R2(u+), [ϕ])
det(R2(u+),R3(u+), [ϕ]) .

The quotients λi(u−)−s
−s and λi(u−)−s

λ3(u+)−s are clearly positive for all i; let us determine the signs of
the determinants. Let us remark that using the Rankine–Hugoniot relation, we can replace [ϕ]
with [f ] in these determinants. To simplify the writing, we will compute the determinants with
the following vectors R̃1 and R̃3 instead of R1 and R3:

R̃1 := (γ + 1)c

2τ 2
R1 =

⎛
⎝ 1

c
τ

−P + cv
τ

⎞
⎠ , R̃3 := (γ + 1)c

2τ 2
R3 =

⎛
⎝ −1

c
τ

P + cv
τ

⎞
⎠ .

Since we are only interested in the signs of the determinants and since the factor (γ+1)c
2τ 2 is posi-

tive, bounded and bounded away from 0 on compact subsets of Ω , this replacement is harmless.
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We obtain:

det
(
R2(u+), R̃3(u+), [f ]

)= c+
τ+
[Pv] −

(
P+ + c+v+

τ+

)
[P ] − P+

γ − 1
[P ] + P+

γ − 1

c+
τ+
[v]

= c+
τ+

(
P− + P+

γ − 1

)
[v] − γP+

γ − 1
[P ]< 0,

since both [v]< 0 and [P ]> 0 across a 1-shock.

• Weak wave of family i = 1. We compute:

det
(
R̃1(u−), R̃3(u+), [f ]

)=−[v]2 c−c+
τ−τ+

− [v]
(
P+c−
τ−

− P−c+
τ+

)
− [P ]2

− [P ]
(
c+v+
τ+
− c−v−

τ−

)
+ [Pv]

(
c+
τ+
+ c−
τ−

)

=−[v]2 c−c+
τ−τ+

− [P ]2 < 0.

Hence we deduce that α2
1,1 > 0.

det
(
R̃1(u−),R2(u+), [f ]

)=−c−
τ−

(
[Pv] + P+

γ − 1
[v]

)
− [P ]

(
P+
γ − 1

+ P− − c−v−
τ−

)

=−c−
τ−

γP+
γ − 1

[v] − [P ]
(

P+
γ − 1

+ P−
)
.

We use [P ] = s[v] and the formulae (3.22) and (3.25) to obtain, with x = P+/P− > 1:

det
(
R̃1(u−),R2(u+), [f ]

)=−P+c−
τ−
[v]

(
γ

γ − 1
−
√

1+ βx
1+ β

(
1

γ − 1
+ 1

x

))
.

We define

h̃(x) := γ

γ − 1
−
√

1+ βx
1+ β

(
1

γ − 1
+ 1

x

)
,

and observe that h̃(1)= 0 and that

h̃′(x)= 1√
1+ β√1+ βxx2

(
− β

2(γ − 1)
x2 + β

2
x + 1

)
.

In particular h̃′(1)=− β
1+β

5γ−3γ 2

2(γ−1)2
is negative whenever γ < 5

3 , and one checks that in that case

h̃′ is negative on (1,+∞). Recalling that [v]< 0, we deduce that, provided that γ < 5
3 , one has

det(R̃1(u−),R2(u+), [f ]) < 0, and hence that α3 < 0.
1,1
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• Weak wave of family i = 2. Next:

det
(
R2(u−), R̃3(u+), [f ]

)= c+
τ+
[Pv] −

(
P+ + c+v+

τ+

)
[P ] + P−

γ − 1

(
c+
τ+
[v] − [P ]

)

= γP−
γ − 1

c+
τ+
[v] −

(
P+ + P−

γ − 1

)
[P ]< 0,

where we used (3.24). Hence α2
2,1 > 0. Now:

det
(
R2(u−),R2(u+), [f ]

)=− [P ]2
γ − 1

< 0.

It follows that α3
2,1 < 0.

• Weak wave of family i = 3. We have:

det
(
R̃3(u−), R̃3(u+), [f ]

)=−[v]2 c−c+
τ−τ+

− [v]
(
P+c−
τ−

− P−c+
τ+

)
+ [P ]2

+ [P ]
(
c+v+
τ+
− c−v−

τ−

)
+ [Pv]

(
c−
τ−

c+
τ+

)

=−[v]2 c−c+
τ−τ+

+ [P ]2 = [v]2
(
s2 − c−c+

τ−τ+

)
.

Using (3.25), we see that, with x > 1,

s2 − c−c+
τ−τ+

= c−c+
τ−τ+

(√
β + x
β + 1

− 1

)
> 0.

It follows that α2
3,1 < 0. Finally:

det
(
R̃3(u−),R2(u+), [f ]

)=−c−
τ−

(
[Pv] + P+

γ − 1
[v]

)
+ [P ]

(
P+
γ − 1

+ P− + c−v−
τ−

)

=−c−
τ−
[P ][v] +

(
P+
γ − 1

+ P−
)
[v]

(
s − c−

τ−

)
> 0,

reasoning as before. Hence α3
3,1 > 0 (recall that s < 0).

This ends the proof of Proposition 3.3. �
Remark 3.7. Here using the notation of Remark 3.3 and following the lines above, we deduce
that α2

1,1 =Θ(σ̂ 2
1 ), α

3
1,1 =Θ(−σ̂ 2

1 ) (for γ < 5
3 ), α2

2,1 =Θ(1), α3
2,1 =Θ(−σ̂1), α2

3,1 =Θ(−σ̂1)

and α3
3,1 =Θ(1).
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Fig. 2. A 3-compression wave acting as a cancellation wave.

3.3. Additional cancellation waves and correction waves

In this section, we introduce additional cancellation waves and what we will call correction
waves, relying on the strong discontinuities for systems (1.1) and (1.3) described above. These
waves will be compression waves.

3.3.1. Eulerian case
As in Section 3.2.1, the strong wave that we consider in the case of system (1.1) is a 2-contact

discontinuity. We look for compression waves of the third family, on the left of the 2-contact
discontinuity, that cancel the effect of a 1-shock interacting on its right, in the sense that there is
not outgoing 1-wave after the interaction; see Fig. 2 (where the compression wave is represented
as a fan of discontinuities focusing to a point). The 2-contact discontinuity that we consider is a
<

J wave (that is, for which τ− < τ+) rather than a
>

J one.
Precisely, we establish the following proposition.

Proposition 3.4. In system (1.1), consider a 2-contact discontinuity (u−, u+) as in Proposi-
tion 3.1 with σ 2 < 0. We consider ω− and ω+ as in Proposition 2.3. Let ul be in ω− and um, ur
in ω+ satisfying

um = T (σ̂, ul), σ̂ = (0, σ̂2,0), σ̂2 < 0,

ur = T (β,um), β = (β1,0,0), β1 < 0,

with |β1| small. There exists γ3 < 0 such that, if ũl :=R3(−γ3, ul), denoting σ =Σ(ũl, ur), one
has

σ1 = 0,

and additionally

γ3 =−
α1

2,1

α1
3,2

β1 +O
(|β1|2

)
, σ3 =

(
α3

2,1 − α3
3,2

α1
2,1

α1
3,2

)
β1 +O

(|β1|2
)
. (3.46)

Moreover the admissible size of |β1| and the “O” are uniform as ul , um and ur belong to
compact sets of ω− and ω+.
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By the uniformity of the admissible size of |β1|, we mean that ul and um being in fixed
compacts of ω− and ω+, there is a β > 0 such that the property is valid whenever |β1| ≤ β .

Proof of Proposition 3.4. Given ul and σ̂2, we consider the mapping:

G : (β1, γ3) ∈ (−ε, ε)2 �→
(
β1,Σ1

(
R3(−γ3, ul), T1

(
β1, T2(σ̂2, ul)

)))
,

where as before Σ1 denotes the first component of Σ and ε is a small positive number. It is clear
that G is C2 and its differential at (0,0) is given by

dG(0,0)=
(

1 0
α1

2,1 α1
3,2

)
.

From (3.32) we know that α1
3,2 
= 0 and in fact, since σ̂2 < 0 (so that ρl > ρm), we deduce that

α1
3,2 < 0. Even, one can have a negative upper bound for this coefficient, shrinking ω− and ω+ if

necessary. It follows that dG(0,0) is invertible, of inverse

dG(0,0)−1 =
(

1 0

−α1
2,1

α1
3,2

1
α1

3,2

)
. (3.47)

Hence the existence of γ3 for β1 small is the consequence of the inverse mapping theorem (and
one can bound from below the size of β1 for which this is possible in terms of ‖dG(0,0)−1‖ and
‖G‖C2 ). The first estimate in (3.46) follows from (3.47). The second estimate on

σ3 =Σ3
(
R3(−γ3, ul), T1

(
β1, T2(σ̂2, ul)

))
(3.48)

is then a first order Taylor expansion. That γ3 < 0 comes from the computation of the coefficient

−α
1
2,1

α1
3,2

=− 2
√
ρm√

ρm −√ρl

which is positive since, in the case considered here, one has ρl > ρm. �
Remark 3.8. The sign of σ3 for |β1| small is given by (3.46); the coefficient can be computed as

α3
2,1 − α3

3,2

α1
2,1

α1
3,2

= (
√
ρm −√ρl)2 + 4

√
ρl
√
ρm

ρl − ρm ,

which is positive so σ3 < 0. However this is not essential in the construction and we will not use
this fact.
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Fig. 3. Compression waves acting as correction waves.

3.3.2. Lagrangian case
For the system in Lagrangian coordinates, we consider not only cancellation waves, but also

compression waves which do not cancel one of the outgoing waves, but rather force the outgoing
waves to have a prescribed sign. Hence we refer in that case to these compression waves as
correction waves.

We prove the following result (see Fig. 3).

Proposition 3.5. We consider system (1.3). Let us be given a 1-shock (u−, u+), u+ = T1(σ 1, u−)
with σ 1 < 0. We consider ω− and ω+ as in Proposition 2.3. Let um be in ω− and ur in ω+
satisfying

ur = T (σ̂, um), σ̂ = (σ̂1,0,0), σ̂1 < 0,

and consider ul in ω− such that ul = Υ (β,um) with β a simple wave of the form (β1,0,0),
(0, β2,0) or (0,0, β3), with |βi | small.

Then there exists γ1 ≤ 0 such that, if ũr :=R1(γ1, ur), denoting σ =Σ(ul, ũr ), one has

σ2 ≤ 0, σ3 ≥ 0, (3.49)

and

|γ1| =O
(|βi |). (3.50)

Moreover the admissible size of |βi | and the “O” in (3.50) can be taken uniform as ul , um and
ur belong to compact sets of ω− and ω+.

Remark 3.9. The cases β = (β1,0,0), β1 > 0, β = (0, β2,0), β2 > 0 and β = (0,0, β3), β3 < 0,
are the non-trivial cases (for the other ones, γ1 = 0 works). In these situations, we could make
sure that one of σ2 or σ3 actually vanishes. But it would not be systematically the same one, so
this information is of no use to us in the construction.

Proof of Proposition 3.5. Let

μi :=max

(∣∣∣∣ α
2
i,1

α2

∣∣∣∣,
∣∣∣∣ α

3
i,1

α3

∣∣∣∣
)
, (3.51)
1,1 1,1
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Fig. 4. A 3-compression wave acting as a cancellation wave.

and let us prove that

γ1 := −(μi + 1)|βi | (3.52)

works. We compute σk , k = 2 or 3, by

σk =Gk(βi, γ ) :=Σk

(
Υi(βi, um),R1

(
γ1, T1(σ̂1, um)

))
.

As in the proof of Proposition 3.4, Gk is of class C2 and its differential at (0,0) is

dGk(0,0)= αki,1 dβi + αk1,1 dγ.
Hence

Gk(βi, γ1)= αki,1βi + αk1,1γ1 +O
(|βi |2 + |γ1|2

)
. (3.53)

Since α2
1,1 is positive and α3

1,1 is negative (see Lemma 3.2), one deduces that

G2(βi, γ3)≤−|βi | +O
(
β2
i

)
and G3(βi, γ3)≥ |βi | −O

(
β2
i

)
, (3.54)

which allows to conclude. �
We will also consider actual cancellation waves for system (1.3), as stated in the next propo-

sition. We refer to Fig. 4. The strong shock used here is chosen not too large.

Proposition 3.6. In system (1.3), there exists κ > 0 such that the following holds. Consider a
3-shock (u−, u+) given by u+ = T3(σ 3, u−) with σ 3 ∈ (−κ,0). Let ω− and ω+ be as in Propo-
sition 2.3. Let ul be in ω− and um, ur in ω+ satisfying

um = T (σ̂, ul), σ̂ = (0,0, σ̂3), σ̂3 < 0,

ur = T (β,um), β = (0, β2,0), β2 < 0.

Suppose, shrinking ω− and ω+ if necessary, that σ̂3 ∈ (− 3κ
2 ,0). Then for small |β2|, there exists

γ3 < 0 such that, if ũl :=R3(−γ3, ul), denoting σ =Σ(ũl, ur), one has

σ2 = 0, σ1 ≥ 0,
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and additionally

γ3 =−
α2

3,2

α2
3,3

β2 +O
(|β2|2

)
. (3.55)

Moreover the admissible size of |β2| and the “O” are uniform as ul , um and ur belong to
compact sets of ω− and ω+.

Proof. The proof is roughly the same as that of Proposition 3.4. Here we consider

G : (β2, γ3) ∈ (−ε, ε)2 �→
(
β2,Σ2

(
R3(−γ3, ul), T2

(
β2, T3(σ̂3, ul)

)))
.

Again G is of class C2 and its differential at (0,0) is given by

dG(0,0)=
(

1 0
α2

3,2 α2
3,3

)
.

Hence we get as previously the existence of γ3 canceling σ2 and satisfying (3.55) as a conse-
quence of the inverse mapping theorem. Let us now focus on the signs of σ1 and γ3. For γ3 we
have (3.55) and for σ1, the first-order Taylor expansion of Σ1(R3(−γ3, ul), T2(β2, T3(σ̂3, ul)))

gives:

σ1 = α1
3,2β2 + α1

3,3γ3 +O
(|β2|2

)= (
α1

3,2 −
α2

3,2

α2
3,3

α1
3,3

)
β2 +O

(|β2|2
)
. (3.56)

Using the symmetry x↔−x, we know from Propositions 3.2 and 3.3 that α1
3,2 > 0, α1

3,3 < 0,

α2
3,2 > 0 and α2

3,3 < 0. Hence we can conclude that γ3 < 0 (if |β2| is small enough), but the two
coefficients in the right hand side of (3.56) are of different signs. To conclude, we use that σ̂3
is not too large (that is, we choose κ small). Using Remarks 3.5 and 3.7 and adapting them in
the horizontally symmetric situation, we see that α1

3,2 =Θ(σ̂3), α1
3,3 =Θ(−σ̂ 2

3 ), α
2
3,3 =Θ(−σ̂ 2

3 )

and α2
3,2 =Θ(1). It follows that in (3.56), the second term in the parentheses is predominant over

the first one for small σ̂3. This gives the conclusion. �
4. The construction in the Eulerian case

With the tools exposed in Sections 2 and 3, we are now in a position to give our method to
construct front-tracking approximations leading to a relevant solution for Theorem 3. We recall
that front-tracking approximations are piecewise constant functions on the space–time domain
(here R+ × (0,L)), each “piece” on which the function is constant being polygonal. In this
section, we only describe the algorithm that generates these approximations; we will prove in
Section 6 that these approximations converge to a solution of the system, which will establish
Theorem 3.

The construction has some common points with the one of [21] for the controllability of
the isentropic (2× 2) Euler system for compressible gas, and uses some features of Bressan’s
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front-tracking algorithm [6] for the generation of solutions of hyperbolic n× n systems of con-
servations laws with n≥ 3. We will first suppose, using the notations of Theorem 3, that:

λ1(u0) < 0 and λ2(u0) > 0. (4.1)

We will explain in Section 6.1.5 how the other cases can be treated.
As in [21], the construction consists of two successive steps. We describe these steps in sep-

arate subsections. A main point in the construction here is to let a strong 2-discontinuity enter
the domain from the left side x = 0 and to use this strong discontinuity to “eliminate” the waves
inside the domain, using cancellation effects. As we will see, this discontinuity eventually leaves
the domain through the right side x = L.

We let ν > 0 a small parameter; we construct a front-tracking approximation for each such
ν and we will let ν go to 0. We also let � > 0 another positive parameter intended to go to 0
(depending on ν).

4.1. The strong 2-discontinuity

We consider v−0 such that (v−0 , u0) is an increasing (in terms of τ ) 2-contact discontinuity
<

J:

u0 = T2
(
σ 2, v

−
0

)
, σ 2 < 0. (4.2)

We require that it satisfies

λ1
(
v−0

)≤ 3

4
λ1(u0), (4.3)

which is clearly the case when |σ 2| is small enough. Note that the velocity s of this discontinuity
satisfies

s = λ2(u0) > 0. (4.4)

This is the reference discontinuity on which the construction is based. Given such a 2-discontinu-
ity, we will determine ε > 0 such that, if (1.12) is satisfied, the following construction is valid.
This will allow us to get (1.14) by ultimately taking this reference discontinuity small.

Now, given such a discontinuity, the approximations that we are about to construct will take
values in the domain:

D = B
(
v−0 ; r

)∪B(u0; r), (4.5)

where r > 0 is small enough. In particular r is chosen in order that:

• B(v−0 ; r)∩B(u0; r)= ∅ (to simplify the discussion),
• D ⊂Ω (in particular the vacuum is avoided),
• any two states in B(v−0 ; r) or in B(u0; r) determine a Riemann problem having a solution

which avoids the vacuum, and the same is true for any “swapped” Riemann problem as
defined in Section 2.2.
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• interactions of two simple waves in B(v−0 ; r) or in B(u0; r) conserve the sign in the sense of
Corollary 2.1, for any permutation of the Riemann problem, and satisfy Lemma 3.1,

• B(v−0 ; r) ⊂ ω−, B(u0; r) ⊂ ω+ where ω− and ω+ are small enough in order for Proposi-
tions 3.1 and 3.4 and Remark 3.2 to apply,

• any simple wave leading a state of B(v−0 ; r) to a state of B(u0; r) is an increasing (in terms
of τ ) 2-contact discontinuity with strength σ2 and speed s satisfying

|σ 2|/2≤ |σ2| ≤ 2|σ 2| and s ≥ λ2(u0)/2, (4.6)

• for any u in B(v−0 ; r)
λ1(u)≤ λ1(u0)/2 < 0. (4.7)

We will in particular choose ε > 0 in order that (1.12) implies that u0 has values in B(u0; r), but
ε may have to be chosen smaller in the sequel.

We consider λ̂ a positive number such that

λ̂ >max
u∈D

∣∣λ3(u)
∣∣. (4.8)

We now proceed to the construction of front-tracking approximations uν of a solution to the
controllability problem; these approximations are in a first time constructed only “under/on the
right” the strong discontinuity (in the (t, x) domain). In a second time, we resume the construc-
tion above/on the left of this discontinuity.

4.2. Part 1: construction of the approximation under/on the right of the strong discontinuity

In this subsection, we describe the first part of the algorithm, which allows to construct the
part of the approximation uν situated under/on the right of the strong discontinuity, as well as
the value of uν immediately on the left of the discontinuity and the location of the discontinuity
itself. Specifically, we construct the function X(t) which represents the location of the strong
discontinuity in (0,L) at time t , and which is defined in some interval [0, T1], T1 being the
exit time of the strong discontinuity. This location X(t) will be an increasing function of time,
depending of course on ν; to lighten the notation we do not make this dependence explicit. In
the same time we construct the piecewise constant function uν on {(t, x) ∈ [0, T1] × [0,L] | x ≥
X(t)}. Moreover, we also construct the state uν(t,X(t)−) on the left of the discontinuity, which
will be exploited in Part 2.

In this part of the algorithm, we will suppose that all the states at points where x > X(t)

belong to B(u0, r) and the states uν(t,X(t)−) belong to B(v−0 , r). Our convention is that the
algorithm stops at a time when this condition starts to fail. We will prove later that the algorithm
does not stop provided that ε is small enough.

Step 1. Approximation of the initial data and initiation of the algorithm. We introduce a
sequence of piecewise constant approximations of the initial state (uν0) in BV (0,L), with values
in B(u0, r) and satisfying:

T V
(
uν0
)≤ T V (u0),

∥∥uν0 − u0
∥∥∞ ≤ ‖u0 − u0‖∞ and

∥∥uν0 − u0
∥∥
L1(0,L) ≤ ν. (4.9)

Now, the algorithm to construct the approximation uν defined in R+ × (0,L) works as follows.
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Fig. 5. The accurate Riemann solver.

a. At discontinuity point x of uν0 in (0,L), we approximate the solution of the Riemann
problem (uν0(x

−), uν0(x+)) by using the accurate Riemann solver, that is by defining uν around
the point (0, x) as the solution of the Riemann problem, where the rarefaction waves (for family
1 or 3) are replaced by rarefaction fans with accuracy ν (described below). On the contrary, shock
waves and contact discontinuities are left unchanged.

The rarefaction fans are defined as follows: given a rarefaction wave between u− and u+ =
Ti(σi, u−), σi > 0, i = 1,3, we introduce the intermediate states

ωk := Ti

(
k

n
σi, u−

)
for k = 0, . . . , n :=

⌈
σi

ν

⌉
.

The rarefaction wave (2.19) is then replaced with the rarefaction fan

Uν
i (t, x)=

⎧⎨
⎩
u− for (x − x)/t < s(u−,ω1),

ωk for (x − x)/t ∈ (s(ωk−1,ωk), s(ωk,ωk+1)), k = 1, . . . , n− 1,

u+ for (x − x)/t > s(ωn−1, u+),

where the shock speed for rarefactions was defined in (3.9). In other words, the rarefaction fan is
composed of the constant states ωk , separated by straight lines at shock speed s(ωk,ωk+1). See
Fig. 5.

b. At the point x = 0, we solve the Riemann problem (v−0 , u
ν
0(0
+)); we conserve only the

2-wave and the 3-wave, and replace this 3-wave by a rarefaction fan with accuracy ν if this wave
is a rarefaction. The 2-contact discontinuity determines the curve X(t) for small times. At the
point x = L, we consider that the approximation is continued with uν0(L), so that there is no
Riemann problem to solve.

After these operations, we have in (0,L) and for small times a piecewise constant function uν ,
where the constants are separated by straight lines that we call fronts; the 2-contact discontinuity
originated from 0 is called strong front, the other fronts being called weak. More precisely, we
declare a front strong when it connects a state from B(v−0 ; r) to a state in B(u0; r); it is weak
when both states belong to the same connected component of D.

Moreover, all the fronts generated at this step will be called physical fronts, as opposed to
artificial fronts which will be introduced in the next step. For each physical front separating the
left state ul from the right state ur , there exist i ∈ {1,2,3} (the family of the front) and σi ∈ R
(its strength) such that ur = Ti(σi, ul).

Step 2. Extension of the solution and interactions. To define the approximation uν for larger
t > 0, we have to explain how to extend it over points where two fronts meet, which are called
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interaction points. We do not extend any front outside of the space domain (0,L), so we do not
have to give special rules when a front hits the boundary.

At an interaction point (t, x), a front on the left separating the leftmost state ul from the
middle state um meets a front separating um from the rightmost state ur . Of course the left front
travels faster than the right one. When both fronts are physical, one can write:

um = Ti(σi, ul) and ur = Tj
(
σ ′j , um

)
. (4.10)

Remark 4.1. As in [7], we can change a little bit the speed of a front (by an amount of ν at
most), in order to avoid interaction points with more than two incoming fronts involved. Even,
we can ensure that all times of interaction are distinct (not that this is essential). But doing so,
we choose not to modify the speed of contact discontinuities of the second family. This is always
possible since two contact discontinuities traveling at shock speed cannot meet, because two
contact discontinuities which are not separated by other waves travel at the exact same speed.
Also, since this can be done with an arbitrarily small change of speed, we avoid systematically
the meeting of two rarefaction fronts of the same family (such a meeting does not occur naturally
due to the genuine nonlinearity). Finally, we will not change the speed of artificial fronts (which
do not meet either).

According to the situation, the front-tracking approximation uν is extended for t ≥ t as fol-
lows.

A. The strong discontinuity is not involved. We suppose that none of the two fronts involved
is the strong one. In this situation, we follow [7] (with a non-essential variant for the simplified
solver). There are subcases.

• Interaction with large amplitude. We suppose that both fronts are physical and that

∣∣σiσ ′j ∣∣≥ �. (4.11)

In that case we extend uν for t ≥ t by using the accurate Riemann solver with accuracy ν

for (ul, um) at the point (t, x), as in the first step. However, if one of the incoming fronts
(of family k) is a rarefaction front, we do not split the outgoing k-wave in pieces (even if its
strength is larger than ν), and extend it as a single front sent at shock speed.

• Interaction with small amplitude. We suppose that both fronts are physical and that

∣∣σiσ ′j ∣∣< �. (4.12)

In that case we extend uν for t ≥ t by using the simplified Riemann solver, as described now.

– If i 
= j , that is, the incoming fronts are of different families, then i > j because otherwise
the two fronts would not meet. The solution of the Riemann problem is approximated by
the succession of a j -front, an i-front and an artificial front traveling at speed λ̂. For that,
we consider the permutation π ∈ S3 such that π(1)= j , π(2)= i, and set ξ = (1,1,1). We
let σ̂ :=Σπ,ξ (ul, ur). Then the approximation uν is extended by a single front separating
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Fig. 6. Simplified solver.

ul and ũm := Tj (σ̂j , ul) traveling at shock speed, a single front separating ũm from
ũr := Ti(σ̂i , ũm) and traveling at shock speed, and finally an artificial front separating
ũr from ur , and traveling at speed λ̂. See Fig. 6(a).

– If i = j , that is, the incoming fronts are of the same family, then at least one of the fronts is
a shock because otherwise the two fronts would not meet. The outgoing Riemann problem
is approximated by an i-front and an artificial front as follows. Pick a permutation π ∈ S3

such that π(1)= i, set ξ = (1,1,1) and let σ̂ :=Σπ,ξ (ul, ur). Then the approximation uν

is extended by a front separating ul and ũr := Ti(σ̂i , ul) traveling at shock speed and an
artificial front separating ũr from ur , and traveling at speed λ̂. See Fig. 6(b).

• Artificial interaction. We suppose that one of fronts is artificial. The second one is physical
since the algorithm will guarantee that all artificial fronts under the strong front travel at the
same speed λ̂. Due to (4.8), the artificial front is the left one (ul, um); let us describe the
right front with ur = Tj (σj , um). Then one approximates the outgoing Riemann problem
by a j -front and an artificial front as follows (we will refer to this method as the simplified
Riemann solver as well). Pick a permutation π ∈ S3 such that π(1)= j , set ξ = (1,1,1) and
let σ̂ :=Σπ,ξ (ul, ur). We define ũm := Tj (σ̂j , ul), and one extends uν by a front separating
ul and ũm and traveling at shock speed and an artificial front separating ũm from ur , and
traveling at speed λ̂. See Fig. 6(c).

Remark 4.2. We could have used the simplified solver from [7]. The (tiny) advantage here is
that the interaction estimates enter the same framework as for the usual interactions, that is,
Proposition 2.2. One can also notice that this simplified solver respects the fact that the interaction
of two rarefactions of family 3 and 1 does not generate a 2-wave, and that the interaction of two
shocks of family 3 and 1 generates a 2-wave whose strength is of third order with respect to the
incoming waves (recall (3.29)).

B. The strong discontinuity is involved. There is only one front considered strong at each time
t in this construction, of type

<

J, separating a state in B(v−0 , r) on the left and a state in B(u0, r)

on the right, whose speed satisfies (4.6); otherwise the algorithm has stopped. Moreover, since
in this subsection we are considering the approximation on the right of the strong discontinuity,
at an interaction point the strong front is the left one. Call again ul , um and ur the left, middle
and right states. The right front is necessarily of the first family. Indeed, if (um,ur) corresponded
to a physical front of the third family or an artificial front, it would travel faster than the 2-front
(ul, um). And if (um,ur) was separated by a physical front of the second family, it would travel
at the exact same speed as the 2-front (ul, um) (recall Remark 4.1).
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Fig. 7. A 1-rarefaction crossing the 2-strong discontinuity.

Hence we let ur = T1(σ1, um) and discuss according to the nature of this wave.

• Interaction with a 1-rarefaction front. In that case, we use the accurate solver as described
above. This generates a 1-rarefaction above the strong 2-discontinuity, modifies the 2-strong
discontinuity and generates a reflected 3-wave, which is a rarefaction wave. The natures of
these waves are deduced from the definition of r , and Remarks 3.1 and 3.2. We extend the
fronts of the 1-rarefaction fan only for small times for the moment. This determines a new
state ũl on the left of the 2-strong discontinuity. See Fig. 7.

• Interaction with a 1-shock front. In this case, we apply Proposition 3.4. We imagine that the
3-compression wave (ũl, ul) has arrived on the left of the 2-discontinuity exactly at (t, x).
The resulting Riemann problem (ũl, ur ) for times t ≥ t is solved by a 2-contact disconti-
nuity and a reflected/transmitted wave of the third family (but no 1-wave). We know from
Remark 3.8 that this 3-wave is a shock. We extend uν above the interaction point (t, x)
by using the accurate solver for the Riemann problem (ũl , ur ). Consequently the front of
families 2 and 3 are sent at shock speed. This determines ũl as the new state on the left of
the 2-strong discontinuity. Note that actually, we know from Remark 3.8 that for a not too
large

<

J, the 3-wave is a shock, but this is not essential. See Fig. 2.

In both cases, we let X(t) follow the 2-discontinuity. We do not yet extend the fronts emerging
above the strong 2-contact discontinuity (i.e. in the domain {x < X(t)}), but we keep record
of the state uν(t,X(t)−) above this discontinuity; this will be used in the second part of the
construction.

Note that due to (4.6), X(t) has a positive speed and eventually leaves the domain through
x = L at some finite time T1 > 0 with:

T1 ≤ 2L

λ2(u0)
. (4.13)

The first part of the algorithm ends here.

4.3. Part 2: construction above/on the left of the strong discontinuity

At the end of Part 1, assuming that the algorithm is well-functioning (in the sense that it does
not stop before T1 and generates a finite number of fronts and interaction points), we have a
front-tracking approximation defined under/on the right of the strong 2-contact discontinuity X.
Let us now explain how we extend this front-tracking approximation uν above/on the left of the
strong 2-contact discontinuity.
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Fig. 8. Junction of the two parts of the construction.

Step 1. Fronts emerging from the strong discontinuity. In the construction we have left above
the strong 2-contact discontinuity germs of 1-rarefaction waves that we would like to extend
forward in time and germs of 3-compression waves that we would like to extend backward in
time. This corresponds to the two following situations. At an interaction point (t,X(t)) with the
strong discontinuity in Part 1, the state uν(t,X(t)−) on the left of the discontinuity has changed,
and u− := uν(t,X(t−)−) and u+ := uν(t,X(t+)−) are connected:

– either by u+ = T1(σ1, u−) for some σ1 > 0, when the incoming front on the right of X was
of type

↼

R,
– or by u− =R3(σ3, u+) for some σ3 < 0, when the incoming front on the right of X was of

type
↼

S.

See Fig. 8(a). We let fronts emerge front the strong discontinuity as follows.

• In the first situation, the rarefaction wave (u−, u+) is treated via the usual accurate solver
and consequently sent forward in time as a rarefaction fan. We could avoid to split these
rarefaction waves generated by the meeting of the strong discontinuity with a rarefaction
front from Part 1; but this has no importance.

• In the second situation, the compression wave (u+, u−) is split as a compression fan (with
accuracy ν) and sent backward in time. This is the equivalent for t < t of what does the
accurate solver for rarefaction waves. To be more precise, call n := � |σ3|

ν
� and introduce

the intermediate states ωk := R3(−kσ3/n,u−), k = 0, . . . , n, and the propagation speeds
s0 := Ẋ(t−) and si := s(ωi−1,ωi) for i = 1, . . . , n. Then uν is set on the left of X locally at
(t, x) as

uν(t, x)= ωi for t < t, x < X(t) and
x −X(t)
t − t ∈ [si , si+1], i = 0, . . . , n− 1,

uν(t, x)= u+ for t < t, x < X(t) and
x −X(t)

> sn or for x <X(t) and t > t.

t − t
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Fig. 9. Simplified solver for side interactions.

It is clear that s1 > λ3(u−) > λ2(u−) = s0 and that si+1 > si for i = 1, . . . , n − 1 since
compression waves satisfy Lax’s inequalities:

λi
(
Ri (σi, u)

)
< s

(
u,Ri (σi, u)

)
< λi(u), for i = 1,3, σi < 0. (4.14)

Step 2. Extension of the fronts. Now we have to explain how we extend these fronts and com-
plete the approximation uν on the whole R+ × (0,L). The main point is to use L− x as time
variable; we are led to an initial–boundary value situation with a moving boundary, see Fig. 8(b).
In order to avoid the confusion with the actual time variable t , we will systematically refer to
this variable L−x as the pseudo-time. The “initial data” on {L}× [T1,+∞) is uν(T +1 ,L−) (this
state on the left of the strong discontinuity was determined during the first part of the construc-
tion), and the entering waves from the moving boundary {(t,X(t)), t ∈ [0, T1]} are the germs
mentioned above.

Now we start from the state uν(T +1 ,L−) at the pseudo-time L−x = 0, and let L−x increase.
When an interaction point with the strong discontinuity obtained in Part 1 is met, we let the fronts
enter the domain as described in Step 1. Note that all these fronts evolve forward according to
the pseudo-time. We have to explain how to extend the approximation uν when an interaction
point inside the domain x <X(t) is met. As we will see, only one case can actually occur.
• Interaction of a 1-rarefaction front with a backward 3-compression front. Assume as in

Fig. 9 that at some pseudo-time L − x = L − x and actual time t = t , a 1-rarefaction front
um = T1(σ1, ul), σ1 > 0, meets a 3-compression front um =R3(σ3, ur), σ3 < 0. Then one solves
the swapped Riemann problem (see Section 2.2):

ur =R1
(
σ ′1, ·

) ◦R2
(
σ ′2, ·

) ◦R3
(
σ ′3, ·

)
ul.

Using Lemma 3.1, we see that σ ′2 = 0. The fact that the waves of families 1 and 3 conserve their

nature (
⇀

C and
↼

R) across the interaction point, or in other words that σ ′1 > 0 and σ ′3 < 0, is a
consequence of Corollary 2.1 and the definition of r . We denote

ũm =R3
(
σ ′3, ul

)
.

The approximation uν is extended for further pseudo-times as a backward 3-compression wave
separating ul and ũm traveling at shock speed and a forward 1-rarefaction front separating ũm
and ur and traveling at shock speed.
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Precisely the wave pattern for L− x ≥ L− x is locally given as follows:

uν(t, x)=

⎧⎪⎪⎨
⎪⎪⎩
ul for ξ <− 1

s(ũm,ul)
,

ũm for − 1
s(ũm,ul)

< ξ <− 1
s(ũm,ur )

,

ur for ξ >− 1
s(ũm,ur )

,

with ξ = t − t
x − x .

We will refer to this construction as the side simplified solver.
The important fact here is that there is no other interaction occurring in this part, other than

of the type described above. Let us justify this.

• In the algorithm above, only forward 1-rarefaction fronts and backward 3-compression fronts
enter from the boundary. Since there is no front initially (for time L− x = 0) and since only
1-rarefaction fronts and backward 3-compression fronts emerge from an

↼

R/
⇀

C interaction
point, there are only forward 1-rarefaction fronts and backward 3-compression fronts in the
domain as long as no interaction of another type occurs.

• In the algorithm above, no front goes back to the strong 2-discontinuity: the forward
1-rarefaction fronts because they go forward in time at negative speed, the backward
3-compression fronts because, in the usual sense of time, they travel faster than the
2-discontinuity.

• There are no interactions of fronts within a family since 1-rarefaction fronts traveling forward
are going away one from another, so do 3-compression fronts when going backward in time
(see (4.14)).

Hence the description of the algorithm is complete.

Remark 4.3. The advantage of using 3-compression waves is that their interactions with
1-rarefactions do not generate a wave in the second family. However we could have used fans of
small 3-shocks to replace the 3-compression waves fan. The (small) cost would have been the
appearance of artificial fronts (traveling to the left) at each

↼

R/
⇀

S interaction point. But since in
that case, the resulting artificial front is of third order with respect to the sizes of the incoming
waves, the estimate of the total strength of these artificial fronts would have been relatively easy.

5. The construction in the Lagrangian case

The construction in the Lagrangian case, still relying on a front-tracking algorithm, is of differ-
ent nature than in the Eulerian case, since, obviously, one cannot make a 2-contact discontinuity
travel through the domain. Here we will use two successive strong shocks: first, a 1-shock cross-
ing the domain from right to left, and then a 3-shock crossing the domain from left to right. There
will be three parts in the construction: first under/on the left of the strong 1-shock, then above/on
the right of the strong 1-shock but before the entrance of the 3-shock, and finally after the en-
trance of the strong 3-shock. A main difficulty here is to eliminate the 2-contact discontinuities,
since they have zero characteristic speed and hence do not propagate to the boundary.

We recall that the construction below is also valid in the Eulerian case when γ < 5
3 , with

minimal changes.
As before we let ν > 0 a small parameter and construct a front-tracking approximation uν for

each ν small. We also let � > 0 another positive parameter to be determined (depending on ν).
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5.1. The two strong shocks

We consider v+0 such that (u0, v
+
0 ) is 1-shock

↼

S:

v+0 = T1(σ 1, u0), σ 1 < 0. (5.1)

Its velocity s1 satisfies

s1 < λ1(u0) < 0. (5.2)

Then we consider v−1 such that (v−1 , v
+
0 ) is 3-shock

⇀

S:

v+0 = T3
(
σ 3, v

−
1

)
, σ 3 < 0. (5.3)

We suppose that σ 3 is small enough for Proposition 3.6 to apply. The velocity s3 of this shock
satisfies

s3 > λ3
(
v+0

)
> 0. (5.4)

Given these shocks, we introduce the domain:

D = B(u0; r)∪B
(
v+0 ; r

)∪B(v−1 ; r), (5.5)

and choose r > 0 small enough in order that:

• B(u0; r), B(v+0 ; r) and B(v−1 ; r) are disjoint,
• D ⊂Ω (in particular the vacuum is avoided),
• any two states in B(u0; r), in B(v+0 ; r) or in B(v−1 ; r), determine a Riemann problem hav-

ing a solution which avoids the vacuum, and the same is true for any “swapped” Riemann
problem as defined in Section 2.2.

• interactions of two simple waves in B(u0; r), in B(v+0 ; r) or in B(v−1 ; r), conserve the sign
in the sense of Corollary 2.1, for any permutation of the Riemann problem, and Remarks 2.2
and 2.3 apply,

• Propositions 3.3 and 3.5 apply with B(u0; r) ⊂ ω− and B(v+0 ; r) ⊂ ω+; Proposition 3.6
applies with B(v+0 ; r)⊂ ω− and B(v−1 ; r)⊂ ω+,

• any simple wave leading a state of B(u0; r) to a state of B(v+0 ; r) (resp. a state of B(v−1 ; r)
to a state of B(v+0 ; r)) is a 1-shock (resp. a 3-shock) with strength σ1 (resp. σ3) and speed s
satisfying

|σ 1|/2≤ |σ1| ≤ 2|σ 1| and s ≤ λ1(u0)/2, (5.6)(
resp. |σ 3|/2≤ |σ3| ≤ 2|σ 3| and s ≥ λ3

(
v+0

)
/2
)
, (5.7)

and moreover Proposition 3.6 applies to any such 3-shock,
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• for any u in B(v+0 ; r)

λ3(u)≥ λ3
(
v+0

)
/2> 0, (5.8)

and for u in B(v−1 ; r)

λ1(u)≤ λ1
(
v−1

)
/2< 0. (5.9)

We introduce λ̂ satisfying:

λ̂ >max
u∈D

∣∣λ1(u)
∣∣. (5.10)

5.2. Part 1: construction below/on the left of the strong 1-shock

In this first part of the construction, we describe the design of uν under/on the left of a strong
1-shock, which enters the domain from x = L at time 0, and eventually leaves the domain through
x = 0. Together with uν we construct the location of this shock which is described by the function
X1(t), defined in some interval [0, T1], T1 being the exit time of the strong 1-shock. Thus the
piecewise constant function uν is determined on {(t, x) ∈ [0, T1] × [0,L] | x ≤X1(t)} after this
part. This part of the algorithm also provides the value uν(t,X+1 (t)) immediately on the right of
the strong 1-shock.

Again the algorithm is supposed to generate states belonging to B(u0, r) in {(t, x) ∈ [0, T1]×
[0,L] | x ≤ X1(t)} and states belonging to B(v+0 , r) on (t,X+1 (t)); we consider that it stops as
soon as it should generate another state. We will prove later that provided that ε is small enough,
the algorithm does not stop.

Step 1. Approximation of the initial data and initiation of the algorithm. As in Section 4,
we initiate the algorithm by introducing a sequence of piecewise constant approximations of the
initial state (uν0) in BV (0,L), with values in B(u0, r) and satisfying (4.9). Then we start the
algorithm as follows.

a. At a discontinuity point x of uν0 in (0,L), we approximate the solution of the Riemann
problem (uν0(x

−), uν0(x+)) by using the accurate Riemann solver, exactly as in Section 4.
b. On the right point x = L, we consider the Riemann problem (uν0(L

−), v+0 ) and approximate
its solution by using the accurate Riemann solver, and conserve only the 1-wave, which is a
1-shock due to the restrictions on D. On the contrary, x = 0 is considered a continuity point.

This first step determines the various states of uν and the location X1(t) of the 1-shock for
small times. As before, in order to define uν for later times, one must describe what happens
at interaction points. As in Section 4, we do not extend any front outside of the space domain
(0,L), so we do not give rules concerning a front hitting the boundary.

Step 2. Extension of the approximation and interactions. At an interaction point (t, x), a front
separating the leftmost state ul from the middle state um meets a front separating um from the
rightmost state ur , which we write again (4.10) when both fronts are physical. Of course, the left
front has a larger speed than the right one. Again we can change a little bit the speed of a front
(of an amount at most of ν), in order to avoid interaction points with more than two incoming
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fronts involved. We do not modify the speed of the contact discontinuities (of family 2), though,
and we avoid the meeting of rarefaction fronts of the same family.

According to the situation, the front-tracking approximation uν is extended over an interaction
point as follows.

A. The strong 1-shock is not involved. In this case, we use the exact same strategy as in Sec-
tion 4 that is:

• Interaction with large amplitude. If both incoming fronts are physical and (4.11) is satisfied,
then we extend uν by using the accurate Riemann solver with accuracy ν.

• Interaction with small amplitude. If both incoming fronts are physical but (4.12) is satisfied,
we extend uν by using the simplified Riemann solver as in Section 4.2. However here we
set −λ̂ as the speed of artificial fronts, which are therefore placed on the left of the outgoing
fronts. This means the following:
– if the two incoming fronts are of different families i > j , we use the permutation
π ∈ S3 determined by π(2)= j and π(3)= i, ξ = (1,1,1), we consider the correspond-
ing swapped Riemann problem, and extend the approximation via an artificial front at
speed −λ̂, a j -front and an i-front at shock speed,

– if the two incoming fronts are of the same family i = j , we use a permutation π ∈ S3 such
that π(3) = i, ξ = (1,1,1), consider the corresponding swapped Riemann problem and
extend the approximation via an artificial front at speed −λ̂ and an i-front at shock speed.

Hence the situation would be described by Fig. 6 after a vertical symmetry.
• Artificial interaction. If one of the fronts is artificial, we use the simplified Riemann solver,

as we have described it in Section 4, taking the speed −λ̂ of artificial fronts into account.
Again one can think of Fig. 6 after a vertical symmetry. This amounts to considering a
permutation π ∈ S3 such that π(3) = j , where j is the family of the incoming physical
front, and ξ = (1,1,1).

B. The strong 1-shock is involved. This is where the strategy changes. We consider the inter-
action of the weak physical front (ul, um), let us say,

um = Ti(σi, ul), (5.11)

with the strong 1-shock (um,ur) (which is the continuation of the 1-shock emerging from x = L

at initial time). The weak wave is on the left since we construct the approximation uν under/on
the left of the strong 1-shock. There are no interactions between the strong 1-shock and artificial
fronts, since the latter are faster.

There are six cases according to the family i of the weak wave and to its nature (σi > 0 or
σi < 0). These six cases are gathered into two groups.

• Group I:
↼

S,
>

J and
⇀

R. In this group, the incoming weak front is either a 1-shock, a decreasing
2-contact discontinuity or a 3-rarefaction. In that case, we use the usual accurate Riemann
solver for the outgoing waves. We do not yet extend the outgoing fronts further in time,
except for the 1-shock which describes X1. According to Proposition 3.3 and the definition
of r , the outgoing wave in the family 2 is a

>

J contact discontinuity and the outgoing wave
in the family 3 is an

↼

R rarefaction. (This is the reason which brings together these incoming
waves in this group.) This determines a new state on the right of X1.
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Fig. 10. End of Part 1.

• Group II:
↼

R,
<

J and
⇀

S. In this group, the incoming weak front is either a 1-rarefaction, an
increasing 2-contact discontinuity or a 3-shock. Here we use a correction wave. Indeed, we
apply Proposition 3.5, and imagine that a 1-compression wave (ur , ũr ), determined as in this
proposition, has arrived at (t, x) on the right of the strong 1-shock and solve the resulting
Riemann problem (ul, ũr ). We do not extend the outgoing fronts yet, except for the outgoing
1-shock which continues X1. Taking this additional 1-compression wave into account, the
outgoing wave in the family 2 is a

>

J contact discontinuity and the outgoing wave in the
family 3 is an

↼

R rarefaction as well, as a consequence of Proposition 3.5 and the definition
of r . If this additional 1-compression wave was not there, we would obtain a

<

J contact
discontinuity and an

↼

S shock in families 2 and 3 respectively. This determines the new state
on the right of X1.

These two situations allow in particular to extend the strong 1-shock and the function X1(t)

further in time, and to keep track of the state on the right of the strong shock (as long as the
algorithm has not stopped).

Now, if the algorithm has generated only a finite number of interactions and if it has not
stopped, then, due to the definition of r , the strong 1-shock leaves the domain through x = 0 at
some time T1 satisfying

T1 ≤ 2L

|λ1(u0)| . (5.12)

We represent the situation at the end of Part 1 in Fig. 10.

5.3. Part 2: construction between the two strong shocks

At the end of the first part of the construction and assuming that the algorithm is well-
functioning, we have obtained a front-tracking approximation uν defined under the strong
1-shock. Let us now explain how we extend uν above/on the right this shock.
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Fig. 11. Beginning of Part 2.

To complete the approximation uν we extend the 2-discontinuities and the 3-rarefaction fronts
forward in time and the additional 1-compression waves backward in time. For that purpose, we
will not quite use x as a new time variable (though this gives the main idea), but rather the
variable

ϑ := x + ιt,

with ι > 0 chosen small enough so that ι is smaller and strictly separated from {|λ1(u)|, λ3(u),

u ∈D}. In particular the lines ϑ = constant have a slope strictly separated from the one of char-
acteristics or shocks of the three families as the states belong to D. For this new time variable,
all the fronts emerging from X1 (including the 2-contact discontinuities) go “forward”. As in
Section 4, we will refer to ϑ as the pseudo-time to avoid confusion with the actual time t .

We represent the situation at the beginning of Part 2 in Fig. 11.
The algorithm here is supposed to generate states in B(v+0 , r) on {x > X1(t)}; as in the first

part, we consider that it stops as soon as it generates another state.

Step 1. Fronts emerging from the strong 1-shock. In the construction we have left above/on
the right of the strong 1-shock germs of 1-rarefaction and 2-contact discontinuities to be extended
forward in time and germs of 3-shock fans to be extended backward in time. See Fig. 10. More
precisely, at a point from where the fronts emerge, let us say (t, x) = (t,X1(t)), the two states
u− := uν(t−, x−) and u+ := uν(t+, x−) are connected through
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u− =R1(−σ1, ·) ◦ T3(σ3, ·) ◦ T2(σ2, ·)u+,

with σ1 ≤ 0 (potentially there is no additional 1-compression wave), σ3 ≥ 0 and σ2 ≤ 0. We
introduce the intermediate states u1

m := T2(σ2, ·)u+ and u2
m := T3(σ3, ·)u1

m.
We let fronts emerge from the strong discontinuity as follows.

• The contact discontinuity (u+, u1
m) and the rarefaction wave (u1

m,u
2
m) are treated via the

usual accurate solver and sent forward in time.
• The compression wave (u−, u2

m) is as in Section 4 split in fronts of size at most ν which
are sent backward at shock speed. Again, from Lax’s inequality (4.14), these fronts emerge
indeed from the strong 1-shock inside the zone {x >X(t)}.

Step 2. Extension of the fronts. Now, the rest of the algorithm consists in extending fronts
across interaction points; we do not extend fronts outside of the space domain (0,L). In order to
construct uν above/on the right of the curveX1, we start from uν(T1,0+) for (t, x) ∈ (T1,+∞)×
{0} (this state was determined in the first part of the algorithm) and progress with the pseudo-time
variable ϑ . When an emergence point on X1 is met, we extend the fronts outgoing from X1 as
described before (these fronts all go forward according to the time variable ϑ ). We have to explain
what we do at interaction points inside {x >X1(t)}.

First, as will be clear from the algorithm, only fronts of the following nature will be produced:
3-rarefaction fronts

↼

R (going forward in time t ), 2-contact discontinuities
>

J (going forward in
time t ) and 1-compression fronts

⇀

C (going backward in time t ). It follows that there will be
no interaction between these fronts and the strong 1-shock generated by the first part of the
algorithm: the waves

↼

R and
>

J because they go forward at a non-negative speed, the waves
⇀

C

because they go backward in time and satisfy Lax’s inequalities. It follows also that there will
be no interactions between fronts of the same family: the waves

↼

R because they go forward and
spread (because they have positive strength and because of (2.7)),

>

J because they all go forward
at the exact same speed (that is zero), the waves

⇀

C because they go backward and satisfy Lax’s
inequalities.

The extension of uν beyond an interaction point depends on the nature of the incoming fronts,
which are all weak waves.

• Interaction of
⇀

R and
↼

C. We consider the situation where a backward 1-compression front
(ul, um) with ul above um in the (t, x) plane, meets a forward 3-rarefaction front (um,ur)
with um on the left of ur . This is described in Fig. 12(a). One has ul =R1(α,um), α < 0
and ur = T3(β,um), β > 0.
In that case, we use the same type of solver as in Section 4.3. Precisely we solve the swapped
Riemann problem

ur =R1
(−σ ′1, ·) ◦R2

(
σ ′2, ·

) ◦R3
(
σ ′3, ·

)
ul.

Due to Lemma 3.1, one has σ ′2 = 0. Moreover due to Proposition 2.2 and the definition of r ,
one has σ ′1 < 0 and σ ′3 > 0. Setting ũm := T3(σ

′
3, ul), we extend the approximation for further

ϑ via a single forward 3-rarefaction front (ul, ũm) and a single backward 1-compression
front (ũm,ur), both sent at shock speed.
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Fig. 12. Side interactions.

• Interaction of a contact discontinuity
>

J and a rarefaction
⇀

R. We consider the case where
a forward 3-rarefaction front (ul, um) with ul on the left of um in the (t, x) plane, meets a
forward 2-discontinuity (um,ur) with um on the left of ur . This is described in Fig. 12(b).
One has um =R3(α,ul), α > 0 and ur = T2(β,um), β < 0.
In that case, we apply Corollary 2.2 to system (1.3), with k = 1. In other words, we seek to
cancel the “outgoing 1-wave” (outgoing for the usual time t ). We deduce the existence of γ ,
such that if one sets ũr :=R1(γ,ur), then Σ1(ul, ũr )= 0, and

∣∣Σ2(ul, ũr )− β
∣∣+ ∣∣Σ3(ul, ũr )− α

∣∣=O
(|α||β|),

γ =−αβ�1 · [r3, r2] +O
((|α| + |β|)|α||β|).

Now

�1 · [r3, r2] = −�1 · ∂r3

∂τ
=− 1

4τ
< 0.

Hence we deduce that γ < 0, that is, (ur , ũr ) is a 1-compression wave. Due to Corollary 2.1
and the definition of r , the other two resulting waves are of type

>

J and
⇀

R.
We extend the approximation uν over the interaction point, for further ϑ , by the four states
ul , ũl , ũr and ur separated by the three (single) outgoing fronts

>

J ,
⇀

R and
↼

C traveling at
shock speed; this is forward in time for

>

J and
⇀

R, and backward in time for
↼

C.
• Interaction of a contact discontinuity

>

J and a compression wave
↼

C. We consider the case
where a backward 1-compression front (um,ul) with um below ul in the (t, x) plane, meets
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a forward 2-discontinuity (um,ur) with um on the left of ur . This is described in Fig. 12(c).
One has um =R1(−α,ul), α < 0 and ur = T2(β,um), β < 0.
In that case, we apply Corollary 2.3 to system (1.3), with k = 3. In other words, we seek to
cancel the “incoming 3-wave”. We deduce the existence of σ , such that

ur =R1(−σ1, ·) ◦ T3(σ3, ·) ◦ T2(σ2, ·)ul,
|σ1 − α| + |σ2 − β| =O

(|α||β|), σ3 = αβ�3 · [r1, r2] +O
((|α| + |β|)|α||β|).

Here

�3 · [r1, r2] = −�3 · ∂r1

∂τ
= 1

4τ
> 0.

Define ũm := T2(σ2, ul) and ũr = T3(σ3, ũm) = R1(σ1, ur). Using the definition of r , we
deduce that σ1 < 0, σ2 < 0 and σ3 > 0, that is, (ur , ũr ) is a 1-compression wave, (ul, ũm)
is a

>

J wave and (ũm, ũr ) is a 3-rarefaction wave. We extend the approximation uν over the
interaction point, for further ϑ , by the states ul , ũm, ũr and ur separated by the three (single)
outgoing fronts

>

J ,
⇀

R and
↼

C traveling at shock speed, the fronts
>

J and
⇀

R moving forward in
time, and the front

↼

C backward in time.

The description of the algorithm for this second part is complete since no fronts are created other
than

↼

C,
>

J and
⇀

R, and the possible interactions between all these types of fronts were covered.

Now we claim the following.

Lemma 5.1. Assuming that the algorithm generates an approximation for all times (with a finite
number of interaction points), there are only fronts of type

>

J present in the domain (0,L) for
times t ≥ T2,

T2 := T1 + 2L

λ3(v
+
0 )
. (5.13)

Proof. Consider above X1, at some time t1, a 3-rarefaction front or a 1-compression front α; call
xα its position at time t1, and let ϑ1 = xα + ιt1 the pseudo-time associated to the point (t1, xα).
We have the following algorithm to get back (according to the pseudo-time) to the “origin” of
this front, that is, an interaction point on X1 where we consider the front to be coming from.

Step 1. Given a front α, we go to the “earlier” interaction point (according to ϑ ), that is,
– if the front is a 3-rarefaction, we go back in time t to the previous interaction point,
– if the front is a 1-compression front, we go forward in time t to the next interaction point.

Step 2. At the interaction point, we discuss according to the nature of this point (see again
Fig. 12):

– if it is a
↼

C/
⇀

R interaction point, follow for earlier ϑ the incoming front of the same family
as α and go to Step 1,

– if it is a
↼

C/
>

J interaction point, follow for earlier ϑ the incoming
↼

C front and go to Step 1
(whether α is a

↼

C front or not),
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– if it is an
⇀

R/
>

J interaction point, follow for earlier ϑ the incoming
⇀

R front and go to Step 1
(whether α is an

⇀

R front or not),
– if it is an interaction point with the strong shock on X1, stop here.

Note that this algorithm stops, since we go from an interaction point to another with decreasing ϑ ,
and there is no front coming from x = 0, t ≥ T1.

Now following the front α from its origin on X1, say (t0,X1(t
0)), to (t1, xα) in increasing

pseudo-time, there are pseudo-time-intervals [ϑ2i , ϑ2i+1] where α is a 3-rarefaction front going
forward in time t , and pseudo-time-intervals [ϑ2i+1, ϑ2i+2] where α is a 1-shock front going
backward in time t . Call (ti , xi) the interactions points corresponding to pseudo-times ϑi .

The real time t increases during the pseudo-time-intervals [ϑ2i , ϑ2i+1], and decreases during
the pseudo-time-intervals [ϑ2i+1, ϑ2i+2]; the position x progresses for all pseudo-time-intervals
[ϑi,ϑi+1]. Hence, recalling that the 3-characteristic speed is bounded from below by λ3(v

+
0 )/2,

we deduce:

t1 − t0 ≤
∑
i

t2i+1 − t2i ≤ 2

λ3(v
+
0 )

∑
i

x2i+1 − x2i ≤ 2L

λ3(v
+
0 )
,

which proves the claim. �
We consider the second part of the algorithm to stop at time T2, where the third and last part

of the algorithm begins.

5.4. Part 3: construction using the strong 3-shock

Let us describe how we extend uν for times t ≥ T2. The idea here is to let a 3-strong shock
based on the reference shock (v−1 , v

+
0 ) enter the domain from x = 0 and eventually leave the

domain through x = L. This 3-strong shock will allow us to get rid of the remaining fronts,
which, according to Lemma 5.1, are

>

J fronts.
The algorithm here is supposed to generate states in B(v+0 , r) below/on the right of the

3-strong shock and states in B(v−1 , r) above/on the left of the 3-strong shock; it stops otherwise.

Step 1. Under/on the right the strong 3-shock.
Initial data. At time T2, we have vertical

>

J fronts in (0,L) coming from the second part of the
algorithm. To these fronts we add at x = 0 the solution of the Riemann problem (v−1 , uν(T2,0+)),
from which we conserve only the 3-wave. Using the definition of r , this 3-wave is a (strong)
3-shock. We callX3(t) its position at time t . Now the goal in this step is to construct uν for t ≥ T2,
x ≥X3(t), together with the position X3 of this strong 3-shock and with the state uν(t,X3(t)

−)
on the left of this shock.

Interactions. Since J fronts do no interact between themselves, having all zero speed, we only

need to specify what happens at an interaction point between the strong shock
⇀

S and a weak
front

>

J .
We suppose that the strong 3-shock (ul, um) meets a decreasing 2-contact discontinuity

>

J

with states (um,ur). We apply Proposition 3.6. We deduce that there exists γ3 < 0 such that,
assuming that a 3-compression wave (ũl, ul) with strength γ3 arrives exactly at this interaction
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point from the left side of X3, there is no outgoing J wave, and the outgoing wave for the first
family is a rarefaction one. We extend X3 by following the outgoing 3-shock at shock speed, and
consider the state on the left of the outgoing 3-wave in Proposition 3.6 as the state on the left
of X3. See Fig. 4.

This allows to construct the approximation on the right of X3. Since, assuming that the algo-
rithm has not stopped, all the states on the right (respectively left) side of X3 belong to B(v+0 , r)
(resp. B(v−1 , r)), the speed of the shock satisfies Ẋ3 ≥ λ3(v

+
0 )/2, so the strong shock leaves the

domain at some time T3 satisfying:

T3 ≤ T2 + 2L

λ3(v
+
0 )
. (5.14)

Step 2. Above/on the left of the strong 3-shock. We have left to extend uν above X3. For this,
we follow the same method as in Section 4, see Fig. 8. The only difference here is that the strong
discontinuity is no longer a 2-contact discontinuity but a 3-shock; but this does not intervene
since there are no new interactions with the strong discontinuity.

Hence, we use L− x as a pseudo-time variable. We start from the state uν(T3,L
−) at pseudo-

time L− x = 0 (on the “space domain” which is originally [T3,+∞)). We let the pseudo-time
L − x progress until one meets an interaction point inside the domain, or on the boundary
(L− x, t)= (L−X3(t), t).

Fronts emerging from the boundary. At an interaction point on X3 coming from Step 1, we
have ul = uν(t−,X3(t)) and ur = uν(t+,X3(t)) connected via a 3-compression wave and a
1-rarefaction wave:

ur = T1(σ1, um), ul =R3(γ3, um), σ1 > 0 and γ3 < 0.

We extend the approximation uν for larger L − x by tracing between um and ul a backward
3-compression fan with accuracy ν replacing the actual 3-compression wave; as before we let
the fronts go at shock speed backward in time t , that is forward with respect to L − x. We
approximate the rarefaction wave (um,ur) by using the accurate solver (splitting it in pieces no
larger than ν) and sending the corresponding fronts forward in time at shock speed.

Interactions. Interactions of two fronts
⇀

C and
↼

R are treated using the side simplified solver,
exactly as in Section 4.3 (see in particular Fig. 9); again due to Lemma 3.1 no 2-wave appears
here, and due to Proposition 2.2 the new waves are of the same nature as the incoming ones. There
are no interactions between waves of the same family (the rarefaction fronts go forward in time,
the compression fronts go backward in time and satisfy Lax’s inequality) and no interaction with
the strong 3-shock (rarefaction fronts go forward at negative speed, shock fronts go backward in
time and satisfy Lax’s inequality).

This ends the algorithm in the Lagrangian case.

6. Proofs of the main results

In this section, we establish Theorems 1 and 2, starting with the proofs of Theorems 3 and 4.
For that, we prove that the wave front-tracking algorithms described above are well-functioning,
in the sense that they generate an approximation uν defined for all times, with a finite number of
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Fig. 13. Curves for the BV estimate.

fronts and interaction points. There could be otherwise at some time an accumulation of interac-
tion times. At the same time, we prove estimates on the sequence uν which will allow to extract a
converging subsequence and to prove that the limit is a suitable solution of the problem. Several
parts are done by adapting [7] to our situation.

We will denote as in [7] the fronts by Greek letters. When α is a front, σα ∈ R denotes its
strength, kα ∈ {0,1,2,3,4} its family (with the convention that 4 describes the family of arti-
ficial fronts in the case of Theorem 3, 0 describes the family of artificial fronts in the case of
Theorem 4).

6.1. Eulerian case: proof of Theorem 3

There are several successive steps.

6.1.1. BV estimates
We first prove uniform BV estimates on the approximation uν (as long as it is well-defined

and all the states belong to D, which a posteriori will be proven to be all times). This is an
adaptation of Glimm’s argument [24], but here Glimm’s functionals have to be defined along
curves which are suited to the geometry of the construction.

We introduce for each time t two curves Γ 1
t and Γ 3

t , and for each x ∈ [0,L] a curve C2
x ,

all these curves being drawn inside R+ × [0,L]. Our goal is to bound the total variation of the
approximation uν along these curves. These curves depend on ν, but to lighten the notation we
do not make this dependence explicit. Recall that the 2-strong discontinuity X has a positive
velocity.

• Given t ≥ 0, we define the curve Γ 1
t as the part of the curve X describing the 2-strong

discontinuity for times in [0, t], glued with the horizontal curve {t} × [X(t),L]. One should
have the representation that the part of X that is considered is X(t)+, that is, the right side
of the discontinuity. See Fig. 13(a). We do not consider Γ 1

t for t larger than T1.
• The curves C2

x are obtained by gluing the part of the curveX describing the 2-strong disconti-
nuity situated in the space interval [0, x], with the vertical line segment [X−1(x),+∞)×{x}.
Here the portion of X considered is the one on the left side. See Fig. 13(b).
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• The curves Γ 3
t are obtained by gluing the vertical line segment [t,+∞)×{0}, the horizontal

line segment {t}× [0,X(t)] and the part of the curve X describing the 2-strong discontinuity
for times in [t, T1]. Again one has in mind that the portion of X is considered on the left
side. See Fig. 13(c). For t ≥ T1, the curve Γ 3

t is only composed of the vertical line segment
[t,+∞)× {0} and the horizontal line segment {t} × [0,L].

We follow Γ 1
t from left to right according to the variable x, we follow C2

x from bottom to top
according to the variable t and finally we follow Γ 3

t by first following the vertical line segment
from top to bottom, then following the rest of the curve from left to right. We will say that we
follow these curves from “left to right” when we follow them in this way. Given two points on
one of these curves, this gives a meaning to “one being on the left of the other”.

We consider the following Glimm functionals, i = 1,3:

V i(t)=
∑
α front

cutting Γ i
t

(1+ κδi1δ1kα δxα>X(t))|σα| and Qi(t)=
∑

α,β front cutting Γ i
t

α approaching β

|σα||σβ |, (6.1)

and

V 2(x)=
∑
α front

cutting C2
x

|σα| and Q2(x)=
∑

α,β front cutting C2
x

α approaching β

|σα||σβ |. (6.2)

Let us give some precisions:

• We consider that a front crosses Γ 1
t in its part coinciding with X only when it leads

into/emerges from X on its right, not when it emerges from X on its left. In the same way,
only fronts emerging from X on its left can cross Γ 3

t or C2
x (assuming that they touch the

correct part of X), not a front leading into/emerging from X from its right.
• Note that a 3-front can cut Γ 1

t twice (once when emerging from X(t) on its right, once
cutting the horizontal part of Γ 1

t ); it this case we count this front twice. In the same way,
a 1-front can cut Γ 3

t (and be counted) twice.
• We define α and β cutting Γ 1

t as approaching, when, α (of family i) being on the left of β
(of family j ), one has i > j or i = j and at least one of α or β is a shock. Here artificial
fronts are considered of family 4.

• We consider α and β cutting C2
x as approaching when, α being on the left of β , the couple

(α,β) is of type (
↼

R,
⇀

C).
• We consider α and β cutting Γ 3

t as approaching when, α being on the left of β in the sense

given above, the couple (α,β) is of type (
⇀

C,
↼

R).
• κ ≥ 1 is a constant to be determined. It is used to put a slightly different weight when the front
α corresponds to i = 1 (a front under the strong shock), kα = 1 (a front of the first family)
and xα > X(t) (the front cuts Γ 1

t on its horizontal part, so that δi1 is actually redundant).
This is to take the reflections of waves by the strong discontinuity into account.

Now applying Glimm’s method we prove the following lemma.



JID:YJDEQ AID:7465 /FLA [m1+; v 1.191; Prn:5/05/2014; 15:56] P.61 (1-82)

O. Glass / J. Differential Equations ••• (••••) •••–••• 61
Lemma 6.1. For κ > 0 and K > 0 large enough, if T V (u0) is small enough, then

F 1(t) := V 1(t)+KQ1(t) is non-increasing. (6.3)

Proof. The function F 1 is piecewise constant in time. Actually it is modified at an interaction
time or at a time where a front leaves the domain (0,L). In the latter case, both the functionals
defining F 1 decrease, so that we only need to understand what happens at interaction times.
There are two distinct types of interactions.

• Interaction of weak waves. When at the time of interaction t , two weak waves α and β

interact, then one can perform the classical analysis (relying on Proposition 2.1 when the
accurate solver is used, and on Proposition 2.2 when the simplified solver is used):

V 1(t+)≤ V 1(t−)+C1κ|σα||σβ |, and

Q1(t+)≤Q1(t−)− |σα||σβ | +C2|σα||σβ |F 1(t−).
As a consequence, given κ ≥ 1, there exist K > 0 and δ ∈ (0,1) such that if F 1(t−) ≤ δ,
then one has F 1(t+) ≤ F 1(t−) when crossing an interaction of weak waves. Even, in that
case, we can have

F 1(t+)− F 1(t−)≤−|σα||σβ |. (6.4)

• Interaction with the strong wave. Let us consider a time of interaction t , when a weak front
α meets the strong discontinuity. The front α is necessarily of the first family. Whether it
is a rarefaction front or a shock, its interaction with the strong discontinuity will result in
a reflected 3-wave β which crosses Γ 1

t twice for times just after t . Moreover one has the
estimate (see Propositions 3.1 and 3.4)

|σβ | ≤ C3|σα|.

Since after t , the front α does no longer cut Γ 1
t on its horizontal part, it follows that

V 1(t+)≤ V 1(t−)+ 2C3|σα| − κ|σα|, and Q1(t+)≤Q1(t−)+C4|σα|F 1(t−).
Hence one can find κ > 0 such that if F 1(t−) ≤ 1, then one has F 1(t+) ≤ F 1(t−) when
crossing an interaction of a weak wave with the strong discontinuity. Even, in that case, we
can have

F 1(t+)− F 1(t−)≤−|σα|. (6.5)

The above analysis allows to find δ > 0 such that if F 1(0)≤ δ, then F 1 is non-increasing. Since
one has F 1(0)≤C5(κ T V (u0)+K TV (u0)

2), one deduces the claim. �
The same method applies to C2

x and Γ 3
t , which leads to the following statement.
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Lemma 6.2.

1. If K > 0 is large enough and if T V (u0) is small enough, then

F 2(x) := V 2(x)+KQ2(x) is non-decreasing, (6.6)

F 3(t) := V 3(t)+KQ3(t) is non-increasing. (6.7)

2. For some C > 0, one has

F 2(L)≤ CF 1(T1), (6.8)

F 3(0)≤ F 2(0)+ F 2(L). (6.9)

Proof. The first part of Lemma 6.2, that is (6.6) and (6.7), is analogous to Lemma 6.1, relying
on Proposition 2.2. Actually, it is even simpler since there are no artificial fronts above the strong
discontinuity and no wave interact with the strong front in the second part of the construction.
Hence we do not need a κδikα here. Note that V 2 and Q2 do not change when x corresponds to
an interaction point with the strong discontinuity and only weak interaction points may affect F 2.
In the same way at a time where a front exits through x = 0, the functionals V 3 and Q3 do not
change (for

⇀

C fronts) or decrease (for
↼

R fronts). Also at a time of interaction with the strong
shock, the functionals V 3 and Q3 do not change (if there are no

⇀

C fronts arriving there) or
decrease (otherwise).

Concerning (6.8), the values F 2(L) and F 1(T1) measure the total strengths of the waves
on the left and right sides of X, respectively (remark that no front leave the domain through
(T1,+∞) × {L}). To get (6.8), it suffices to compare the strength of the incoming 1-wave on
the right of X(t) with the wave that corresponds on the left side: a 1-rarefaction wave if the
incoming front is a rarefaction front, a 3-compression wave if the incoming front is a shock front.
The fact that the waves on the left and on the right have proportional strengths is a consequence
of Remark 3.1 (when the incoming wave is a rarefaction wave) and Proposition 3.4 (when the
incoming wave is a shock).

Finally, (6.9) is obvious since Γ 3
0 ⊂ C2

0 ∪ C2
L. �

Corollary 6.1. If T V (u0) is small enough, then one has, as long as the algorithm is well-
functioning, that

T V
(
uν(t, ·); (0,X(t)))+ T V (uν(t, ·); (X(t),L))≤ C T V (u0), (6.10)∥∥uν(t, ·)− v−0 ∥∥L∞(0,X(t)) + ∥∥uν(t, ·)− u0

∥∥
L∞(X(t),L)

≤ C(T V (u0)+ ‖u0 − u0‖L∞(0,L)
)
. (6.11)

Proof. For what concerns (6.10), we only notice that the left hand side of (6.10) can be es-
timated by F 1(t) + F 3(t), which due to Lemma 6.2 can be estimated by CF 1(0). For what
concerns (6.11), we can measure the second term in the left hand side byC(‖u0−u0‖∞+F 1(t)),
because F 1(t) allows to estimate the distance between uν(t, x), t > 0, x >X(t), and uν0(0

+). In
the same way, concerning the first term in the left hand side of (6.11), one has
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∣∣uν(t, x)− uν(0+,X(0+)−)∣∣≤ CF 2(x) for t > 0, x ∈ (0,X(t)),
where uν(0+,X(0+)−) is the state on the left of the strong shock just after t = 0. Now this state
uν(0+,X(0+)−) results from the Riemann problem (v−0 , u

ν
0(0
+)). It follows from (2.28) that∣∣v−0 − uν(0+,X(0+)−)∣∣≤C∣∣uν0(0+)− u0

∣∣≤C‖u0 − u0‖∞.

Finally it is clear that for T V (u0)≤ 1, one has F 1(0)≤C T V (u0). �
6.1.2. Well-functioning of the algorithm; size of rarefaction and artificial fronts

That the algorithm is well-functioning for ε small enough is a consequence of the estimates
above.

Lemma 6.3. If T V (u0) is small enough, all the states generated by the algorithm belong to D
and a finite number of fronts and interaction points are created.

Proof. If one chooses T V (u0) small enough, (6.11) ensures that as long as the algorithm allows
to construct uν , the states in uν belong to D. Hence we know that the algorithm does not stop
because it should generate another state. Consequently, if there is no accumulation of interaction
times, the algorithm is functional.

The proof that there is a finite number of fronts and interaction points resembles the case of
the initial-value problem. New physical fronts are only generated at interaction points of weak
waves with large amplitude (under the strong discontinuity) and at interaction points with the
strong wave. But interaction points with large amplitude are in finite number as a consequence
of (6.4). Since new 1-fronts under X are only generated at such interaction points, we deduce that
there is a finite number of 1-fronts under X. Therefore there is only a finite number of interaction
points with the strong wave. It follows that physical fronts are in finite number.

Now we deduce that interaction points involving only physical fronts are in finite number,
so artificial fronts are in finite number as well and finally there is a finite number of interaction
points. �

At this stage we know that for T V (u0) small enough, the algorithm generates a front-tracking
approximation uν for all small ν > 0. Let us now establish estimates on the size of the fronts that
will be important to prove the consistency of the algorithm.

Lemma 6.4. There exists C > 0 such that a front α in uν satisfies:

• if α is a rarefaction front or a compression front, then |σα| ≤ Cν,
• if α is an artificial front, then |σα| ≤C�.

Proof. Consider a front α which is either a rarefaction front, a compression front or an artificial
front. It is clear how to trace back such a front across the various interactions that it has under-
gone, to its creation locus. For that, one follows α back in time (for rarefactions and artificial
fronts) or forward in time (for compression fronts), and at an interaction point, one follows the
front with same nature (family and sign). In this way we trace α to its creation:

– for a rarefaction front: at t = 0, or at an interaction point with large amplitude where no
incoming front is of the same family, or at an interaction point on X,
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– for a compression front: on the strong discontinuity X,
– for an artificial front: at an interaction point with small amplitude.

There is no ambiguity in this tracing process, since in uν , rarefaction fronts of the same family
do not interact, nor do compression fronts (which all are of the third family) or artificial fronts.

At is creation, a rarefaction front or a compression front α has a strength |σα| ≤ ν; an artificial
front satisfies |σα| ≤C�, due to Proposition 2.2.

Now we begin with rarefaction under X and artificial fronts. Given such a front α that one
follows over time, one can construct

Vα(t)=
∑

β cutting Γ 1
t

approaching α

(1+ κδ1kβ δxβ>X(t))|σβ |.

Reasoning as before one gets that for some C > 0, Vα(t)+CQ(t) and Q(t) are non-increasing
during the lifetime of the front α. Moreover, forward rarefaction fronts do not interact and nor do
artificial fronts. The strength of a rarefaction front does not increase when it meets a shock in the
same family (either the strength decreases, or the rarefaction front is killed). It follows that their
strength |σα| can only increase at interaction points involving α and a front of another family. At
such interaction times V decreases and one has

∣∣σα(t+)∣∣≤ ∣∣σα(t−)∣∣+C′∣∣σα(t−)∣∣(Vα(t−)− Vα(t+)). (6.12)

It follows that t �→ |σα(t)| exp(C′(Vα(t)+CQ(t))) is non-increasing and that

∣∣σα(t)∣∣≤ ∣∣σα(s)∣∣ exp
(
C′
(
Vα(t)+CQ(t)

))≤ ∣∣σα(s)∣∣ exp
(
C T V (u0)

)
,

which gives the conclusion for rarefaction under X and artificial fronts.
The cases of compression fronts or rarefaction fronts above X are similar, replacing the time

variable t with the pseudo-time variable L−x: at pseudo-times where |σα| increases, one obtains
instead of (6.12):

∣∣σα(x−)∣∣≤ ∣∣σα(x+)∣∣+C′∣∣σα(x+)∣∣(Ṽα(x+)− Ṽα(x−)), with Ṽα(x) :=
∑

β∈Aα(x)

|σβ |,

where Aα(x) := {β fronts cutting C2
x and approaching α}. This allows to conclude as before.

This ends the proof of Lemma 6.4. �
6.1.3. Total strength of artificial fronts

Here we prove the following proposition.

Proposition 6.1. There exists C > 0 such that if T V (u0) is small enough (depending only on γ ,
u0 and L) and if � > 0 is small enough (depending on ν and uν0), then one has for all t ≥ 0

∑
α artificial front
living at time t

|σα| ≤Cν. (6.13)
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Proof. Artificial fronts live only below the strong discontinuity, hence we only consider the
approximation there. For this we can follow Bressan’s analysis [6,7]; we recall the argument in
order to check that it fits in our situation.

This analysis relies on the notion of generation of fronts. This is defined as follows: to each
front in uν , under the strong shock, is associated a positive integer called its generation and
computed by the following rules. Each front emerging from t = 0 has generation 1, and when
two weak fronts α and β , of generation gα and gβ interact:

• if kα 
= kβ , the outgoing fronts of family kα , respectively kβ , resp. k /∈ {kα, kβ} is of genera-
tion gα , resp. gβ , resp. max(gα, gβ)+ 1,

• if kα = kβ , the outgoing fronts of family kα , respectively k 
= kα is of generation min(gα, gβ),
resp. max(gα, gβ)+ 1,

and when a 1-front α interacts with the strong 2-discontinuity, the outgoing fronts of family 3
are declared of generation gα . Recall that the artificial fronts are considered of family 4.

Now we can define the functionals:

Vk(t)=
∑

α front cutting Γ 1
t

of generation ≥k

(1+ κδ1kα δxα>X(t))|σα| and Qk(t)=
∑

α,β front cutting Γ 1
t

α approaching β
with max(gα,gβ)≥k

|σα||σβ |,

with κ as in Lemma 6.1. Define

Ṽk(t) := sup
s∈[0,t]

Vk(s).

The function Qk(t) is piecewise constant hence BV ; consequently it can be decomposed into
Qk(t)= Q̃k(t)− Q̂k(t) with Q̃k and Q̂k non-decreasing, and with Q̃k(0)=Qk(0). For k ≥ 2,
one has Qk(0)= 0 and since Qk(t)≥ 0, one has 0≤ Q̂k(t)≤ Q̃k(t).

Reasoning as in Lemma 6.1 we see that the only case when Vk can increase is when two
weak fronts α and β with max(gα, gβ) = k − 1 interact, and in that case Vk(t

+) ≤ Vk(t
−) +

C[Qk−1(t
−)−Qk−1(t

+)]. With Vk(0)= 0 for k ≥ 2, we deduce that for some C > 0, one has
for all k ≥ 3,

Ṽk(t)≤ CQ̂k−1(t)≤ CQ̃k−1(t).

Now Qk is modified only when a front leaves the domain (in which case it decreases) and at
interaction times. Consider such an interaction time t involving weak fronts α and β . Reasoning
as in Lemma 6.1 we get:

• if max(gα, gβ)≥ k, then Qk(t
+)−Qk(t

−)≤ 0,
• if max(gα, gβ)= k − 1, then Qk(t

+)−Qk(t
−)≤ CV (t−)[Qk−1(t

−)−Qk−1(t
+)],

• if max(gα, gβ)≤ k− 2, then Qk(t
+)−Qk(t

−)≤CVk(t−)[Q(t−)−Q(t+)],

When a 1-front α hits the strong 2-discontinuity, one has, due to the reflected 3-wave:

• if gα ≥ k, then Qk(t
+)−Qk(t

−)≤C|σα|V (t−)≤CV (t−)[Vk(t−)− Vk(t+)],
• if gα ≤ k− 1, then Qk(t

+)−Qk(t
−)≤ C|σα|Vk(t−)≤CVk(t−)[V (t−)− V (t+)].
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Summing these inequalities over all possible interactions makingQk increase, we get (for k ≥ 3):

Q̃k(t)≤ CF 1(0)
(
Q̃k−1(t)+ Ṽk(t)

)≤CF 1(0)Q̃k−1(t).

Hence, if T V (u0) is small enough, one has for some μ ∈ (0,1) that Vk(t)+ Q̃k(t) ≤ Cμk . In
particular, there is some k for which

Ṽk(t)≤
ν

2
.

Now if initially uν0 generates N fronts, then there are at most N2 interactions of fronts of first
generation, and hence at most C(1+ 1

ν
)N2 fronts of second generation, and by induction there

are at most Ck(N, ν) interaction points involving fronts of the k-th generation at most (the point
being that this function Ck does not depend on �). The total strength of artificial fronts of gen-
eration ≥ k is measured by Ṽk , the one of artificial fronts of generation < k is measured by
C�Ck−1(N, ν) for some positive constant C. Hence for � small enough, the latter is less than ν

2 ,
which establishes (6.13). �
6.1.4. Passage to the limit

Extraction of a converging subsequence. Adding the strength of the strong discontinuity
to (6.10) and using the definition of r , we deduce that (uν)ν>0 is uniformly bounded in the space
L∞(R+;BV (0,L)). Now, using that all the fronts in our approximation (including the artificial
ones) have bounded finite speed, we classically deduce that the family is uniformly Lipschitz in
time with values in L1(0,L):

∥∥uν(t)− uν(s)∥∥
L1(0,L) ≤C|t − s| max

τ∈[s,t]T V
(
uν(τ, ·)). (6.14)

It follows then from Helly’s compactness theorem that one can extract from (uν) a converging
subsequence (uνn) in L1 locally in time and, reextracting if necessary, almost everywhere:

uνn→ u a.e. and in L1((0, T )× (0,L)), ∀T > 0, (6.15)

and the limit u belongs to L∞(R+;BV (0,L)) and to Lip(R+;L1(0,L)).

The limit point u is an entropy solution. We now prove that the limit point u is a weak solution
of the system and satisfies the entropy inequalities. For that, we first get back to conservative
variables. We denote Uν and U the functions uν and u translated in conservative variables.
Using the L∞ bound on Uνn and Lebesgue’s dominated convergence theorem, we get

Uνn→U a.e. and in L1((0, T )× (0,L)), ∀T > 0. (6.16)

Note that, since BV is an algebra, (Uνn) is uniformly bounded in L∞(R+;BV (0,L)), so
U belongs to this space as well. Using the L∞(R+ × (0,L)) and Lip(R+;L1(0,L)) bounds
on uν , we deduce that (Uνn) is uniformly bounded in Lip(R+;L1(0,L)), so U also belongs to
Lip(R+;L1(0,L)).
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Now we consider (η, q) an entropy/entropy flux pair, with η convex. We include η(U)=±U
and q(U)=±f (U) in the discussion; this will give us that U is a distributional solution.

In order to prove the entropy inequality associated to (η, q), it is enough to prove that for all
ϕ ∈D((0, T )× (0,L)) with ϕ ≥ 0, one has

lim inf
n→+∞Jn :=

∫
(0,T )×(0,L)

[
ϕtη

(
Uνn

)+ ϕxq(Uνn
)]
dt dx ≥ 0. (6.17)

We describe the discontinuities at time t by the family of fronts {α, α ∈ A}; each front α has
position xα(t) at time t , and we denote [h]α(t) the jump of the quantity h through the jump α(t).
Classically we have, integrating by parts:

Jn =
T∫

0

∑
α

ϕ
(
t, xα(t)

){
ẋα(t) ·

[
η
(
Uνn

)]
α
(t)− [

q
(
Uνn

)]
α
(t)

}
dt

≥
∑
α

weak front

T∫
0

ϕ
(
t, xα(t)

){
ẋα(t) ·

[
η
(
Uνn

)]
α
(t)− [

q
(
Uνn

)]
α
(t)

}
dt =:

∑
α

weak front

Jα. (6.18)

Here we used the fact that the strong 2-discontinuity (which travels at exact speed) satisfies the
entropy inequality (actually, even as an equality here):

s
[
η
(
Uνn

)]
α
(t)− [

q
(
Uνn

)]
α
(t)≥ 0. (6.19)

This fact is general for any 2-contact discontinuity traveling at shock speed. A way to prove it is
as follows. Denoting U+ := Sk(σ ;U−) (with here k = 2), we differentiate

s[η] − [q] = s(U−,U+)
(
η(U+)− η(U−)

)− (
q(U+)− q(U−)

)
with respect to σ and use the Rankine–Hugoniot relation to obtain

∂

∂σ

(
s[η] − [q])= ∂s

∂σ

(
η(U+)− η(U−)−Dη(U+) · (U+ −U−)

)
. (6.20)

Here we have ∂s
∂σ
= 0, which establishes (6.19) as an equality.

Now, let us consider the term Jα in (6.18) and discuss according to the nature of the weak
front α:

• if α is a shock, it would satisfy the entropy inequality if it was traveling at the exact shock
speed; but since it moves at shock speed up to a small change of νn, we have in general
Jα ≥−O(1)νn|σα|.

• if α is a rarefaction front or a compression front, one sees easily by differentiation that,
s being the shock speed (3.9), one has

[
q
(
Uνn

)]
(t)− s[η(Uνn

)]
(t)=O

(|σα|2),
α α
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which yields

Jα ≥−O(1)νn|σα|.
(This could be improved in the case of compression fronts, but this has no importance.)

Using the uniform bound on the total strength of physical waves and of artificial waves, this
yields Jn ≥−Cνn, which establishes (6.17).

The solution u is constant at some time T > 0. In our construction, after the exit time T1
(which satisfies (4.13)), there are only 1-rarefaction fronts in the approximation uν . Indeed, the
compression fronts emerge from the strong 2-discontinuity only and travel backward in time.
Moreover, due to (4.7) the rarefaction fronts travel at speed s less than

s ≤−|λ1(u0)|
2

+ ν.

Consider only ν ≤ |λ1(u0)|
4 . Hence after the time T2 defined by

T2 := 2L

λ2(u0)
+ 2L

|λ1(u0)| − 2ν
, (6.21)

there is no front inside the domain. Hence all the approximations uν are constant in space after
some uniform time T 2; consequently so is u.

6.1.5. Remaining cases
We have yet to explain how we treat the cases which are not covered by (4.1). The case

where (4.1) holds will be referred to as Case 1. The other cases are as follows.

Case 2. λ1(u0) > 0 and λ2(u0) > 0. This (supersonic) case is in fact by far the simplest. Indeed,
in this case, introduce r > 0 such that one has λ1(u)≥ λ1(u0)/2 on B(u0, r). Given u0 one can
define on R the following initial data:

ũ0 = u0 on (0,L) and ũ0 = u0 on R \ (0,L). (6.22)

Then if u0 satisfies (1.12) with ε > 0 small enough, one can associate to this initial condition
the unique entropy solution u in R+ × R, as in [7]; moreover for ε small enough, u has values
in B(u0, r). For instance, one can obtain u as a limit of front-tracking approximations. The
restriction of this solution to (0, T1)× (0,L) is convenient, where

T1 := 2L

λ1(u0)
.

Indeed, all the fronts have a velocity larger than λ1(u0)/2, hence leave the domain before T1, so
uν(t, ·) is constant for all ν for times t ≥ T1.

Case 3. λ2(u0) < 0 and λ3(u0) > 0 & Case 4. λ2(u0) < 0 and λ3(u0) < 0. These cases are ob-
tained from Case 1 or 2 above by using the change of variable x↔−x.
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Case 5. λ2(u0) = 0. In that case of course, λ1(u0) < 0 and λ3(u0) > 0. We let a large (and
after all, not so large) 3-shock enter through the left side. In other words, we introduce w0 =
Υ3(σ 3, u0), with σ 3 negative and small. We make sure that its speed satisfies s ≥ 3λ3(u0)/4.
Then we introduce the solution u associated to the initial data

ũ0 =w0 on R
−, ũ0 = u0 on (0,L) and ũ0 = u0 on (L,+∞).

This solution can be constructed by the front-tracking method described above; in particular
one can follow the 3-strong shock inside the domain by a curve X3(t) and get, provided that
T V (u0)+ ‖u0 − u0‖L∞ is small enough, that the approximations satisfy

T V
(
uν(t, ·); (0,X3(t)

))+ T V (uν(t, ·); (X3(t),L
))≤C T V (u0). (6.23)

When the 3-shock issued from x = 0 has left the domain (0,L) (for instance at a time T =
2L/λ3(u0)), we are left with a state u(T , ·) in (0,L) which satisfies:

∥∥u(T , ·)−w0
∥∥
L∞(0,L) + T V

(
u(T , ·))≤K TV (u0). (6.24)

This is proven as Corollary 6.1. Now, if |σ 3| was small enough, one has

λ1(w0) < 0 and λ3(w0) > 0, (6.25)

and moreover, due to

r3 · ∇λ2 = 2

γ + 1
> 0,

one has

λ2(w0) > 0, (6.26)

so we are now in a position to apply Case 1.

6.1.6. Smallness of the solution
The last part of the proof consists in proving (1.14), provided that ε > 0 is small enough and

that the large 2-discontinuity (and possibly the preliminary 3-shock of Case 5) is (are) well-
chosen. This depends a bit on the cases described in Section 6.1.5.

Cases 2. & 4. In those cases, the solution that we construct is obtained by the restriction to
(0,L) of a solution defined on R and whose initial data has a total variation less than T V (u0)+
2‖u0 − u0‖∞ (see (6.22)). Due to Glimm’s estimates, the solution satisfies that

sup
t

∥∥u(t, ·)− u0
∥∥
L∞(R) + T V

(
u(t, ·))≤K(

T V (u0)+ ‖u0 − u0‖∞
)
.

Hence (1.14) follows, and here η is a linear function of ε.
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Cases 1. & 3. We only consider Case 1 by symmetry. What we have established in this case is
that if

u0 = T2
(
σ 2, v

−
0

)
, σ 2 < 0,

there exists ε2 = ε2(σ 2) > 0 such that for any ε ∈ (0, ε2] if u0 satisfies

‖u0 − u0‖L∞(0,L) + T V (u0)≤ ε, (6.27)

then the construction given in Section 4 with this strong 2-discontinuity is valid and due to Corol-
lary 6.1 and the definition of r there is K =K(σ 2) such that, including the strong discontinuity
one has:

sup
t
T V

(
u(t, ·))≤ C|σ 2| +K(σ 2)ε. (6.28)

We choose σ 2 such that |σ 2| ≤ η/2C. Then we choose ε2 ∈ (0, ε2] such that K(σ 2)ε2 ≤ η/2 and
we are done.

Case 5. In this case, there is a preliminary phase before getting into Case 1. In the same way
as before, given σ 3 < 0 small enough such that w0 = Υ3(σ 3, u0) satisfies (6.25)–(6.26), if ε is
small enough and if u0 satisfies (6.27), then the solution that we construct satisfies

sup
t
T V

(
u(t, ·))≤ C|σ 3| +K ′ε,∥∥u(T , ·)−w0

∥∥
L∞(0,L) + T V

(
u(T , ·))≤K TV (u0), T = 2L/λ3(u0).

Here K ′ can be chosen independent of σ 3, by using Glimm estimates. Above, we used cancel-
lation/correction waves for which the constant worsens as the strong shock becomes small; here
this is not the case.

Now, we first choose σ 3 < 0 and w0 such that C|σ 3| ≤ η/2. Then reasoning as before, one
can find a size of σ 2 and an ε2 corresponding to the second phase, with w0 as a reference state, in
order for (1.14) to be valid during this second phase. Then we find a size of ε3 > 0 corresponding
to the first phase, in order that K ′ε3 ≤ η/2 and that the state at the beginning of the second phase
is small enough to satisfy (1.12) with w0 as a reference constant state and right hand side ε2.

6.2. Lagrangian case: proof of Theorem 4

In this subsection, we prove Theorem 4 by adapting the arguments of Section 6.1 in the situ-
ation given by the construction of Section 5.

6.2.1. BV estimates
The first point is to prove uniform BV estimates on the approximation uν (again, as long as it

is well-defined and all the states belong to D).
For that we introduce six families of curves drawn in R+ × [0,L], defined for fixed ν and for

fixed t or x. We recall that the strong 1-shock (resp. 3-shock) is represented by X1 (resp. X3),
has a negative (resp. positive) speed, that it enters the domain at time 0 (resp. T2) and leaves it at
time T1 (resp. T3). The curves are the following.
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Fig. 14. Curves for the BV estimate in the Lagrangian case.

• Given t ∈ [0, T1], we define the curve Γ 1
t as the horizontal line segment {t} × [0,X1(t)],

glued with the part of curve X1 from (t,X1(t)) to (0,L) (or a curve very close on the left
of X1). We do not consider Γ 1

t for t larger than T1.
• The curve C2

x , defined for x ∈ [0,L], is obtained by gluing the vertical line segment
[X−1

1 (x), T2] × {x} and the portion of X1 between (X−1
1 (x), x) and (0,L) (with in mind

that this portion is “above” X1).
• The curve Γ 3

t , defined for t ∈ [0, T2], is obtained by gluing the part of the curve X1 for
times in [t, T1] (or a curve very close on its right), the horizontal curve {t} × [X1(t),L] and
the vertical line segment [t, T2] × {L}. After time T1, only the horizontal and vertical parts
remain.

• Given t ∈ [T2, T3], we define the curve Γ 4
t as the part of curve X3 from (T2,0) to (t,X3(t))

(or a curve very close on the right of X3) glued with the horizontal part {t}× [X3(t),L]. We
do not consider Γ 4

t for t larger than T3.
• The curve C5

x , defined for x ∈ [0,L], is obtained by gluing the portion of X3 between (T2,0)
and (X−1

3 (x), x) (with in mind that this portion is “above” X3) and the vertical line segment
[X−1

3 (x),+∞)× {x}.
• Given t ≥ T2, the curve Γ 6

t is obtained by gluing the vertical line segment [t,+∞)× {0},
the horizontal line segment {t} × [0,X3(t)] and the part of the curve X3 from (t,X3(t)) to
(T3,L) (or a curve very close on the left of X3). For times larger than T3, it remains only the
vertical line segment [t,+∞)× {0} and the horizontal line segment {t} × [0,L].

We represented these six families of curves in Fig. 14.
Let us specify how we follow these curves. For i = 1,4, we just follow the curves for in-

creasing x. For i = 2, we first follow the vertical line segment from top to bottom, and then the
part on X1 from left to right. For i = 3, we first follow the part of X1 from left to right, then the
horizontal line segment from left to right and finally the vertical line segment from bottom to top.
For i = 5, we first follow the part of X1 from left to right and then the vertical line segment from
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bottom to top. Finally for i = 6, we first follow the vertical line segment from top to bottom, then
the horizontal part from left to right and finally the part on X1 from left to right. In all cases we
will say that we follow the curve “from left to right”. Given two points on one of these curves,
this gives a meaning to “one is on the left of the other”.

Now in order to get a uniform estimate on the total variation in space of uν (provided
that (1.16) holds with ε > 0 small enough), we proceed as in Section 6.1.1. For that we introduce
the functionals for i = 1,3,4,6:

V i(t)=
∑

α front cutting Γ i
t

|σα| and Qi(t)=
∑

α,β front cutting Γ i
t

α approaching β

|σα|, |σβ |, (6.29)

as well as the following ones, for i = 2,5:

V i(x)=
∑

α front cutting Cix

|σα| and Qi(x)=
∑

α,β front cutting Cix
α approaching β

|σα|, |σβ |. (6.30)

Let us give some precisions for these definitions.

• Only fronts crossing the large 1-shock on its left (resp. right) cross Γ 1
t (resp. C2

x , Γ 3
t ) on its

part coinciding with X1.
• In the same way, only fronts crossing the large 3-shock on its right (resp. left) cross Γ 4

t (resp.
C5
x , Γ 6

t ) on its part coinciding with X3.
• Our convention is that 2-fronts do not cut the vertical part of C2

x and of course that the strong
shocks do not cut the curves.

• If α (of family i) and β (of family j ) cut Γ k
t (k = 1,3,4,6), α to the left of β , they are said

to be approaching when i > j or i = j and at least one of α or β is a shock (artificial fronts
being of family 0).

• If α (of family i) and β (of family j ) cut Ckx (k = 2,5), α to the left of β , they are said to be
approaching when:
– k = 2: i = 1 and j ∈ {2,3} or i = 3 and j = 2,
– k = 5: i = 1 and j = 3.

Note that with respect to (6.29), we do not put a weight in the functionals V i . This is due to the
fact that, as in this construction the strong waves are from extremal families, there is no reflected
wave when considering the interaction “from below” between a weak front and one of the two
large discontinuities. This allows to simplify a bit the analysis.

Now we can get as previously the following result.

Lemma 6.5. For C > 0 and K > 0 large enough, the following holds provided that T V (u0) is
small enough.

1. For k = 1,3,4,6, the functional

F i(t) := V i(t)+KQi(t) is non-increasing over time
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and

F 2(x) := V 2(x)+KQ2(x) is non-increasing,

F 5(x) := V 5(x)+KQ5(x) is non-decreasing.

2. One has the relations:

F 2(0)≤ CF 1(T1) and F 5(L)≤ CF 4(T3), (6.31)

F 3(0)≤ F 2(0)+ F 2(L), F 4(T2)= F 3(T2) and

F 6(T2)≤ F 5(0)+ F 5(L). (6.32)

Proof. As for Lemmas 6.1 and 6.2, the first part is a consequence of Glimm’s estimates for usual
interactions or side interaction of weak waves; Proposition 2.2 can be applied to all those cases.
Note in particular that at times of interaction with one of the strong shocks or at the exit time
of a front, the functionals V i(t) and Qi(t) either decrease or stay constant (according to i and
the family of the front). The functionals V 5(x) and Q5(x) do not change when x corresponds
to the location of an interaction with the 3-shock, and C5

x does not meet an exit location before
x = 0. The only thing to be careful about concerns F 2. Indeed there can be many “simultaneous”
interaction points on C2

x when x corresponds to the position of a 2-contact discontinuity. For such
an x, we analyze each interaction separately: making the sum of the contributions gives the same
result as if the interaction times were distinct; moreover the 2-contact discontinuity disappears
from the functionals which gives a supplementary negative contribution.

For the second part, (6.31) is a consequence of Schochet’s estimates for interactions with a
large discontinuity or estimates for cancellation/correction waves at an interaction point with a
large discontinuity (Propositions 3.2, 3.3, 3.5 and 3.6); moreover we notice that no front crosses
(T1, T2)×{0} or (T3,+∞)×{L}. To get (6.32), one just has to compare the curves on which the
functionals rely. �

One can deduce as before the following.

Corollary 6.2. If T V (u0) is small enough, then one has for all times t ≤ T2 for which the algo-
rithm is well-functioning that

T V
(
uν(t, ·); (0,X1(t)

))+ T V (uν(t, ·); (X1(t),L
))≤C T V (u0), (6.33)∥∥uν(t, ·)− u0

∥∥
L∞(0,X1(t))

+ ∥∥uν(t, ·)− v+0 ∥∥L∞(X1(t),L)

≤ C(T V (u0)+ ‖u0 − u0‖L∞(0,L)
)
, (6.34)

where we set X1(t) = 0 for t ≥ T1. Moreover for all times t ≥ T2 for which the algorithm is
well-functioning one has

T V
(
uν(t, ·); (0,X3(t)

))+ T V (uν(t, ·); (X3(t),L
))≤C T V (u0), (6.35)∥∥uν(t, ·)− v−1 ∥∥L∞(0,X3(t))

+ ∥∥uν(t, ·)− v+0 ∥∥L∞(X3(t),L)

≤ C(T V (u0)+ ‖u0 − u0‖L∞(0,L)
)
, (6.36)

with X3(t)= L for t ≥ T3.
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6.2.2. Well-functioning of the algorithm
Let us continue the proof by following the lines of Section 6.1. Lemma 6.3 is valid in the

present situation:

Lemma 6.6. If T V (u0) is small enough, all the states that the algorithm generates belong to D
and only a finite number of fronts and interaction points are created.

Proof. The first part of the statement is a direct consequence of Corollary 6.2. We focus on
the second part. The proof has of course common features with the one of Lemma 6.3; let us
nevertheless stress the differences. Here new physical fronts are only created at:

• interaction points of weak waves with large amplitude,
• interaction points involving one of the two strong shocks,
• interaction points involving a forward 3-rarefaction

⇀

R or a backward 1-compression
↼

C with
a 2-contact-discontinuity

>

J , in the second part of the construction. This type is new with
respect to Lemma 6.3.

1. The proof that there is only a finite number of fronts under the strong 1-shock is actually
simpler than in Lemma 6.3: when a weak wave interacts with the strong 1-shock, no front is
reflected under the strong shock. Hence only interaction points of weak waves with large ampli-
tude can increase the number of physical fronts under X1; since they make the functional F 1(t)

decrease of an amount at least proportional to �, they are of finite number. It follows that, under
the strong 1-shock, there is only a finite number of physical fronts, hence a finite number of
interactions with weak amplitude and a finite number of artificial fronts as well.

2. Since there is a finite number of interactions with the strong 1-shock, there is a finite number
of fronts emerging from X1. Now between the strong 1-shock and the strong 3-shock, there is
no interaction point that modifies the number of fronts of family 2, hence those remain finite and
do not disappear before meeting the strong 3-shock. Let us call them from left to right (in the x
variable), J1, . . . , JK .

Now, define for x ∈ [0,L] the number

N (x) :=
K∑
k=1

∑
α a 1 or 3-front,

cutting C2
x ,

and on the left of Jk

3−k.

We use the same convention as before to determine when a front cuts C2
x . Then N (0) is finite

(since C2
0 coincides with [T1, T2] × {0} glued with X1 and no front cuts (T1, T2) × {0}). The

number N (x) (for increasing x) can only evolve at x where C2
x meets an interaction point or a

point where a front leaves the domain [0, T2]×[0,L]. Through an interaction point where a front
⇀

R meets a front
↼

C, N (x) actually stays constant. Moreover only 2-contact discontinuities leave
the domain [0, T2] × [0,L] elsewhere than through x = L. It follows that N (x) changes only
when x corresponds to the position of a 2-contact discontinuity.

Consider such an x corresponding to Jk . Now N (x+) differs from N (x−) for two reasons:

• There are fronts
⇀

R or
↼

C that existed before their interaction with Jk (that is for x < x), but

after the interaction (just on the right of x) their contribution to N is 3−k less than before.
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• Each interaction point on Jk generates a new front of type
⇀

R (resp.
↼

C) when the incoming

front (the corresponding front at x < x) is of type
↼

C (resp.
⇀

R). The contribution to N (x+)
of such a new front is

∑K

k=k+1 3−k ≤ 2 · 3−k−1.

It follows that N is non-increasing in [0,L] and N loses at least 3−K through each interaction
point involving a J front that it meets. Hence the number of interactions between a front

⇀

R or
↼

C

and a J front is finite and consequently so is the number of fronts between the two strong shocks.
3. Since there is a finite number of fronts above the strong 1-shock, these generate a finite

number of interactions with the strong 3-shock. Consequently a finite number of fronts emerge
from the strong 3-shock. But above this strong 3-shock, there is no longer any creation of fronts.
In final, there is a finite number of fronts, and consequently of interaction points. �
6.2.3. Conclusion

The rest of the proof is very close to Section 6.1. In particular, the statement of Lemma 6.4
on the size of rarefaction, compression or artificial fronts is valid as it stands. The proof can
be adapted without difficulty and consequently we omit it. The same is true for Proposition 6.1
regarding the total strength of artificial fronts and the same argument can be used (even, a bit
simplified by the absence of reflected waves); again there is no artificial front above the strong
shock. Next the arguments allowing to pass to the limit and obtain a weak entropy solution u can
be entirely reproduced from Section 6.1 except for the proof that the strong shocks satisfy (6.19).
Here we use that in (6.20) the second factor is positive (by convexity of η) and that the shock
speed is increasing along the shock curve (see (3.25)).

It is finally sufficient in order to conclude to prove the following.

Lemma 6.7. For a time T4 satisfying

T4 ≤ T3 + 2L

|λ1(v
−
1 )| − 2ν

, (6.37)

one has for all ν > 0 small that

uν(t, ·) is constant for t ≥ T4.

Proof. Above the strong 3-shock there is no 2-contact discontinuity, but only fronts of type
↼

R

and
⇀

C. Since no new fronts are created, backward compression fronts
⇀

C live only before time T3.
It remains to consider the fronts

↼

R, which emerge before time T3, and travel through the domain
from right to left at speed at least of −(λ1(v

−
1 )/2)− ν. The conclusion follows. �

The last part of the proof of Theorem 4 consists in proving (1.18). Again, we can prove that
given v+0 and v−1 satisfying the requirements of Section 5.1, there exists ε0 such that for any
ε ≤ ε0, if u0 satisfies (1.16), then the construction above is valid. Since v+0 and v−1 can be chosen
arbitrarily close to u0, the conclusion follows as in Section 6.1.6.
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6.3. Moving to any constant

6.3.1. Eulerian case: end of the proof of Theorem 1
As we mentioned earlier, once the state of system is driven to a constant, reaching any constant

in the Eulerian situation (keeping an arbitrarily small total variation in x uniformly in t ) can be
seen as a consequence of [32] and [16]. Indeed, a corollary of these results is the following.

Theorem 5. (See [32,16].) Consider system (1.1). For any u∗ ∈ Ω and any η > 0, there exist
δ > 0 and a time T such that, for any ua,ub ∈C1([0,L]) satisfying

∥∥ua − u∗∥∥C1([0,L]) ≤ δ and
∥∥ub − u∗∥∥C1([0,L]) ≤ δ,

there exists a C1 solution u of the system driving the state from ua to ub , with
‖u‖C0([0,T ];C1([0,L])) ≤ η.

Actually [32] allows to treat the case where 0 /∈ {λ1(u
∗), λ2(u

∗), λ3(u
∗)} and [16] the remain-

ing cases, relying on r1 · ∇λ2 
= 0 at points where λ2 = 0 and on r2 · ∇λi 
= 0 at points where
λi = 0, i = 1,3.

This statement applies of course to ua and ub constant, but it is local. Now we deduce a
global result: given u1, u2 ∈Ω , let us explain how to drive u1 to u2. We consider a smooth curve
γ (s) from u1 to u2. For η > 0, the above statement gives us a δ(s) for each point u∗ := γ (s)

of this curve. By compactness of the curve, we can extract a finite (sub)cover of γ by balls
B(γ (sk), δ(sk)/2). Then one can drive from u1 to u2 by successive steps leading a γ (sk) to
another. The resulting solution has constantly a C1-norm in space less than η. This ends the
proof of Proposition 1.1 and hence of Theorem 1.

6.3.2. Lagrangian case: end of the proof of Theorem 2
We begin by proving Proposition 1.2. Here we cannot apply [16] to treat the vanishing char-

acteristic speed λ2, because it is identically zero.
The first step of the proof is to go from the constant state ua to another constant state u′ for

which S(u′)= S(ub). This relies on the following.

Lemma 6.8. Let u0 = (τ0, v0,P0) ∈Ω and η > 0. For any χ > S(u0), there exist T > 0 and an
entropy solution u with initial data u0, such that

∀t ∈ [0, T ], T V
(
u(t, ·))≤ η and S

(
u(T )

)= χ. (6.38)

Proof. Of course this could not be achieved via regular solutions. Here the idea is to use a
succession of 1-shocks and 1-rarefactions. We use the parameterizations of S1 and R1 by x as
in Section 3.1.2.

Starting from some u= (τ , v,P ), one introduces ǔ := S1(x, ·)u and û :=R1(1/x, ·)ǔ. One
can construct an entropy solution from u to û by letting first the shock (u, ǔ) cross the domain
from right to left during some interval [0, T1] and then letting the rarefaction wave (ǔ, û) cross
the domain from right to left during some interval [T1, T2]; both waves have of course a negative
speed. We write ǔ = (τ̌, v̌, P̌ ) and û = (τ̂, v̂, P̂ ). Using formulas (3.22) and (3.26), we obtain
that:
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P̌ = xP and P̂ = 1

x
P̌ = P ,

τ̌ = β + x
βx + 1

τ and τ̂ = x1/γ τ̌ = x1/γ β + x
βx + 1

τ ,

v̌ = v+
√
Pτ

√
2

γ − 1

1− x√
βx + 1

and v̂ = v̌ − 2
√
P̌ τ̌√

γ (γ − 1)

(
x−ζ − 1

)
.

It follows that

T V
(
u(t, ·))≤ P(x − 1)+ τ

(
β + x
βx + 1

− 1

)

+
√
Pτ

√
2

γ − 1

1− x√
βx + 1

for t ∈ [0, T1], (6.39)

T V
(
u(t, ·))≤ P(x − 1)+ τ β + x

βx + 1

(
x1/γ − 1

)

+ 2
√
Pτ√

γ (γ − 1)

√
x
β + x
βx + 1

(
1− x−ζ ) for t ∈ [T1, T2]. (6.40)

It is clear that the right hand sides go to zero as x→ 1+. Consequently there exists x ∈ (1,2]
depending on η such that, for any x ∈ [1, x], whenever

τ ≤
(
(γ − 1)

eχ

P0

)1/γ

and P ≤ P0, (6.41)

the corresponding solution u satisfies

T V
(
u(t, ·))≤ η. (6.42)

We notice that

g(x) := x

(
β + x
βx + 1

)γ
is increasing as a function of x,

so that g(x) > 1 for x > 1. We introduce n by

n :=
⌊
χ − S(u0)

log(g(x))

⌋
. (6.43)

Now we obtain a solution to the claim by letting successively n shocks (ui, ǔi)/rarefaction waves
(ǔi , ûi ) cross the domain, with u0 := u0, ǔi = S1(x, u

i), ûi =R1(1/x, ǔi) and ui+1 = ûi , i =
0, . . . , n− 1; and then by letting a last shock (un, ǔn+1) and a last rarefaction wave (ǔn+1, ûn+1)

cross the domain with ǔn+1 = S1(x
′, un) and ûn+1 =R1(1/x′, ǔn+1) where x′ is such that

log
(
g
(
x′
))= χ − S(u0)− n log

(
g(x)

)
.
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Note that clearly x′ ∈ [1, x] and that after the passage of this last shock, the state has reached the
entropy χ .

Let us finally justify that the states appearing during the passage of the successive shocks/rar-
efaction waves satisfy each (6.42). It is easy to see that at each stage the intermediate state
uk = (τ k, vk,P k) satisfies

τ k = τ0g(x)
k/γ , P k = P0 and S(uk)= S(u0)+ k log

(
g(x)

)≤ χ.
We deduce that

τ
γ

k = (γ − 1)
eS(uk)

P k

≤ (γ − 1)
eχ

P0
.

Hence the state uk satisfies (6.41). It follows that (6.38) is satisfied. �
Remark 6.1. The rarefactions above do not change the physical entropy S; however they are
useful to ensure that the pressure does not become large, which would be costly in terms of total
variation of the solution u.

End of the proof of Proposition 1.2. We apply Lemma 6.8 to drive the state ua to a state
u′ = (τ ′, v′,P ′) for which S(u′) = S(ub). It remains to drive u′ to ub = (τb, vb,Pb). Now, for
the isentropic Euler equation in Lagrangian coordinates:

⎧⎨
⎩
∂t τ − ∂xv = 0,

∂t v+ ∂xP = 0,

P = S(ub)τ
−γ ,

(6.44)

one can find a time T > 0 and a C1 solution (τ, v) satisfying

(τ, v)|t=0 =
(
τ ′, v′

)
and (τ, v)|t=T = (τb, vb),

and

∀t ∈ [0, T ], T V
(
(τ, u)(t, ·))≤ η.

Indeed, since here the characteristic speeds do not vanish at all, it is a consequence of [32] that
Theorem 5 is valid for system (6.44) (see also Gugat–Leugering [26] for a related result). As
before Theorem 5 gives a local solution, but one can reason as in Section 6.3.1 to drive the
solution along a curve from (τ ′, v′) to (τb, vb). Now, this regular solution (τ, v) of the isentropic
model gives a fortiori a solution of the non-isentropic model by setting P = S(ub)τ

−γ . And this
solution drives u′ to ub as required, with C0([0, T ];C1([0,L])) norm bounded by Cη. Reducing
η if necessary, this gives a solution to the problem; this ends the proof of Proposition 1.2. �
Remark 6.2. The fact that solutions of (6.44) give particular solutions for (1.3) is true for regular
solutions but fails for weak solutions. See Saint-Raymond [37] for more details.
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End of the proof of Theorem 2. Consider u0 and u1 as in the assumptions of Theorem 2. We
apply Theorem 4 to u0 and with δ > 0 sufficiently small to ensure that

|u− u0| ≤ δ ⇒ S(u)≤ S(u1)+ S(u0)

2
.

We find an ε > 0, a T > 0 and a solution driving u0 to some constant state u1/2 ∈ B(u0, δ). Now
with Proposition 1.2 we drive u1/2 to u1 with a sufficiently small C0([0, T ];C1([0,L])) norm,
and this gives a suitable solution to the problem. �
7. Two final remarks

7.1. About the dependence of ε with respect to η

Here we give an idea of the size of ε with respect to η. Only the first phase of our construction
(driving u0 to some constant) is of interest, since for the second phase, the total variation in space
can be chosen arbitrarily small uniformly in time, independently of ε.

Eulerian case. We first consider the Eulerian case. Discussing as in Section 6.1.6, we see that
it is enough to estimate K(σ 2) as a function of σ 2 (Cases 1, 3 and 5). Recall that the constant
K ′ appearing in Case 5 is independent of the strength σ 3. As we explained, the other two cases
(2 and 4) give an ε depending linearly of η.

Now the coefficients of interaction with a strong shock corresponding to K(σ 2) are of two
types: either coefficients corresponding to standard interaction coefficients (these are bounded as
σ 2 tends to zero), and those who correspond to the use of Proposition 3.4. The latter coefficients
are not bounded as σ 2 tends to zero, but it is not difficult to check from (3.46) that K(σ 2) is
of order 1/|σ 2|. To make the right hand side of (6.28) less than η, one takes σ 2 of order η and
then ε such that K(σ 2)ε ≤ η/2. This involves that ε is of order η2.

Lagrangian case. Now, for what concerns the Lagrangian case, the coefficients corresponding
to the use of the two large shocks are of order K(σ i)=O(1/|σ i |2), i = 1,3, see Propositions 3.5
and 3.6. This is due to the fact that in this case we use interactions within a family to get correc-
tion/cancellation waves. An important fact is that the fronts that are canceled along the second
shock (that is, the 3-shock) have a total variation or order O(1)ε, not O(ε/|σ 1|2). Indeed, they
are all

>

J waves which were generated either by a simple interaction with the strong 1-shock (in
the case referred to as Group I in Section 5.2) or by Proposition 3.5 (in the case referred to as
Group II). But in Proposition 3.5, the outgoing

>

J wave has the same order of strength as the in-
coming weak wave independently of σ 1 (see in particular (3.51), (3.52), (3.53) and Remarks 3.5
and 3.7) – this not the case for the strength γ1 of the additional

↼

C fan. This involves that here ε
is of order η3.

7.2. About the time of controllability

We conclude with an informal discussion about the time of controllability, in particular for
small η. It is clear that when η is small, it is costly in terms of time of controllability: think for
instance about the case where ‖u1 − u0‖∞  η.
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Lagrangian case. We begin with the case of system (1.3). In that case, the time of the first phase
(driving u0 to some constant) is bounded easily using (5.12), (5.13), (5.14) and (6.37) by:

T ≤ 2L

(
1

|λ1(u0)| +
2

λ3(v
+
0 )
+ 1

|λ1(v
−
1 )|

)
.

As η tends to zero, one can in fact let the “2L” be closer to L (see (5.6), (5.7), (5.8) and (5.9)),
and the characteristic speeds above converge to their values at u0. It follows that as η→ 0+, one
can estimate the time of this first phase as

T ∼ 2L

(
1

|λ1(u0)| +
1

λ3(u0)

)
.

In particular, the time of controllability in this first phase is not affected by η.
Concerning the second phase, that is, driving the constant state u1/2 to the final constant

state u1, there are two parts. The second one consists in using a C1 solution to drive from u′
to u1 by using a C1 solution of the isentropic equation. It is not difficult to see that one needs
O(|u1 − u′|/η) steps for this (for instance, one uses rarefaction waves and regular compression
waves). The first part is more expensive. Indeed, to go from u1/2 to u′, one uses n steps, with n
defined in (6.43). But one can see that

g(x)= x

(
β + x
βx + 1

)γ
= 1+ γ 2 − 1

12γ 3
(x − 1)3 +O

(
(x − 1)4

)
,

while (6.39)–(6.40) gives a total variation of order x − 1. It follows that here n = O((S(u1)−
S(u1/2))/η

3). Moreover, as η→ 0+, u1/2 gets closer to u0, so one can roughly estimate the cost
of this second phase as

T ′ =O
( |u1 − u0|

η3

)
.

Eulerian case. In the case covered by (4.1) (or its vertically symmetric) the time of controlla-
bility to some constant (that is, of the first phase) is estimated by (6.21). Then we let ν go to 0,
and as η→ 0+, the 2L gets closer to L (see again the definition of r in this case); hence one can
estimate the time of controllability in this first phase by

T " L

(
1

λ2(u0)
+ 1

|λ1(u0)|
)
.

In the symmetric case (Case 3), one replaces λ1 with λ3 and puts absolute values on λ2. In the
supersonic Case 2 (resp. Case 4), it is easy to check that

T " L

λ1(u0)

(
resp.

L

|λ3(u0)|
)
.

The critical Case 5 is more complex. One can use a 3-wave to shift the characteristic speed λ2,
but as this wave is of order η, the resulting λ2 is of order η as well; it follows that in this case the
time of the first phase depends on η and can be estimated in the rough form
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T =O
(

1

η

)
.

Now, concerning the second phase from u1/2 to u1, reasoning as before, one can see that, if there
is no critical state (making a characteristic speed vanish) on the way, this second phase needs
O(|u1 − u1/2|/η) steps, so

T ′ =O
( |u1 − u0|

η

)
. (7.1)

When at some point a characteristic speed λi vanishes, we use waves of the other families to
drive the state of the system away from the characteristic manifold {λi = 0}. This costs a time of
order O(κ/η) to obtain |λi | ≥ κ . Then one can move in the direction ri by letting successively
i-rarefaction waves or i-compression waves cross the domain. Each step in the direction ri costs
1/κ in time for a displacement of order η. Hence to obtain a displacement of αri in this context,
we use a time of

T ′ =O
(
α

κη
+ κ

η

)
,

which indicates that it is favorable to take κ =√α, and this gives a cost of order O( |u1−u0|1/2

η
).
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