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Abstract. We study the controllability problem for the one-dimensional Euler isentropic system,
both in Eulerian and Lagrangian coordinates, by means of boundary controls, in the context of weak
entropy solutions. We give a sufficient condition on the initial and final states under which the first
one can be steered to the latter.
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1. Introduction

1.1. The problem

In this paper, we study the problem of controllability of the isentropic compressible
Euler equation in one space variable. The equation under consideration, when written
in Eulerian coordinates, is the following system:

{
∂tρ + ∂x(m) = 0,
∂t (m) + ∂x(m

2/ρ + κργ ) = 0. (EI)

In this system, ρ = ρ(t, x) ≥ 0 describes the local density of the fluid at time t and
position x ∈ [0, 1], andm(t, x) its momentum (that is to say, v(t, x) = m(t, x)/ρ(t, x) is
the local velocity of the fluid). The first of these two equations describes the conservation
of mass, whereas the second one describes the conservation of momentum, when the
pressure is given by the following polytropic law: p(ρ) = κργ , with γ ∈ (1, 3] and
κ > 0.

We are also interested in the system written in Lagrangian coordinates:
{

∂t τ − ∂xv = 0,
∂tv + ∂x(κτ−γ ) = 0. (P)

Here τ := 1/ρ is the specific volume. As proven in [35], solutions of (EI) and of (P)
are equivalent via a suitable change of coordinates, even in the case of weak (entropy)
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solutions. However, the controllability problems described below are different, since they
occur in the fixed space domain [0, 1].

It is well-known that such equations are hyperbolic systems of conservation laws, in
which singularities may appear in finite time even if the initial condition is smooth. Hence
it is natural to consider weak solutions, which satisfy additional “entropy conditions”
aimed at singling out the physically relevant solution.

When we fix an initial condition, (EI) and (P) are underdetermined because we have
not prescribed boundary conditions. In this paper, the boundary conditions are not given
in advance and are considered as a control, that is, a way to influence the system in order
to make it reach a given state. In this framework, the controllability problem that we
consider is the following: given suitable states u0 and u1 of the system, is it possible to
find an entropy solution of (EI) (resp. (P)) defined for a time interval [0, T ], such that

u|t=0 = u0 and u|t=T = u1? (1)

The nature of the system suggests that one has to require additional conditions on the
states u0 and u1 (particularly the latter) in order to get a positive answer. Here we give
sufficient conditions on u0 and u1 in order that the above problem has a solution. Note
however that the conditions below are not necessary in general.

1.2. Mathematical setting

Let us define more precisely the type of solutions that we consider. We restrict ourselves
to the case of solutions that are in BV ([0, 1]) for all time, and which do not meet the
vacuum (moreover, we will restrict to the case when u0 and u1 have small total variation).
Let us remark that existence theory for isentropic gas dynamics is established in the much
more general framework of L∞ solutions that can contain vacuum (see [29]).

Both systems (EI) and (P) are written in the form

ut + f (u)x = 0,

for u = (ρ, m) and u = (τ, v) respectively. In this paper, the state u belongs to R+∗ × R
(hence no vacuum is present).

Recall that an entropy/entropy flux couple is defined as a couple (η, q) of regular
functions satisfying

∀u ∈ R+∗ × R, Dη(u) · Df (u) = Dq(u). (2)

Then we have the following definition:
Definition 1. A function u ∈ L∞([0, T ]; BV ([0, 1]; R+∗ × R)) ∩ Lip([0, T ]; L1([0, 1];
R+∗ × R)) is called a weak solution of (EI) or (P) when it satisfies (EI) or (P) in the
distribution sense:

∀ϕ ∈ D([0, T ) × (0, 1)),
∫

[0,+∞)×(0,1)
(u(t, x)ϕt (t, x) + f (u)(t, x)ϕx(t, x)) dt dx +

∫

[0,1]
ϕ(x)u0(x) dx = 0.

(3)
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It is called an entropy solution when moreover, for any entropy/entropy flux couple (η, q)

with η convex, one has in the sense of measures

η(u)t + q(u)x ≤ 0, (4)

that is,

∀ϕ ∈ D((0, T ) × (0, 1)) with ϕ ≥ 0,
∫

(0,+∞)×(0,1)
(η(u(t, x))ϕt (t, x) + q(u(t, x))ϕx(t, x)) dt dx ≥ 0. (5)

Now the problem is: given u0 and u1 in BV ([0, 1]) (with small total variation), does there
exist T > 0 and an entropy solution defined in [0, T ]× [0, 1] such that (1) is satisfied?

Let us remark that here we do not prescribe the time of controllability in advance; it
strongly depends on the states u0 and u1 considered.

We emphasize that it is more convenient to work with the underdetermined system,
without looking for the control explicitly. It could be retrieved from the traces of the so-
lution on the boundary. Note however that for such systems, one cannot impose Dirichlet
boundary conditions, but rather “entering” boundary conditions as described in [18]. For
the study of the initial boundary problem, we refer for instance to [2].

1.3. Results

Fix cγ := (1/2+(γ −1)/4√γ )−1. We define pairs of Riemann invariants for the systems
(EI) and (P) as follows:

w1(u) = m

ρ
+ 2√κγ

γ − 1
ρ(γ−1)/2 and w2(u) = m

ρ
− 2√κγ

γ − 1
ρ(γ−1)/2 (6)

for u = (ρ, m), and

w1 = v + 2√κγ

γ − 1
τ−(γ−1)/2 and w2 = v − 2√κγ

γ − 1
τ−(γ−1)/2 (7)

for u = (τ, v), respectively. We denote the characteristic speeds of the systems by λ1
and λ2.

The results that we prove in this paper are the following: concerning the system (EI):

Theorem 1. Let u0 and u1 be two constant states in R+∗ × R. Set λ1 := λ1(u1) and
λ2 := λ2(u1). For any α ∈ (0, 1), there exist ε1 = ε1(u0) > 0, ε2 = ε2(u1, α) > 0, and
T = T (u0, u1) > 0 such that, for any u0, u1 ∈ BV ([0, 1]; R+∗ × R) satisfying:

‖u0 − u0‖ ≤ ε1 and T V (u0) ≤ ε1, (8)
‖u1 − u1‖ ≤ ε2 and T V (u1) ≤ ε2, (9)

and
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∀x, y ∈ [0, 1], x < y,

w2(u1(x)) − w2(u1(y))

x − y
≤ cγ (1− α)max

(
λ2 − λ1
1− y

,
λ1
x

,
−λ1
1− y

)
, (10)

∀x, y ∈ [0, 1], x < y,

w1(u1(x)) − w1(u1(y))

x − y
≤ cγ (1− α)max

(
λ2 − λ1

x
,

−λ2
1− y

,
λ2
x

)
, (11)

there is an entropic solution u of (EI) in [0, T ]× [0, 1] such that

u|t=0 = u0, (12)
u|t=T = u1. (13)

For the system (P) in Lagrangian coordinates, we have:

Theorem 2. Let u0 and u1 be two constant states in R+∗ × R. Set λ1 := λ1(u1), λ2 :=
λ2(u1), and

ξ1 :=
∂λ1
∂w2

(u1) and ξ2 :=
∂λ2
∂w1

(u1).

For any α ∈ (0, 1), there exist ε1 = ε1(u0) > 0, ε2 = ε2(u1, α) > 0, and T =
T (u0, u1) > 0 such that, for any u0, u1 ∈ BV ([0, 1]) satisfying:

‖u0 − u0‖ ≤ ε1 and T V (u0) ≤ ε1, (14)
‖u1 − u1‖ ≤ ε2 and T V (u1) ≤ ε2, (15)

and

∀x, y ∈ [0, 1], x < y,
w2(u1(x)) − w2(u1(y))

x − y
≤ (1− α)

1
ξ1

λ2 − λ1
1− y

, (16)

∀x, y ∈ [0, 1], x < y,
w1(u1(x)) − w1(u1(y))

x − y
≤ (1− α)

1
ξ2

λ2 − λ1
x

, (17)

there is an entropic solution u of (P) in [0, T ]× [0, 1] such that

u|t=0 = u0, (18)
u|t=T = u1. (19)

Remark 1. Let us remark that the Oleı̆nik-type conditions (10)–(11) and (16)–(17) are
not satisfied for general trajectories of the systems (EI) and (P) (the interaction of two
shocks of the same family just before the final time generates waves in which the ratios
considered in (10)–(11) and (16)–(17) can be arbitrarily large). See for instance [8, Sub-
section 10.2].

Remark 2. Let us also remark that the right hand sides of (10), (11), (16) and (17) are
always positive. In particular, constant states can always be reached.
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1.4. Previous studies and comments

Let us recall some results obtained in the field of controllability of one-dimensional hy-
perbolic systems of conservations laws. In the case of regular (that is, C1) solutions, it
was shown by Li and Rao (see [28]) that for a quasilinear hyperbolic equation in which
characteristic speeds are bounded away from 0, it is possible to connect two states with
small C1 norm. Let us remark also that for (EI) the particular case γ = 2 corresponds to
the Saint-Venant (or shallow-water) equation, for which several controllability problems
have been considered in the framework of C1 solutions (see for instance [16, 23]).

Concerning weak entropy solutions, the control of convex scalar conservation laws
has been studied by Ancona andMarson [5], who completely describe the states attainable
starting from u0 = 0. In [24], Horsin considers the case u0 -= 0 for Burgers’ equation,
by using the return method, which was introduced by Coron in [14] and is also a key
ingredient here.

The study of controllability problems for weak entropy of systems of conservation
laws has been initiated by Bressan and Coclite in [9]. For general strictly hyperbolic
systems of conservation laws with genuinely nonlinear or linearly degenerate fields (in
the sense of Lax [25]), and characteristic speeds bounded away from 0, it is shown that
one can drive a small BV state to a constant state, asymptotically in time, by an open-loop
control. For the problem of controllability in finite time, they prove the following negative
result for a class of systems containing the system below (which was introduced by Di
Perna [17]), and which is somewhat close to (EI):






∂tρ + ∂x(ρu) = 0,

∂tu + ∂x

(
u2

2
+ K2

γ − 1
ργ−1

)
= 0. (DP)

Theorem 2 in [9] proves that there are initial conditions, with arbitrarily small total vari-
ation, for which no entropy solution which has small total variation for any t can reach
a constant state. The system (DP) has the feature that the interaction of two shocks of
a family generates a shock in the other family. Note that for (EI), on the contrary, the
interaction of two shocks of a family generates a rarefaction wave in the other family.
However, [9] gives strong indications that controlling (EI) with the solution of total vari-
ation of the same order as T V (u0) for all times would be a strongly nontrivial matter
(one can even doubt that this is possible). Here we use the “return method” which con-
sists in strongly perturbing the system in order to achieve controllability. This suggests
distinguishing two types of controllability properties: a controllability property for which
one should expect the size of the control to be of the same order as the distance from u0
to u1, and controllability via strong perturbations in which the control can be large with
respect to the distance to achieve. In the present paper, the latter is considered; however,
one can construct a solution with small total variation τ connecting states that are of small
total variation ε, but ε is very small with respect to τ (clearly not of the same order)—see
Subsection 1.5 below. It is, of course, rather unsatisfactory that, despite the fact that we
consider solutions which may have large total variation, the result applies only to initial
and final states with small total variation.
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Finally, in [4], Ancona and Coclite investigate the controllability properties for the
Temple class systems (see [33] for a precise definition). They prove that the controllability
applies in the case of characteristic speeds strictly separated from 0 and Oleı̆nik-type
inequalities on u1. An important difference with the results here is that no small total
variation is assumed (the solutions are even considered inL∞), and the Oleı̆nik conditions
imposed on u1 are actually satisfied by the trajectories of the system (with perhaps a
different multiplicative constant). Parts of the construction here are analogous to those of
[4] and [9].

1.5. Additional remarks

Two different methods are developed in this paper for the systems (EI) and (P), respec-
tively. It should be noted that, while the first method cannot apply to (P), the method
developed in Section 6 could be used for the system (EI), if the reference state u0 satisfies
λ1(u0) < 0 < λ2(u0). This is due to the fact that the first method relies on the possibility
to shift the sign of the characteristic speeds, while the second one relies on the possibility
to generate rarefaction waves (and hence cancelations) via interaction of shocks of the
same family.

Also, the following fact will appear during the proofs: for the system (P) and for (EI)
when moreover λ1(u0) < 0 < λ2(u0), one can use the second method to get solutions
with small total variation τ (for all time), for states u0 and u1 sufficiently close to u0 and
u1 in BV , but the radii of the corresponding balls in BV (that is, ε1 and ε2 in Theorems
1 and 2) are very small with respect to τ (in a nonlinear way). Also, the time of control-
lability could grow as τ → 0+. For the system (EI) when either λ1(u0) < λ2(u0) ≤ 0
or 0 ≤ λ1(u0) < λ2(u0), one can use the first method to obtain solutions with small total
variation τ (again if T V (u0) and T V (u1) are very small with respect to τ ).

1.6. Structure of the paper

Theorem 1 is proven in Sections 2 to 5. In Section 2, we introduce some preliminaries
and notations. The general method is described in Subsection 2.4. The proof of the result
is in three steps developed respectively in Sections 3, 4, 5. The first step in the case of
Theorem 2 is completely different and is described in Section 6.

2. Preliminaries and notations

2.1. Characteristics of the system

Written as an equation for u = (ρ, m), the system (EI) is a system of conservations laws,
which is strictly hyperbolic as long as ρ > 0, that is,

λ1(u) < λ2(u), (20)
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where λ1 and λ2 given by

λ1 = m

ρ
− √

κγ ρ(γ−1)/2 and λ2 = m

ρ
+ √

κγ ρ(γ−1)/2 (21)

are the two (real) eigenvalues of the Jacobian matrixA associated with the flux function f :

f (ρ, m) =
(

m

m2/ρ + κργ

)
and A(ρ, m) =

(
0 1

−m2/ρ2 + γ κργ−1 2m/ρ

)
. (22)

Many properties of the system are derived from the resolution of the Riemann problem,
that is, the Cauchy problem when the initial data has the shape of a step-function:

U(0, x) = (ρl, ml) for x < 0 and U(0, x) = (ρr , mr) for x > 0, (23)

where (ρl, ml) and (ρr , mr) are two fixed states inR+∗×R. The resolution of this problem
leads to the introduction of the following classical objects which we list below.

We denote by r̂i (u) the following right eigenvectors of A(u) corresponding to its i-th
eigenvalue:

r̂1 =
(
1
λ1

)
and r̂2 =

(
1
λ2

)
. (24)

Note that ∇λi(u) · r̂i (u) -= 0 for any u ∈ R+∗ × R, that is, the two fields are genuinely
nonlinear in the sense of Lax (see [25]). We can renormalize these eigenvectors in order
to get ∇λi(u) · ri(u) = 1:

r1 = −2ρ(3−γ )/2
√

κγ (γ + 1)

(
1
λ1

)
and r2 = 2ρ(3−γ )/2

√
κγ (γ + 1)

(
1
λ2

)
. (25)

We introduce the pair (6) of Riemann invariants of the system, which is a couple of func-
tions (w1, w2) satisfying ∇wi · ri = 0, which here provide other coordinates for the state
of the system. We will consider them as variables and as functions u 0→ wi(u) as well.

2.2. Wave curves

Rarefaction and shock curves. Rarefaction curves are made of states ur (on the right)
that can be connected to a state ul (on the left) by rarefaction waves, that is, smooth self-
similar solutions of the Riemann problem, associated with either eigenvalue λ1 and λ2.
We denote these curves by Ri . Here they are given by the following equations:

1-rarefactions: mr − ml = ml

ρl
(ρr − ρl) − 2√κγ

γ − 1 ρr(ρ
(γ−1)/2
r − ρ

(γ−1)/2
l ) with ρr < ρl,

(26)

2-rarefactions: mr − ml = ml

ρl
(ρr − ρl) + 2√κγ

γ − 1 ρr(ρ
(γ−1)/2
r − ρ

(γ−1)/2
l ) with ρr > ρl.

(27)
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Shock curves of the i-th family are made of states ur (on the right) that can be connected
to a state ul (on the left) by an i-shock, that is, a discontinuity that propagates at constant
speed s, satisfying the Rankine–Hugoniot relation

[f (u)] = s[u] (28)

(where [φ] denotes the difference φr − φl across the discontinuity, and s the speed of the
shock), and the admissibility conditions of Lax:

s < λ1(ul) and λ1(ur) < s < λ2(ur) for a shock of the first family,
s > λ2(ur) and λ1(ul) < s < λ2(ul) for a shock of the second family. (29)

After computation, these curves are given by:

1-shocks: mr = ml + ml

ρl
(ρr − ρl) −

√

κ
ρr

ρl

ρ
γ
r − ρ

γ
l

ρr − ρl
(ρr − ρl) (=: S1(ρr , ul))

with the condition ρr > ρl, (30)

2-shocks: mr = ml + ml

ρl
(ρr − ρl) +

√

κ
ρr

ρl

ρ
γ
r − ρ

γ
l

ρr − ρl
(ρr − ρl) (=: S2(ρr , ul))

with the condition ρr < ρl. (31)

Let us agree to extend the definition of the shock speed s(u1, u2) to states that do not
satisfy the Rankine–Hugoniot relations (but are such that ρ1 -= ρ2) by the following
expression:

s(u1, u2) :=
m2 − m1
ρ2 − ρ1

. (32)

It should be noted that, by Taylor’s formula, on the i-th rarefaction curves, the “shock
speed” admits the following expansion: for ur = Ri(s, ul),

s(ul, ur) = λi(ul) + λi(ur)

2
+ O(|ul − ur |2). (33)

Wave curves. Merging shocks and rarefaction curves allows us to introduce Lax’s wave
curves -̃1 and -̃2:

-̃1(ρ, ul) =






(
ρ, ml + ml

ρl
(ρ − ρl) − 2√κγ

γ − 1
ρ(ρ

(γ−1)/2 − ρ
(γ−1)/2
l )

)
for ρ ≤ ρl,

(
ρ,

ml

ρl
ρ −

√
κ

ρ

ρl
(ργ − ρ

γ
l )(ρ − ρl)

)
for ρ ≥ ρl,

(34)



Controllability of the Euler equation 9

-̃2(ρ, ul) =






(
ρ,

ml

ρl
ρ −

√
κ

ρ

ρl
(ργ − ρ

γ
l )(ρ − ρl)

)
for ρ ≤ ρl,

(
ρ, ml + ml

ρl
(ρ − ρl) + 2√κγ

γ − 1
ρ(ρ

(γ−1)/2 − ρ
(γ−1)/2
l

)
for ρ ≥ ρl.

(35)
One may parameterize these curves with a coordinate different from ρ: it is a consequence
of ∇λi · ri = 1 that

σi := λi(ur) − λi(ul) (36)
increases with ur along the rarefaction curve (that is, as ρr ≤ ρl decreases for a 1-
rarefaction, as ρr ≥ ρl increases for a 2-rarefaction). On the other hand, one sees that

σi := 2(λi(ur) − s),

where s is the speed of the shock, decreases along the shock curve (that is, as ρr ≥ ρl

increases for a 1-shock, as ρr ≤ ρl decreases for a 2-shock). Moreover, the resulting
parameterization is twice continuously differentiable (see [25]). We denote by -i the
wave curves with the above described parameterization.
Curves in Riemann coordinates. Another parameterization for these curves is obtained
by using Riemann coordinates: this provides two curves w2 0→ -̂1(w

2, u) and w1 0→
-̂2(w

1, u)where the states are considered in Riemann coordinates. It is elementary to de-
duce from (6) and (26)–(27) that along the curve Ri ,wi is constant, whilew3−i increases.
On the other hand, it follows from (6), (30)–(31) and the Cauchy–Schwarz inequality that
along the curve Si , both Riemann invariants decrease.

We will denote by Ŝ1(w
2, ul) and Ŝ2(w

1, ul) the Rankine–Hugoniot curves in Rie-
mann coordinates (not necessarily satisfying (29)); that is, Ŝ1(w2, ul) is the point on the
first Hugoniot locus starting at ul , having w2 as second Riemann invariant.
Approximations of the axes via wave curves. We finish this subsection by introducing
the following “approximations of the axes”, in Riemann coordinates, obtained by gluing
some pieces of wave curves. Given a base point u, the curves /k

i are defined for i = 1, 2
and k ∈ N as follows:
• For n = 0 the curves /0

1 and /0
2 are defined to be the curves -̂i .

• For n ≥ 1, we define /n
1 : w

2 0→ /n
1 (w

2, u) and /n
2 : w

1 0→ /n
1 (w

1, u) as follows:
– 1-curves: for w2 ≥ w2(u), /n

1 is defined to be the rarefaction curve, that is, the axis
w1 = w1(u). For w2 ≤ w2(u) we define the points um recursively by u0 = u and
um+1 = Ŝ1(w

2(um) − 1/n, um) for any m ∈ N. Then the curve w2 0→ /n
1 (w

2, u) is
defined by /n

1 (w
2, u) = Ŝ1(w

2, um) for w2(um+1) ≤ w2 ≤ w2(um).
– 2-curves: for w1 ≥ w1(u), /n

2 is defined to be the rarefaction curve, that is, the axis
w2 = w2(u). For w1 ≤ w1(u) we define the points um recursively by u0 = u and
um+1 = Ŝ2(w

1(um)−1/n, um) for anym ∈ N, as long as the point does not meet the
vacuum. Then the curve w1 0→ /n

1 (w
1, u) is defined by /n

2 (w
1, u) = Ŝ2(w

1, um)

for w1(um+1) ≤ w1 ≤ w1(um).
The curves /n

1 and /n
2 are illustrated in Figure 2.
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vacuum

w2

1-shock

1-rarefaction

2-rarefaction
w1

2-shock

(a) (w1, w2) coordinates

1-shock

critical curve 2

2-shock

1-rarefaction

2-rarefaction

critical curve 1

(b) (ρ, m) coordinates

Fig. 1. Wave curves.

u1

w1

w2

/n
1

/n
2

/n
2

/n
1

u3
u2

Fig. 2. The curves /n
1 and /n

2 .

As the Rankine–Hugoniot curve and the rarefaction curve are smooth and have a C2

contact at the base point (see [25]), it follows that

|Ŝi (w
3−i , u) − -̂i(w

3−i , u)| = O(|w3−i − w3−i (u)|3).
Hence, for each compact K ⊂ R+∗ × R, there is a constant CK > 0 such that

|/n
1 (w

2, u) − (w1(u), w2)| ≤ CK |w2 − w2(u)|
n2

,

|/n
2 (w

1, u) − (w1, w2(u))| ≤ CK |w1 − w1(u)|
n2

,

(37)
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as long as the states considered are inK . (Note that /n
1 is below the w2-axis and /n

2 is to
the left of the w1-axis, because the corresponding shock curves are.)

Generalities. Finally, we add l as an exponent to denote left curves, i.e. points that are
connected as left states to a given right state by either a shock or a rarefaction wave.

The classical theorem of Lax proves that, for general hyperbolic systems of conser-
vation laws with characteristic fields which are either genuinely nonlinear or linearly
degenerate, one can solve the Riemann problem between two states sufficiently close to
each other, in terms of (small) waves which are either shocks, rarefaction waves or contact
discontinuities. Concerning the system (EI), the Riemann problem can be solved globally,
but vacuum may appear between two rarefaction waves: we refer for instance to [34].

2.3. Notations

We will always put the time variable t before the space variable x. Hence we make the
convention that in the product [a, b]× [c, d] the time variable t describes [a, b] whereas
the space variable x describes [c, d].

We introduce several regions in R+∗ × R:

D1 = {(ρ, m) ∈ R+∗ × R : λ1(ρ, m) > 0},
D2 = {(ρ, m) ∈ R+∗ × R : λ1(ρ, m) < 0 < λ2(ρ, m)},
D3 = {(ρ, m) ∈ R+∗ × R : λ2(ρ, m) < 0},
C1 = {(ρ, m) ∈ R+∗ × R : λ1(ρ, m) = 0},
C2 = {(ρ, m) ∈ R+∗ × R : λ2(ρ, m) = 0}.

(38)

We refer to C1 and C2 as critical curves. Of course one has

R+∗ × R = D1 2D2 2D3 2 C1 2 C2.

Finally, given a simple wave (u−, u+) with u+ = -i(σ, u−), we will call σ the wave
amplitude and |σ | the strength of the wave. When the wave is called α, we denote
its amplitude by σα . When specified, we may use as a strength of the wave the value
|w3−i − w3−i (u−)| if u+ = -̂i(w

3−i , u−). A couple (σ1, σ2) describing a Riemann
problem is called a wave-vector. For simple waves, we may identify the amplitude and
the wave-vector.

2.4. Main ideas of the proof

The proof is divided into three steps, which we develop in separate sections:

• In Section 3, we show how to steer any initial state u0 := (ρ0, m0) in BV ([0, 1];
R+∗×R)with small variation and with ρ0 ≥ ρ0 > 0 to a constant state (not necessarily
given in advance).
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• In Section 4, it is shown how one can drive the system from a given constant state ω0
to any other constant state ω1.

• Finally, in Section 5, it is proven how a state u1 = (ρ1, m1) as in Theorem 1 can be
attained, starting from a certain constant state (which depends on u1).

The principal idea in Section 3 is to destabilize the system by letting a strong shock enter
the domain. As mentioned in Subsection 1.4, one can doubt that boundary conditions with
small total variation are enough to get rid of the structure of the initial condition. With a
strong shock entering the domain (for instance from the left, that is, through the bound-
ary x = 0), one can hope that all the information contained in the initial condition can
be shifted outside the domain. This is an application of the “return method” introduced
by J.- M. Coron in [14] in the context of finite-dimensional systems, and used since for
various PDE problems such as Euler incompressible equation [15, 19], Burgers equation
[24], Vlasov–Poisson equation [20], Schrödinger equation [6, 7]. Note that the existence
of a solution of the system with initial condition given by a small BV perturbation of a
strong shock has been studied by several authors (see in particular [32], [10], [13], [27]
and [31]; see also [1]).

The second step of the control process, developed in Section 4, is quite elementary:
one drives a constant state to another simply by solving several Riemann problems one
after another, that is, the two states are separated by several shocks and centered rarefac-
tion waves (passing either through the left or the right side of the domain according to the
sign of their speed).

The last step is done by a (backward) front-tracking algorithm. We construct, back-
ward in time, a sequence of piecewise constant functions Un ∈ L∞([−T , 0]; BV ([0, 1];
R+∗ × R)) (for an appropriate T > 0) which converges to a solution of the system with
u|t=0 = u1 and u|t=−T equal to a constant state. The different constant states are sepa-
rated either by shocks or by (small) rarefaction fronts (as in the classical front-tracking
algorithm, see [8]). We start from an approximation of u1 at time t = 0, and then solve
(approximately) “backward Riemann problems”. In fact, we add to u1 one or two (strong)
shocks which should enter the domain (for t < 0). When interaction occurs, we solve it
as in the usual front-tracking algorithm, except when a rarefaction front meets one of the
two strong shocks, in which case the problem is solved in terms of two shocks of the same
family. The main issue here is to avoid the situation where the rarefaction fronts meet and
merge (which would result in a non-entropic solution). We manage to make these rarefac-
tion fronts either quit the domain or meet one of the strong shocks before any possible
encounter with another rarefaction front. This justifies the Oleı̆nik-type constraints that
we impose on u1 in Theorem 1.

3. Step 1: getting rid of the initial condition

The goal of this section is to prove the following proposition:

Proposition 1. Let u0 ∈ BV ([0, 1]; R+∗ × R) be as in Theorem 1. Then there exist
T1 > 0, a constant state ω1 ∈ R+∗ × R, and an entropy solution u : [0, T1] × [0, 1] →



Controllability of the Euler equation 13

R+∗ × R of (EI) such that

u|t=0 = u0, (39)
u|t=T1 = ω1. (40)

Before getting to the proof, we need some preliminary material needed to handle strong
shocks, which as we explained earlier are the main tool in this part.

3.1. Preliminaries

Here we recall some results on the solvability of the Riemann problem in the neighbor-
hood of a strong shock, and on the interaction of a small wave with a strong shock.

These results are derived under the following stability condition on the strong shock
(due to Majda, see [30]): a shock (of the j -th family) (ũ−, ũ+) with speed s̃ and wave
amplitude ε̃ is said to beMajda-stable if:

(i) s̃ is not an eigenvalue of ∂f
∂u (ũ±),

(ii) {rj (ũ+) : λj (ũ
+) > s} ∪ {ũ+ − ũ−} ∪ {rj (ũ−) : λj (ũ

−) < s} is a basis of Rn.
(41)

The second condition for a 1-shock (resp. a 2-shock) reduces here to: {ũ+ − ũ−, r2(ũ
+)}

(resp. {r1(ũ−), ũ+−ũ−}) is a basis ofR2. The condition (41) is stronger than Lax entropy
inequalities, and is satisfied by any shock for (EI).

We have the following result (see [32, Lemma 3.1], and also [13, 31]):

Lemma 1. Suppose that the shock (ũ−, ũ+) with wave-vector ε̃ is Majda stable. Then the
Riemann problems (u−, u+) close to (ũ−, ũ+) have a unique solution with wave-vector
ε close to ε̃. Moreover, if γ is the wave-vector of a small wave interacting with (ũ−, ũ+),
then, up to higher order terms in |γ |, the resulting wave is given by ε̃ + ε′, with ε′ given
by:

• Case of a strong 2-shock wave
– Small wave interacting from the right side:

(
(λ1(ũ−) − s̃)l1(ũ+).r1(ũ−) ∂s

∂ε− (ũ−)l1(ũ+) · [ũ+ − ũ−]

(λ2(ũ−) − s̃)l2(ũ+) · r1(ũ−) ∂s
∂ε− (ũ−)l2(ũ+) · [ũ+ − ũ−]

) (
ε′
1

ε′
2

)

=
(

λ1(ũ+) − s̃ 0
0 λ2(ũ+) − s̃

) (
γ1
γ2

)
.

– Small wave interacting from the left side:
(

∂s
∂ε+ (ũ+)l2(ũ+) · [ũ+ − ũ−] 0
∂s

∂ε+ (ũ+)l1(ũ+) · [ũ+ − ũ−] (λ1(ũ−) − s̃)

) (
ε′
1

ε′
2

)

=
(

λ2(ũ−) − s̃ 0
0 0

) (
γ2
0

)
.
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• Case of a strong 1-shock wave
– Small wave interacting from the right side:

(
∂s

∂ε− (ũ−)l1(ũ+) · [ũ+ − ũ−] 0
∂s

∂ε− (ũ−)l2(ũ+) · [ũ+ − ũ−] (λ2(ũ−) − s̃)

) (
ε′
1

ε′
2

)

=
(

λ1(ũ+) − s̃ 0
0 0

) (
γ1
0

)
.

– Small wave interacting from the left side:




∂s

∂ε+ (ũ+)l1(ũ−)·[ũ+−ũ−] (λ2(ũ+)−s̃)l1(ũ−)·r2(ũ+)−(r2(ũ+)·∇us(ε̃+, ũ+))l1(ũ−)·[ũ+−ũ−]
∂s

∂ε+ (ũ+)l2(ũ−)·[ũ+−ũ−] (λ2(ũ+)−s̃)l2(ũ−)·r2(ũ+)−(r2(ũ+)·∇us(ε̃+, ũ+))l2(ũ−)·[ũ+−ũ−]





·
(

ε′
1

ε′
2

)
=

(
λ1(ũ+) − s̃ 0

0 λ2(ũ+) − s̃

) (
γ1
γ2

)
.

We will use Lemma 1 by means of the following corollary (see also [1, Lemma A3],
[13], [31, Lemmas 3.3–3.6]). We describe the situation when the family of the strong
shock k is equal to 2, but of course a similar result stands for k = 1.

Corollary 1. Let (ũ−, ũ+) be a strong 2-shock for system (EI): ũ+ = -2(ε̃2, ũ
−). Fix

ε̃1 = 0. Then there exist neighborhoods V−
1 , V

+
1 and Ẽ respectively of ũ− and ũ+ in

R+∗ × R and of ε̃2 in R−∗ such that for all (u−, u+) ∈ V−
1 × V+

1 , the Riemann problem
(u−, u+) is (uniquely) solvable, that is,

u+ = -2(ε2, -1(ε1, u
−)) with |εj − ε̃j | = O(1)max(|u+ − ũ+|, |u− − ũ−|).

(42)

Moreover, there is a constant V depending only on V−
1 and V+

1 such that, (u−, u+) ∈
V−
1 × V+

1 being a strong shock, say u+ = -2(ε2, u
−), ε2 ∈ Ẽ:

(i) (Interaction on the left of the strong shock) Consider a small wave γ (u−−, u−), say
u− = -j(α, u−−). Then its interaction with the strong shock is described by

u+ = -2(ε2(-1(ε1, u
−−))) with |ε2 − ε̃2| + |ε1| ≤ V |α|. (43)

(ii) (Interaction on the right of the strong shock) Consider a small wave γ (u+, u++),
say u++ = -j(α, u+). Then its interaction with the strong shock is described by

u++ = -2(ε2(-1(ε1, u
−))) with |ε2 − ε̃2| + |ε1| ≤ V |α|. (44)
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3.2. Starting point in the proof of Proposition 1

The strategy of the proof of Proposition 1 is the following: find a strong 2-shock on the
left such that the initial-value problem on R with as initial state the function composed of:
the left state of this strong shock on the left of the domain, u0 inside [0, 1], and a constant
value not far from u0 on the right of the domain, admits a well-defined solution on R,
which reaches a constant state inside [0, 1] in finite time. We begin with a lemma.

Lemma 2. For any ω ∈ R+∗ × R, there exist σ < 0 and ω′ ∈ R+∗ × R such that
ω = -2(σ, ω′) and

λ2(ω
′) > λ1(ω

′) ≥ 3, (45)
s(ω, ω′) ≥ 3. (46)

Proof. Define ω =: (ρr , mr). One considers the curve of 2-shocks on the left

[ρr, +∞) 5 ρl 0→ (ρl, ml) with
ml

ρl
= mr

ρr
+

√

κ
1

ρlρr

ρ
γ
l − ρ

γ
r

ρl − ρr
(ρl − ρr). (47)

Comparing the growth of the second term on the right hand side with the growth of
ρ

(γ−1)/2
l , one easily sees that λ1(ρl, ml) ≥ 3 for ρl large enough. Using the Rankine–
Hugoniot equation one gets

s = mr

ρr
+

√

κ
ρl

ρr

ρ
γ
l − ρ

γ
r

ρl − ρr
,

which establishes (46) for ρl large as well.

Now by Lemma 2 applied to the constant state u0, there exists v0 ∈ R+∗×R such that
u0 = -2(σ0, v0) for some σ0 < 0 and λ2(v0) > λ1(v0) ≥ 3. We introduce the following
function U0 ∈ BVloc(R; R+∗ × R):

U0(x) =






v0 for x < 0,
u0(x) for 0 ≤ x ≤ 1,
u0 for x > 1.

(48)

With U0 defined in this way, Proposition 1 is a direct consequence of the following one:

Proposition 2. If u0 has small enough total variation, then there is a global-in-time en-
tropic solution U of (EI) in [0, +∞) × R satisfying

U(0, ·) = U0 in R. (49)

Moreover,
U|{1}×[0,1] is constant. (50)
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One deduces Proposition 1 simply by taking the restriction of U to [0, 1] × [0, 1]. The
rest of this section is devoted to the proof of Proposition 2 by a front-tracking algorithm.
The approximations that we construct are intended to take values in the domain

D := B(v0; r) ∪ B(u0; r),

with r so small that:

• the characteristic speeds are uniformly strictly separated in B(v0; r) and in B(u0; r),
• any interactions inside B(v0; r) or inside B(u0; r) are well-defined (without vacuum)
with Glimm’s estimates valid,

• any simple wave joining a state in B(v0; r) on the left to a state in B(u0; r) on the right
is a 2-shock having speed greater than 2, satisfying Lemma 1 for small interactions in
D, and such that λ1 > 2 in B(v0; r),

• any strong shock joining a state from B(v0; r) to a state in B(u0; r) has a speed greater
than (and separated from) all the 1-characteristic speeds in B(v0; r).

Note that it is easy to fulfill the last condition, since the strong 2-shock obtained above
satisfies Lax’s inequalities.

Remark 3. The choice of 2 as a minimum for characteristic speeds and for the speed of
a strong shock is arbitrary, and could be replaced by any positive constant. Hence, when
λ1(u0) ≥ 0, the strong shock that we consider can be arbitrarily small (but of course r

becomes very small as well, and the time of controllability is affected). Note also that,
as will be clear from the proofs, we could have chosen, instead of a strong 2-shock on
the left of the domain, a strong 1-shock on the right of the domain. (In that case we need
negative characteristic speeds and negative speed for the strong shock.) Hence the same
remark applies when λ2(u0) ≤ 0.

3.3. Proof of Proposition 2

In this subsection, we construct a solution with a strong shock, by means of a front-
tracking algorithm (see [8]). Let us underline that the results in this subsection are essen-
tially not new: see for instance [32] for a general theory concerning strong waves, [13]
where the construction uses Glimm’s scheme, and [31] where the construction uses the
Bressan–Schochet front-tracking scheme. We describe the construction to make the pa-
per self-contained. Let us describe the algorithm we use. For n ∈ N we approximate the
initial condition U0 with a step function Un in such a way that

Un(x) = v0 for x < 0 and Un(x) = u0 for x > 1, (51)
T V (Un) ≤ T V (U0), ‖Un − U0‖L1[0,1] → 0 as n → ∞. (52)

Now starting from Un, we solve (approximately) the various Riemann problems at each
discontinuity of Un, and replace each rarefaction wave by a rarefaction fan with accuracy



Controllability of the Euler equation 17

1/n, that is, we replace a rarefaction wave between ω1 and ω2 = -i(σ, ω1), σ > 0, by a
piecewise constant solution consisting of constant states:

ω0 := ω1, ωk := -i(k/n, ω1) for k = 1, . . . , m := 6nσ7, ωm+1 := ω2, (53)

separated by straight lines at shock speed s(ωk, ωk+1).
Note that all these Riemann problems are solvable (including the one at x = 0) with-

out vacuum, by Lax’s theorem or by Lemma 1, as long as the states lie in the balls de-
scribed above. By modifying the speeds of the front by an amount of at most 2−n, one
can require that the interactions between fronts are all binary, and that there is at most one
interaction at a time. We do not modify the speed of the 2-shock wave issuing from 0.

When two fronts meet, say at time ti , let ul to um be the states separated by the left
front, and um to ur the states separated by the right one; we extend the solution to t > ti
by the approximate solution of the Riemann problem, with the following convention for
outgoing rarefactions:

• if the incoming waves are of different families, then (possible) outgoing rarefaction
waves are approximated by a single rarefaction front,

• if the two incoming waves are of the same family, then the outgoing wave of the other
family is approximated by a rarefaction fan with accuracy 1/n as described in (53) if it
is a rarefaction, and by a single shock otherwise.

We define the strong shock (denoted by S) to be the 2-shock that outgoes from 0, and
then the 2-wave (which, as we will show, is still a shock) that extends it after successive
interactions. It is unique by the previous conventions. We call any other wave weak. We
denote by Un the resulting front-tracking approximation.

strong 2-shock

weak 2-shock

1-rarefaction

1-shock

1 x0

t

Fig. 3. A front-tracking approximation.
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Now, we prove that the previous algorithm is well defined, and then that one can
extract a limit from it which is an entropy solution satisfying the requirements of Propo-
sition 1.

Estimates on the front-tracking approximations. We introduce the strength σα of a
wave α as described in Subsection 2.3. We introduce the following functionals measuring
the strength of the solution:

Vw(τ) =
∑

α weak wave
|σα|, Vs(τ ) = |S(τ)|; V (τ) = Vw(τ) + Vs(τ ), (54)

where S denotes the strong wave, and the sum is over all weak waves existing at time τ .
We introduce the following interaction potentials:

Qww(τ) =
∑

α,β
approaching
weak waves

|σα| · |σβ |, Qws(τ ) =
∑

α weak wave
approaching
the strong wave

|σα|, (55)

where α and β are approaching waves with α on the left of β and either α is a 2-wave and
β a 1-wave, or both waves are of the same family and at least one of them is a shock. We
introduce the following total interaction potential:

Q(τ) = AQww(τ) + Qws(τ), (56)

where A is a constant to be defined.
Clearly, at times when no interaction takes place, all these quantities are constant.

Now we describe how they evolve beyond an interaction time. When τ is a time of inter-
action and F one of the above quantities, we write F(τ−) for the constant value of this
quantity for t < τ close to τ , and define F(τ+) similarly.

The following estimates are valid as long as all states on the left of S are in B(v0, r)
and all states on the right of S are in B(u0, r), which will be proved a posteriori provided
T V (u0) is small. All the O(1) in the following interaction estimates are fixed once r

introduced before is fixed.
Now it follows from Glimm’s estimates (see [21]) that, during a weak-weak interac-

tion (call the corresponding waves α and β):





Vw(τ+) − Vw(τ−) = O(1)|σα|.|σβ | and Vs(τ
+) = Vs(τ

−),

Qww(τ+) − Qww(τ−) = −|σα| · |σβ | + O(1)|σα| · |σβ |Vw(τ−),

Qws(τ
+) − Qws(τ

−) = O(1)|σα| · |σβ |.
(57)

Following Corollary 1, during a weak-strong interaction (call the corresponding waves
α and S respectively), we have the following estimates:
{

Vw(τ+) − Vw(τ−) = O(1)|σα|, Vs(τ
+) − Vs(τ

−) = O(1)|σα|,
Qww(τ+) − Qww(τ−) = O(1)|σα|Vw(τ−), Qws(τ

+) − Qws(τ
−) = −|σα|. (58)
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It follows from (57) that for suitable A, during a weak-weak interaction one has

Q(τ+) − Q(τ−) = −A
2

|σα| |σβ | + O(1)A|σα| |σβ |Vw(τ−), (59)

and during a strong-weak interaction, from (58),

Q(τ+) − Q(τ−) = −|σα| + O(1)A|σα|Vw(τ−). (60)

Now one sees that there exists a constant c1 > 0 such that if Vw(τ−) < c1, then

• during a weak-weak interaction:

Qww(τ+)−Qww(τ−) ≤ −|σα| |σβ |
2

and Q(τ+)−Q(τ−) ≤ −A
2

|σα| |σβ |, (61)

• during a strong-weak interaction:

Qws(τ
+) − Qws(τ

−) = −|σα|, Q(τ+) − Q(τ−) ≤ −|σα|/2. (62)

One deduces that there is a constant C1 such that, provided Vw(τ) stays below c1,

τ 0→ Vw(τ) + C1Q(τ) and τ 0→ Vs(τ ) + C1Q(τ) are nonincreasing, (63)
τ 0→ Vs(τ ) − C1Q(τ) is nondecreasing. (64)

Moreover, if Vw(0) is small enough (say Vw(0) < c2), the latter quantity is positive.
Now if Vw(0) is small enough, one can get Vw(τ) < c1 for all τ (at least as long as

the front-tracking approximation is well-defined, which is proven to be globally later),
and hence (63)–(64) hold for all time. Indeed, introduce L > 0 such that

1
L

T V2±(t)(U
n(t)) ≤ Vw(t) ≤ L · T V2±(t)(U

n(t)), (65)

where 2+(t) (resp. 2−(t)) is the (open) part of R on the right (resp. left) of the strong
shock, and 2±(t) := 2+(t) ∪ 2+(t). (Clearly one has (65) for each small front in the
neighborhoods of v0 and u0. Hence the constantL depends on r .) Suppose T VR∗Un < c2,
for some c2 < c1/L to be fixed later. This remains true for Un(τ) for τ close to 0. By
(63) one has

Vw(τ) ≤ Vw(0) + C1Q(0) ≤ Lc2 + C1L
2c22,

and hence
T V2±(t)(U

n(t)) ≤ L2c2 + C1L
3c22.

Now we choose c2 that satisfies c2 < c1/L, Lc2+C1L
2c22 < c1 and L2c2+C1L

3c22 < r .
This ensures that, at least as long as the front-tracking approximation is well-defined, all
the previous estimates are valid.

Finite number of fronts and nonaccumulation of interaction points. In order to prove
that the front-tracking approximation is indeed well-defined, it remains to prove that the
total number of fronts is finite and that interaction points do not accumulate. It follows
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from the construction that, at each interaction for which the number of outgoing fronts
exceeds the one of incoming fronts (that is, two), the strength of the outgoing rarefaction
wave exceeds 1/n. Using Glimm’s interaction estimate, one deduces that the strengths of
the incoming fronts σ and σ ′ satisfy |σ | |σ ′| ≥ C/n, and hence, using (61) and (62), one
sees that this can happen only a finite number of times. Consequently, the total number of
fronts is finite. It is then rather classical that interaction points cannot accumulate (see for
instance [1]): first, we can restrict to the case where interactions generate only two fronts
(by considering a suitable time interval); then one can for instance reason by induction
on the number of fronts “involved” in an accumulation of fronts. Hence the above front-
tracking algorithm is well-defined, for any n ∈ N∗.

Size of the rarefaction fronts. Classically, before passing to the limit and getting a so-
lution of (EI), we need an estimate on the size of rarefaction fronts, which is central in
the proof of the entropy inequality. We consider a rarefaction front ν (which starts at time
τ ≥ 0). This is done as in the small total variation case (see [8]). By the convention we
made in the resolution of interactions, it is quite clear that if a j -wave is involved in an
interaction, there is at most one outgoing j -wave. Hence, a j -wave can be uniquely ex-
tended for t ≥ τ by following the outgoing j -wave at each interaction (with possibly a
final time τ < +∞).

Clearly, at the beginning, the size of ν satisfies |σν(τ )| ≤ 1/n. Then one introduces
the total strength of waves approaching ν:

Vν(τ) =
∑

µ approaching ν

|σµ|, (66)

where the summation involves both strong and weak waves. By considering the differ-
ent possible types of interactions, one finds that for T V (u0) small enough and for some
c3 > 0,

|σν(τ
+)| ≤ |σν(τ

−)|[1− c3{(Vν(τ
+) + C1Q(τ+)) − (Vν(τ

−) + C1Q(τ−))}],

which leads to

|σν(t)| ≤ |σν(τ )|
∏

µ crossing ν
at time τ∈[τ ,t]

[1− c3{(Vν(τ
+) + C1Q(τ+)) − (Vν(τ

−) + C1Q(τ−))}]

≤ |σν(τ )| exp(c3[V (0) + C1Q(0)] ≤ C3/n (67)

(as long as ν is a rarefaction front).

Passing to the limit. Now we show that one can find a converging subsequence of the
family Un as n → ∞. We already saw that (Un)n∈N has a uniformly bounded total
variation for fixed τ , outside the strong shock. The strength of the shock is measured by
Vs(τ ), which can be estimated by (63); hence the total variation is uniformly bounded. We
denote by V a strict bound for all front speeds in various Un (for instance the supremum
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of the characteristic speeds over B(U0; r)∪B(u0; r) plus 1). Then, classically, the family
is uniformly Lipschitz in time with values in L1loc(R; R+∗ × R):

‖Un(τ + h) − Un(τ)‖L1([M,M]) ≤ (t − s)V max
[τ,τ+h]

T V (Un(s)), (68)

at least when [τ, τ + h] does not contain an interaction time, and then by continuity for
any time interval. Of course, the maximum on the right hand side is bounded. Hence, by
Helly’s theorem (see e.g. [8, Theorem 2.4]), one can extract a subsequence, still denoted
by Un, such that

Un → U in L1loc([0, +∞) × R). (69)
Proof that U is an entropic solution. This is done as in [8, pp. 144–145], and recalled in
Subsection 5.9 for completeness.
Proof that U |t=1 is constant in [0, 1]. Let us prove that for n large enough, all the front-
tracking approximations Un are constant in [2/3, 1]× [0, 1] (at least if T V (u0) has been
chosen small enough). To do this, we prove that all waves on the left of the strong shock
(including the strong shock) evolve with speed at least 3/2.
Weak waves on the left of the strong shock. It follows from (63) and (65) that if Vw(0) is
small enough,

V|2−(τ )(U
n) ≤ ε.

As by construction v0 is the constant state of Un as x → −∞, one finds that for any
x ∈ 2−(t),

λ2(U
n(x)) ≥ λ1(U

n(x)) ≥ 2.
Now, using (32), one deduces that all fronts move with speed at least 3/2, if Vw(0) is
small enough, also after taking into account the small changes in the front speeds of order
2−n.
The strong shock. It follows from the construction that the state on the left of the strong
shock is at distance at most r > 0 from v0, whereas the state on the right of it is at
distance at most r > 0 from u0. By the definition of r in Subsection 3.2, this implies that
the strong shock evolves with speed greater than 2.

This shows that the restriction of Un to the space interval [0, 1] is constant for times
τ ≥ 2/3. So the limit U (which is Lipschitz with values in L1loc) is constant in [0, 1] at
times τ ≥ 2/3.

4. Step 2: from a constant state to another

The goal of this section is to prove the following proposition:
Proposition 3. For any (ω, ω′) ∈ (R+∗ × R)2, there is some T2 > 0 and an entropy
solution u of (EI) in [0, T ]× [0, 1] such that

u|t=0 = ω, (70)
u|t=T2 = ω′. (71)

This proposition is proven in three steps, which we develop in separate subsections.
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4.1. Traveling between zones

Let us prove the following lemma:

Lemma 3. For all ω0 ∈ R+∗ × R, for any i ∈ {1, 2, 3}, there exists T 12 > 0 and an
entropy solution u of (EI) in [0, T 12 ]× [0, 1] such that

u|t=0 = ω0, (72)
u|t=T 12

∈ Di . (73)

Proof. We separate cases:

Case 1: ω0 ∈ D1 ∪ C1 and i ∈ {2, 3}.
Subcase (i): i = 2. Starting from ω0 = (ρ0, m0), we follow the 1-shock curve until it
crosses the line m = 0. In other words, we determine ω1 = (ρ1, m1) such that

(ω0, (ρ1, m1)) is a 1-shock and m1 = 0. (74)

It is quite clear that:

• the speed of the corresponding shock is negative, thanks to (28) and (30);
• such a point (ρ1, 0) exists because m0 ≥ κρ

γ
0 > 0, and it follows from (30) that, as

ρ → +∞, -̃1(ρ, ω0) → −∞.

Then the restriction to the domain [0, 1] of the solution of the Riemann problem with
initial data ω0 for x < 1 and ω1 for x > 1 is as required.

Subcase (ii): i = 3: Again we choose ω1 = (ρ1, m1) = (ρ1, -̃1(ρ1, ω0)) for some
ρ1 > ρ0 large enough. It is a consequence of (21) and (30) that λ2(ρ, -̃1(ρ, ω0)) → −∞
as ρ → +∞. Hence for ρ large enough, one has ω1 ∈ D3. One concludes as in the
previous subcase.

Case 2: ω0 ∈ D2 ∪ C2 and i = 3. This case can be treated exactly as case 1, subcase (ii).

Case 3: ω0 ∈ D3 ∪ C2 and i ∈ {1, 2}. This case can be treated exactly as case 1, but
here the 1-shock is replaced by a 2-shock on the left, that is, one finds ω1 such that the
Riemann problem (ω1, ω0) is solved in terms of a 2-shock. Then the desired solution is
given by the solution of the Riemann problem with initial data ω1 for x < 0 and ω0 for
x > 0.

Case 4: ω0 ∈ D2 ∪ C1 and i = 1. This case can be treated exactly as case 1, subcase (ii),
with again the 1-shock replaced by a left 2-shock.

4.2. Traveling between points inside a zone

Let us prove the following lemma:
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Lemma 4. Let E ∈ {D1,D2,D3}. For all ω0, ω1 ∈ E, there exists T 22 > 0 and an
entropy solution u of (EI) in [0, T 22 ]× [0, 1] such that

u|t=0 = ω0, (75)
u|t=T 22

= ω1. (76)

Proof. We first assume that we can solve the problem locally, that is, given ω̃, there is a
neighborhood V of ω̃ in E such that any ω̌ in V can be reached as in the above lemma.
Then this can be done globally, that is, for any ω̌ in E. Indeed, given two states in E,
one considers a smooth arc 4 : [0, 1] → E which joins ω0 to ω1 (it is straightforward to
see that Di is arc-connected for any i). Then, since the local problem is solved, there is
rx > 0 in which any state is attainable in finite time by an entropic solution starting at x.
Since 4 is covered by the union of the balls B(x, rx/2), there are a finite number of real
numbers 0 = t0 < t1 < · · · < tn = 1 such that 4(t0) = ω0, 4(tn) = ω1, and 4(ti+1) can
be attained from 4(ti) by an entropy solution, which yields a solution.

Concerning the local problem, we separate cases:

Case 1: E = D1. Consider ω̃ in D1. Then for ω̌ close enough to ω̃, the different states
in the solution of the Riemann problem (ω̃, ω̌) are all in D1. Then the solution u of the
Riemann problem with initial value ω̃ for x < 0 and ω̌ for x > 0 is as desired since all
the waves have positive speed.

Case 2: E = D3. This case can be treated exactly as case 1, except that one considers
the solution of the Riemann problem for initial data ω̃ for x < 1 and ω̌ for x > 1.

Case 3: E = D2. Starting from a state ω̃, one can shift it (at least locally) to another state
belonging to:

• the 1-rarefaction curve starting from ω̃: given ω̌ on that curve, one considers the solu-
tion of the Riemann problem with initial data ω̃ for x < 1 and ω̌ for x > 1,

• the 1-shock curve starting from ω̃: given ω̌ on that curve, one considers the solution of
the Riemann problem with initial data ω̃ for x < 1 and ω̌ for x > 1 (because the speed
of the shock in that case is clearly negative),

• the 2-rarefaction curve on the left starting from ω̃: given ω̌ on that curve, one considers
the solution of the Riemann problem with initial data ω̌ for x < 0 and ω̃ for x > 0,

• the 2-shock curve on the left starting from ω̃: given ω̌ on that curve, one considers the
solution of the Riemann problem with initial data ω̌ for x < 0 and ω̃ for x > 0.

One concludes essentially as for Lax’s theorem on existence of a solution to the Riemann
problem when the two states are close: at the point ω̃, one considers the curve-1 consist-
ing of states that are connected to ω̃ by either shock or rarefaction, when put on the right of
ω̃, and the curve-2 consisting of states that are connected to ω̃ by either shock or rarefac-
tion, when put on the left of ω̃. By the local inversion theorem, in a neighborhood of ω̃,
one can find for any ǔ some real numbers σ1 and σ2 such that ǔ = -l

2(σ2, -1(σ1, ũ)).
Hence one reaches ǔ by first letting a 1-wave pass through the domain from right to left,
then by letting a 2-wave pass through the domain from left to right.
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4.3. Reaching a critical curve

Let us prove the following lemma:

Lemma 5. For all ω1 ∈ C1 ∪ C2, there are ω0 ∈ D2, T 32 > 0 and an entropic solution u

of (EI) in [0, T 32 ]× [0, 1] such that

u|t=0 = ω0, (77)
u|t=T 32

= ω1. (78)

Proof. We only consider the case ω1 ∈ C1 since the proof in the case ω1 ∈ C2 is identical.
In that case, we seek a proper ω0 on the left 2-rarefaction curve. In Riemann invariant
coordinates, along that curve,

w1 = m

ρ
+ 2√κγ

γ − 1
ρ(γ−1)/2

decreases, whereas

w2 = m

ρ
− 2√κγ

γ − 1
ρ(γ−1)/2

is constant. But

λ1(ρ, m) = m

ρ
− κρ(γ−1)/2 =

(
1
2

− γ − 1
4√γ

)
w1 +

(
1
2

+ γ − 1
4√γ

)
w2.

Since 0 ≤ γ−1
4√γ

≤ 1
2 , this implies that λ1 decreases on that curve, and hence one finds

ω0 ∈ D2 (close toω1) such that the Riemann problem (ω0, ω1) is solved by a 2-rarefaction
wave (with positive speed). Hence, the restriction of this solution of the Riemann problem
to [0, 1] is as desired.

4.4. Conclusion

One sees that, to prove Proposition 3, one can restrict by Lemma 5 to the case ω′ ∈
D1 ∪ D2 ∪ D3. By Lemma 3, we can restrict to the case where ω and ω′ belong to the
same Di . This is exactly Lemma 4. Note that in this section one can generate solutions
with arbitrarily small total variation, by taking sufficiently numerous and small steps (but
this is costly in time).

5. Step 3: attaining the final state

5.1. Introduction

The goal of this section is to prove the following proposition:
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Proposition 4. Let u1 = (ρ1, m1) be a constant state in R+∗ × R, with characteristic
speeds λ1 := λ1(ρ1, m1) and λ2 := λ2(ρ1, m1). Introduce

ξ1 :=
∂λ1
∂w2

(u1) and ξ2 :=
∂λ2
∂w1

(u1).

Then there exists T3 = T3(u1) > 0 such that for any α > 0, there exists ε > 0 such that,
for any u1 ∈ BV ([0, 1]; R+∗ × R) satisfying:

∀x, y ∈ [0, 1], x < y,

w2(u1(x)) − w2(u1(y))

x − y
≤ (1− α)

1
ξ1
max

(
λ2 − λ1
1− y

,
λ1
x

,
−λ1
1− y

)
, (79)

∀x, y ∈ [0, 1], x < y,

w1(u1(x)) − w1(u1(y))

x − y
≤ (1− α)

1
ξ2
max

(
λ2 − λ1

x
,

−λ2
1− y

,
λ2
x

,

)
, (80)

‖u1 − u1‖L∞([0,1]) < ε and T V (u1) < ε, (81)

there exists ω ∈ R+∗ × R and an entropic solution u of (EI) in [−T3, 0]× [0, 1] such that

u|t=−T3 = ω, (82)
u|t=0 = u1. (83)

Remark 4. In (EI), one finds

ξ1 = ξ2 = c−1
γ = 1

2
+ γ − 1
4√γ

.

We keep this notation in order that the proof of this section can be easily adapted to the
system (P).

The proof of Proposition 4 is by constructing the solution via a (backward) front-
tracking algorithm. As in Section 3, the idea is to consider as a final state a function
defined on R and composed of u1 in [0, 1], and constant states to the left of 0 and to the
right of 1, which are separated from u1(0) and u1(1) respectively by strong shocks whose
sizes depend on α. According to the position of u1 in R+∗ × R, one may consider only
one shock instead of two. This is developed in the next subsection. The front-tracking
algorithm used here is divided into four main steps:

• approximation of the final state,
• description of the algorithm,
• estimates and well-posedness of the algorithm,
• convergence and validity of the limit.
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5.2. Extension of the final state

We first define the strong shocks that are to enter on both sides of the domain. Possibly,
only one shock will be considered. Given α, there are two states u−

1 and u+
1 such that:

(u−
1 , u1) is a 1-shock of speed ς1 with λ1 + β/2 ≤ ς1 ≤ λ1 + β, (84)

(u1, u
+
1 ) is a 2-shock of speed ς2 with λ2 − β ≤ ς2 ≤ λ2 − β/2. (85)

The constant β will be fixed in terms of α later (at the end of Subsection 5.8). We also
have the following constraints on the shock:

• if u1 ∈ D1 ∪ C1, we ask that u+
1 -∈ C1 ∪ C2,

• if u1 ∈ D3 ∪ C2, we ask that u−
1 -∈ C1 ∪ C2,

• if u1 ∈ D2, we ask that the interaction (in decreasing time) of the 1-shock (u−
1 , u1) and

the 2-shock (u1, u
+
1 ) generate a 2-shock (u−

1 , ũ1) and a 1-shock (ũ1, u
+
1 ) of respective

speeds ς ′
2 and ς ′

1 satisfying

ς ′
1 < λ1(ũ1) ≤ −c1 < 0 and ς ′

2 > λ2(ũ1) ≥ c1 > 0. (86)

This means that u+
1 = -2(σ1, -1(σ2, u

−
1 )) with σ1, σ2 < 0 and also u+

1 = -1(σ
′
2,

-2(σ
′
1, u

−
1 )) with σ ′

1, σ
′
2 < 0 and ũ1 := -2(σ

′
1, u

−
1 ) satisfying the above conditions.

This is easily obtained at least for small shocks from u1.

Remark 5. Note that in this section, the strong shocks that we are using can be arbitrarily
small. But as these shocks shrink, the constant ε2 that appears in Theorem 1 tends to 0
and the time of controllability possibly tends to +∞ (if u1 is on a critical curve).

We fix the following notations:

u1 = -1(µ1, u
−
1 ), u+

1 = -2(µ2, u1),

ũ1 = -2(ρ2, u
−
1 ), u+

1 = -1(ρ1, ũ1).
(87)

Note that u1 being a BV ([0, 1]) function, it has limits at 0+ and 1−, which we naturally
denote respectively by u1(0+) and u1(1−).

Now, the shocks are retained according to the following rule:

• If u1 ∈ D1 ∪ C1, then we retain only the 2-shock; we fix U−
1 := u1(0+) and U+

1 :=
-2(µ2, u1(1−)).

• If u1 ∈ D2, then we retain both shocks; we fix U−
1 such that u1(0+) = -1(µ1, U

−
1 )

and U+
1 = -2(µ2, u1(1−)).

• If u1 ∈ D3 ∪ C2, then we retain only the 1-shock; we fix U−
1 such that u1(1+) =

-1(µ1, U
−
1 ) and U+

1 = u1(1−).
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In all cases we extend the final state over R in the following way:

Uf (x) =






U−
1 for x < 0,

u1(x) for 0 ≤ x ≤ 1,
U+
1 for x > 1.

(88)

The shocks at 0 and 1 (and their natural descendants) will be called strong shocks, the
other waves in the domain will be called weak.

5.3. Backward interactions

Before describing our construction, we give some lemmas that will be useful to deal with
interactions in the context of a backward front-tracking algorithm. One should bear in
mind that there is no uniqueness in extending a solution backward (when it is possible).

There are several types of (backward) interactions that may happen:

Interaction of two weak fronts of opposite families.

Lemma 6. Consider two states ul and ur , both belonging to a neighborhood of u−
1 , u

+
1 ,

u1 or ũ1, and satisfying
ur = -2(σ2, -1(σ1, ul))

for σ1 and σ2 in a neighborhood of 0. Then for some σ ′
1 and σ ′

2,

ur = -1(σ
′
1, -2(σ

′
2, ul)) (89)

with
|σ ′
1 − σ1| + |σ ′

2 − σ2| ≤ C1|σ1| |σ2|. (90)

Proof. The proof follows exactly the proof of Lax’s theorem and Glimm’s estimates with-
out changes.

Interaction of a strong shock and a weak shock front of opposite families. We con-
sider a backward interaction of type strong 1-shock/weak 2-shock. The case of weak
1-shock/strong 2-shock interactions is treated similarly. Also, we only treat the case of a
strong shock close to (u−

1 , u1), as the case of the shock (ũ1, u
+
1 ) is similar.

Lemma 7. Consider three states ul , um and ur , where ul belongs to a neighborhood of
u−
1 , while um and ur are in a neighborhood of u1. Suppose they satisfy

ur = -2(σ2, -1(ρ1, ul)), um = -1(ρ1, ul),

with σ1, σ2 < 0, ρ1 in a neighborhood of µ1, and σ2 in a neighborhood of 0. Then one
can find ρ′

1 < 0 and σ ′
2 < 0 such that

ur = -1(ρ
′
1, -2(σ

′
2, ul)), (91)

|ρ′
1 − ρ1| + |σ ′

2| ≤ C2|σ2|. (92)
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Proof. The existence of ρ′
1 and σ ′

2 is proven as in Lemma 1: observing that for a strong 2-
shock (ul, um) the family {r1(um), um−ur} is free (using Lax’s inequalities for instance),
one finds that (p, σ2) 0→ -1(p, -2(σ2(ul))) is a local diffeomorphism from a neighbor-
hood of (ρ1, 0) to a neighborhood of um. These neighborhoods can be made independent
of (ul, um), for (ul, um) close enough to the original shock (u1, u1).

Moreover, σ ′
2 is negative, because, thanks to Lemma 1, up to lower order terms, we

have
σ2 = σ ′

2
λ2(ul) − s

λ2(um) − s
· det(r2(ul), um − ul)

det(r2(um), um − ul)
,

where s is the speed of the strong shock. Using (25), um − ul = (ρm − ρl)
t (1, s) and

Lax’s inequalities, we see that the coefficient on the right hand side is positive. Hence
σ ′
2 < 0, at least if the neighborhoods are small enough.

Interaction of a strong shock and a rarefaction front of opposite families. We con-
sider a backward interaction of type strong 1-shock/2-rarefaction. The case of a backward
interaction of type 1-rarefaction/strong 2-shock is treated similarly.

Lemma 8. Consider three states ul , um and ur , where ul belongs to a neighborhood of
u−
1 , while um and ur are in a neighborhood of u1. Suppose they satisfy

ur = -2(σ2, -1(ρ1, ul)), um = -1(ρ1, ul),

with ρ1 < 0, σ2 > 0, ρ1 in a neighborhood of µ1, and σ2 a neighborhood of 0. Then one
can find ρ′

1 < 0 and σγ < 0 such that

ur = -1(ρ
′
1, -1(σγ , ul)), (93)

|ρ′
1 − ρ1| + |σγ | ≤ C3|σ2|. (94)

Remark 6. This interaction is hence solved quite differently from the previous one: one
solves an interaction of type rarefaction/strong shock by two shocks of the same family
(one strong, one weak).

Proof. Again, this is a consequence of the proof of Lemma 1 and the local inversion
theorem. Indeed, given a shock (ul, um) close to (u1, u1), um = -1(ρ1, ul), we consider
the map

(F, G) : (γ1, δ1) 0→ (ε1, ε2),

where (ρ1+ ε1, ε2) are the strengths of the waves in the Riemann problem corresponding
to the states (ul, -1(γ1, -1(δ1 + ρ1, ul))). Clearly,

∂2G(0, 0) = 0 and ∂2F(0, 0) = 1.

On the other hand, using Lemma 1, we see that

∂1G(0, 0) = λ1(ul) − s

λ2(um) − s
· det(r1(ul), um − ul)

det(r2(um), um − ul)
.

Again using Lax’s inequalities, one sees that the above coefficient is negative, which
allows one to conclude by the local inversion theorem.
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Interaction of the strong shocks

Lemma 9. Consider three states ul , um and ur belonging respectively to some neighbor-
hoods of u−

1 , ũ1 and u+
1 , and satisfying

ur = -2(ρ2, -1(ρ1, ul)), um = -1(ρ1, ul),

with ρ1 and ρ2 in some neighborhoods of µ1, µ2, respectively. Then one can find ρ′
1 < 0

and ρ′
2 < 0 such that

ur = -1(ρ
′
1, -2(ρ

′
2, ul))

with
|(ρ, ρ′) − (ρ1, ρ2)| ≤ κ|(ul, ur) − (u−

1 , u+
1 )|. (95)

Proof.We introduce the following map defined on V−
1 × V+

1 ×R1 ×R2, where V−
1 , V

+
1 ,

R1 and R2 are respectively some neighborhoods of u−
1 , u

+
1 , ρ1 and ρ2. By the implicit

function theorem the map

(ul, ur , ρ, ρ′) ∈ V−
1 × V+

1 ×R1 ×R2 0→ -2(ρ
′, ul) − -l

1(ρ, ur) (96)

has a zero at some (ρ, ρ′) for any (ul, ur) in the neighborhood of (u1, u
+
1 ), provided the

two curves -2(·, u−
1 ) and -l

1(·, u+
1 ) are transversal at the point ũ1. This follows from the

fact that these curves are respectively strictly convex and strictly concave, and meet at the
points (0, 0) and ũ1. Moreover, we get the estimate (95).

5.4. A domain for states in the solution

Now we introduce r > 0 such that:
• Lemma 6 applies in B(u1; r), B(U−

1 ; r), B(U+
1 ; r), and in B(ũ−

1 ; r). This fixes the
constant C1 in (90).

• Lemmas 7 and 8 apply for (ul, um, ur) belonging to B(u1; r)×B(u1; r)×B(u+
1 ; r) or

B(u−
1 ; r)×B(u1; r)×B(u1; r). Lemma 7 also applies inB(ũ1; r)×B(ũ1; r)×B(u+

1 ; r)

or B(u−
1 ; r) × B(ũ1; r) × B(ũ1; r). This fixes the constants C2 in (92) and C3 in (94).

(Of course, some of the conditions above are to be considered only when the left 1-
shock (resp. the right 2-shock) is retained as described in Subsection 5.2.)

• Lemma 9 applies when ul , um and ur belong respectively to B(u−
1 ; r), B(u1; r) and

B(u+
1 ; r). (This is only useful in the case u1 ∈ D2.)

• B(U+
1 ; r) in the case u1 ∈ D1 ∪ C1, or B(ũ1; r) in the case u1 ∈ D2, or B(U−

1 ; r) in
the case u1 ∈ D3 ∪ C2, do not intersect the critical curves C1, C2.

• All characteristic speeds in B(u1; r) differ from λ1 and λ2 by at most β and do not
overlap.

• The shock joining a point in B(u−
1 ; r) to a point in B(u1; r) have a speed that differs

from the one of the original shock (u−
1 , u1) by at most β, and similarly for the other

strong shock.
Other conditions will arise in Section 5.8.
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In the following we construct front-tracking approximations of a solution; all these
approximations are piecewise constant solutions, in which all constant states belong to
the domain

D = B(u1; r) ∪ B(u−
1 ; r) ∪ B(u+

1 ; r) ∪ B(ũ1; r). (97)

5.5. Approximations of the final state

Now we describe the process that we use to approximate the final state, because here, in
contrast to what is done in the usual front-tracking algorithm, the shape of the approxi-
mation is rather important. This is done by means of the following lemma.

Lemma 10. There are ε1 > 0 and C0 > 0 such that, if T V (u1) < ε1, then the function
Uf ∈ BV (R; D) defined by (88) can be approximated in the following way: there exists
a sequence (Un

f )n∈N∗ of functions on [−1, 2] such that:

Un
f is a piecewise constant function, constant in [−1, 0) and in [1, 2], (98)

T V (Un
f ) ≤ C0T V (Uf ), (99)

Un
f → Uf in L1([−1, 2]), (100)

and such that, for any point of discontinuity A of Un
f in (0, 1), one has:

• Either w1(Un
f ) and w2(Un

f ) are both nondecreasing at A and Un
f satisfies

Un
f (A+) = -̂1(δ1/n2, -̂2(δ2/n2, Un

f (A−))) with δ1, δ2 ∈ {0, 1}. (101)

Moreover, if w2(Un
f ) (resp. w1(Un

f )) increases at two distinct points of discontinuity X

and Y , then

|X − Y | ≥ 1
1− α

ξ1
n2
max

(
λ2 − λ1
1− Y

,
λ1
X

,
−λ1
1− Y

)−1
,

(resp. |X − Y | ≥ 1
1− α

ξ2
n2
max

(
λ2 − λ1

X
,

−λ2
1− Y

,
λ2
X

,

)−1
).

(102)

• Or w1(Un
f ) and w2(Un

f ) are both nonincreasing at A and Un
f satisfies

Un
f (A+) = /n

1 (q1/n, /n
2 (q2/n, Un

f (A−))) for some q1, q2 ∈ Z− ∪ {0}. (103)

Finally, at the points of discontinuity 0 and 1, Un
f satisfies:

Un
f (0+) = -1(µ1, U

n
f (0−)), (104)

Un
f (1+) = -2(µ2, U

n
f (1−)). (105)
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The idea of this lemma is to show that one can approximate the final state by piecewise
constant states, in which discontinuities can be reached either by “shock fans” with a fixed
strength for each shock, or by rarefaction fronts of a fixed size, which is of lower order.

Proof of Lemma 10. We considerUf as in (88). Without loss of generality, we can assume
that Uf is right-continuous. We first introduce the functions

Ŵ1 : x 0→ w1(Uf (x)) and Ŵ2 : x 0→ w2(Uf (x)), for x ∈ [−1, 2].
These functions are of bounded variation and hence can be decomposed into increasing
and decreasing parts, say

Ŵ1 = W 1 + W 1, Ŵ2 = W 2 + W 2, (106)

whereW 1 andW 2 (resp.W 1,W 2) are nondecreasing (resp. nonincreasing). We introduce
the functions

W =
(

W 1
W 2

)
, W =

(
W 1
W 2

)
.

We fix n ∈ N∗ and ε > 0. As follows from (79)–(80), the functionW is Lipschitz outside
0 and 1 (note that at 0 and 1, the function Uf is decreasing in both coordinates, hence
W is continuous). Hence we can approximate W with accuracy ε in L∞ norm by right-
continuous piecewise constant functions, in which each jump is of amplitude 0 or 1/n2

(for each coordinate), and which satisfy the following constraints:

‖Wn − W‖L∞([−1,2]) ≤ ε, (107)
T V (Wn) ≤ T V (W), (108)

and moreover we require that Wn is constant on both [−1, 0) and [1, 2], and continuous
at 0 and 1. Finally, we require that for some points x0, . . . , xm+1, one has

Wn(xi) = W(xi), (109)

hence two discontinuity points ofWn satisfy (102).
We let I0, . . . , Im+1 be the jumps ofWn in increasing order, with I0>0 and Im+1<1.
Now we approximateW with accuracy ε by a piecewise constant functionWn, which

is also required to be decreasing in both coordinates:

‖Wn − W‖L1([−1,2]) ≤ ε, (110)
T V (Wn) ≤ T V (W). (111)

Again, we require that Wn is constant on both [−1, 0) and [1, 2]. Moreover, we ask that
Wn(0±) = W(0±) and Wn(1±) = W(1±). Call its discontinuity points D0, . . . , Dl+1
with D0 = 0 and Dl+1 = 1.

First, we slightly modify the discontinuity points in Wn in such a way that all points
Di and Ij are distinct. This can be done by moving each point Di that coincides with a
point Ij a small distance. This adds an error ε in (110), but does not affect (111).
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Then we modify the values of Wn in order that U
f
n fits the requirements, from left

to right (that is, starting from −1), keeping the same discontinuity points. The modified
function will be denoted W̃n. Let us recall that in this subsection, all functions are right-
continuous. We describe the modifications recursively:

• We do not modifyWn on [−1, D0] and on [D0, D1].
• If we have already modifiedWn on [Di, Di+1) for all i = 0, . . . , k −1 (with k ≤ l) we
change the value ofWn in [Dk, Dk+1) in the following way. For some w, z, we have

[Wn + Wn](Dk) = /n
1 (w, /n

2 (z, [W
n + W̃n](Dk−1))). (112)

We then define W̃n(Dk) so that it satisfies

[Wn + W̃n](Dk) = /n
1 (8nw9−/n, /n

2 (8nz9−/n, [Wn + W̃n](Dk−1))). (113)

• At the point Dl+1 = 1, define W̃n(Dl+1) by

[Wn + W̃n](Dl+1) = -n
2(µ2, [W

n + W̃n](Dl)). (114)

Now we fix
Un

f := Wn + W̃n in Riemann coordinates. (115)

Properties (98), (103), (104) and (105) are direct consequences of the construction. Prop-
erty (102) is a consequence of (109). It remains to check (99) and (100).

We remark that during the construction, we have not modified the total variation of
W 1 andW 2, except perhaps at x = 1 where the modification is clearly of the same order
as µ2, which leads to (99).

Concerning (100), let us show that for k ≤ l and i = 1, 2,

Wn
i (Dk) − W̃n

i (Dk) ≤ C
T V[D0,Dk](W

n)

n2
. (116)

This is clear for k = 0. Now suppose we have proven (116) for k < l, and let us prove it
for k + 1. Let w and z be as in (112). There are various situations:

• w ≤ 0 and z ≤ 0: then using the monotonicity of /n
i and (113), we see that (116) is

satisfied because the left hand side is nonpositive.
• w ≤ 0 and z > 0: then again (116) is satisfied for i = 2 because the left hand side
is nonpositive for i = 2. For i = 1, this is a consequence of the fact that Wn is
nonincreasing, of (37) and of the induction hypothesis.

• w ≤ 0 and z > 0: this is done as in the previous case.
• w > 0 and z > 0: this could be treated as above, but in fact this case does not occur:
if it did, then using the monotonicity of /n

i one would have for i = 1, 2, W̃n
i (Dk−1) <

Wn
i (Dk) ≤ Wn

i (Dk−1). Using (113), one sees that we were in the same situation at the
point Dk−1, which yields a contradiction.
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Now whenWn
i (Dk) < W̃n

i (Dk), it follows from the construction that W̃n
i (Dk)−Wn

i (Dk)

≤ 1/n. Hence

‖Uf
n − Uf ‖L1([−1,2]) ≤ ‖Û − Wn − Wn‖L1([−1,2]) + ‖Wn − W̃n‖L1([−1,2]) → 0.

In what follows, we writeWn for W̃n for notational convenience.

5.6. Front-tracking approximations

Now, “starting” from Un
f , we construct (backward in time) a piecewise constant approxi-

mate solution Un of the problem.

Step 1. Given the approximationUn
f of the final state, we begin by solving approximately

the Riemann problems backward in time:
At a point of discontinuity of Wn (except 0 and 1), we approximate the solution by

shock fans. Let A be such a point of discontinuity. By Lemma 10, at such points, one has

Un
f (A+) = /n

1 (k1/n, /n
2 (k2/n, Un

f (A−)))

for some nonpositive integers k1 and k2. Then we introduce the following intermediate
states:

ω0 = Un
f (A−),

ωi = /n
2 (i/n, Un

f (A−)) for 0 ≤ i ≤ k2,

ωi = /n
1 ((i − k2)/n, /n

2 (k2/n, Un
f (A−))) for k2 + 1 ≤ i ≤ k1 + k2,

ωk1+k2 = Un
f (A+).

We also introduce the following front lines:

xi(t) = A + λit for t ≤ 0, where λi = s(ωi, ωi+1) for i = 0, . . . , k1 + k2 − 1.

Then locally, the backward Riemann problem is approximately solved by

u(t, x) =






Un
f (A−) for x < x0(t),

ωi for xi(t) < x < xi+1(t),

Un
f (A+) for x > xk1+k2−1(t).

(Note that xi < xi+1 by Lax’s inequalities.)
At the points 0 and 1 which are discontinuity points for Wn, we solve the backward

Riemann problem by a single strong 2-shock (resp. 1-shock) (at exact shock speed).
At a point of discontinuity ofWn, we approximate the solution by (single) rarefaction

fronts. Let A be such a point of discontinuity. Then by construction one has

Un
f (A+) = -̂1(δ1/n2, -̂2(δ2/n2, Un

f (A−))),
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where δi = 0 or 1. We define

ω0 = Un
f (A−),

ω1 = -̂2(δ2/n2, Un
f (A−)),

ω2 = -̂1(δ1/n2, -̂2(δ2/n2, Un
f (A−))) = Un

f (A+).

We also introduce the following front lines:

xi(t) = A + λit for t ≤ 0, where λi = s(ωi, ωi+1) for i = 0, 1.

Then locally, the backward Riemann problem is approximately solved by

u(t, x) =






Un
f (A−) for x < x0(t),

ω1 for x0(t) < x < x1(t),

Un
f (A+) for x > x1(t).

Of course, we suppress unnecessary lines (i.e. x0 if ω0 = ω1 or x1 if ω1 = ω2). Note that
x0 < x1 because the first and second characteristic speeds do not overlap in the domain.

This defines the approximation for small t ≤ 0 as long as two fronts do not meet.
Note that we do not modify the speeds of the front as in Section 3. In fact, we will prove
that fronts of the same family do not meet at least if T V (u1) is small enough, and n is
large enough. As a consequence, in these circumstances, without modifying the speeds at
all, there are only binary interactions. Possibly, there can be simultaneous interactions in
different parts of the domains, but these can be treated as successive interactions.

Marking. We call the 1-shock issuing from x = 0 and the 2-shock issuing from x = 1
strong. All other waves areweak. The i-waves across whichw3−i increases are rarefaction
fronts, whereas the ones for which w3−i decreases are shocks.

Step 2. We have to explain how to extend the solution after two fronts have met. We
discuss the way to extend it according to the nature of the incoming fronts.

1. Fronts of the same family.
Weak shocks. Two shocks of the same family cannot meet when going backward in time,
as a direct consequence of Lax’s inequalities.

Rarefaction-rarefaction. This is precisely the kind of interaction that we want to avoid.
We will prove that such meetings do not take place inside the domain. Let us say for the
moment that the two fronts merge in the following sense: say the front on the left separates
the states ωl and ωm, and the right one separates ωm from ωr . “After” the meeting, we
define the approximate solution by a single discontinuity line separating ωl from ωr and
traveling at speed s(ωl, ωr).

Shock-rarefaction. Again, we will show that these interactions do not take place, as a
consequence of the fact that the strength of the shocks is greater than the one of the rare-
faction fronts. Let us temporarily say that these interactions are solved as in the previous
case.
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2. Fronts of opposite families.
Weak fronts. When two weak fronts (ul; um) with um = -1(σ1, ul) and (um; ur) with
ur = -2(σ2, um) interact, we introduce σ ′

1 and σ ′
2 by Lemma 6 and ũm := -2(σ

′
2, ul).

After the interaction, we extend the approximation by two fronts separating ul and ũm

on the left, and separating ũm and ur on the right, with respective speeds s(ul, ũm) and
s(ũm, ur). Note that at least for small fronts, the outgoing i-wave has the same nature
(shock/rarefaction) as the incoming one, as a consequence of (90) for instance.

Strong shocks. The interaction of the two strong shocks is solved in terms of two (strong)
shocks, as described in Lemma 9, that is, if the (left) 1-shock is described by um =
-1(ρ1, ul), while the (right) 2-shock is described by ur = -2(ρ2, um), we find ρ′

1 and ρ′
2

by Lemma 9. As in the previous case, we extend the solution by a 2-shock separating ul

from ũm := -2(ρ
′
2, ul) with speed s(ul, ũm) and a 1-shock separating ũm from ur with

speed s(ũm, ur).

Strong shock-weak shock. The interaction of a weak 1-shock (ul, um) and a strong 2-
shock (um, ur) is solved as in the weak/weak case, with ρ′

1 and σ ′
2 given by Lemma 7.

This case of a strong 1-shock and a weak 2-shock is handled similarly.

Strong shock-rarefaction. The interaction of the 1-strong shock (ul, um) and a 2-rarefac-
tion front (um, ur) is solved in terms of two 1-shocks as made possible by Lemma 8:
we extend the solution by a 1-shock separating ul from ũm := -1(σγ , ul) with speed
s(ul, ũm) and a strong 1-shock separating ũm from ur with speed s(ũm, ur). The case of
an interaction strong 2-shock/1-rarefaction front is treated similarly.

strong 2-shock

weak 2-shock

t

0 1

x

strong 1-shock

2-rarefaction

weak 1-shock

2+

2i

2i

2−

Fig. 4. A backward front-tracking approximation.
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Marking. In all cases but the case of an interaction between a strong shock and a rar-
efaction front, the i-outgoing wave is called weak (resp. strong) if the incoming wave is
weak (resp. strong). Concerning the case of a strong 1-shock meeting with a 2-rarefaction
front, the outgoing 1-shock on the left is calledweak and the 1-shock on the right is strong.
Correspondingly, in the case of a strong 2-shock meeting with a 1-rarefaction front, the
outgoing 2-shock on the right is called weak and the 2-shock on the left is strong.

Remark 7. In the previous algorithm, two incoming fronts yield at most two outgoing
fronts, hence the total number of fronts is finite.

The construction described above is represented in Figure 4.

5.7. Estimates on the approximation

In this section, we establish some estimates on the approximation described above.

Step 1. BV estimate. As in Section 3, we introduce the following Glimm’s interaction
functionals, with different weights according to the nature of the waves:

Qww(t) =
∑

(α,β) approaching
weak waves

|σα| |σβ |,

QswS(t) =
∑

(α,β) approaching with
α a weak shock
β a strong wave

|σα|,

QswR(t) =
∑

(α,β) approaching with
α a weak rarefaction

β a strong wave

|σα|,

(117)

where approaching fronts are couples (α, β) such that α is a 2-front on the right of the 1-
front β and the strength is measured for instance by (36). The total interaction functionals
are defined as

Q(t) = AQww(t) + QswS(t) + BQswR(t), (118)

where A and B are constants to be fixed later.
We also introduce various strengths of the approximation at time t : V 1

s (t) (resp. V 2
s (t))

is the strength of the strong 1-shock (resp. 2-shock) at time t and

Vw(t) =
∑

α weak wave existing
at time t

|σα|, Vs(t) = V 1
s (t) + V 2

s (t), V (t) = Vw(t) + Vs(t).

(119)
During an interaction:

(σα and σβ at time τ+) → (σ ′
α and σ ′

β at time τ−)
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we have the estimate (90) for a weak-weak interaction, (92) or (94) for a strong-weak in-
teraction, (95) for a strong interaction (in the case where there are two strong shocks). Let
TI be the time of interaction of the two strong waves (if any). All the previous estimates
are valid as long as the states considered are in the domain D. As in Section 3, we get:

• during a weak-weak interaction:

Vw(τ−) ≤ Vw(τ+) + C1|σ | |σ ′|, Vs(τ
−) = Vs(τ

+),

Qww(τ−) − Qww(τ+) ≤ −|σ | |σ ′| + C1|σ | |σ ′|Vw(τ+),

QswS(τ−) − QwsS(τ+) ≤ C1|σ | |σ ′|, QswR(τ−) − QwsR(τ+) ≤ C1|σ | |σ ′|,
(120)

• during a strong shock-weak shock interaction:

Vw(τ−) ≤ Vw(τ+) + C2|σ |, Vs(τ
−) ≤ Vs(τ

+) + C2|σ |,
Qww(τ−) − Qww(τ+) ≤ C2|σ |Vw(τ),

QswS(τ−) − QswS(τ+) = −|σ |, QswR(τ−) − QswR(τ+) = 0,
(121)

• during a strong shock-weak rarefaction interaction (call the rarefaction σ )

Vw(τ−) ≤ Vw(τ+) + C3|σ |, Vs(τ
−) ≤ Vs(τ

+) + C3|σ |,
Qww(τ−) − Qww(τ+) ≤ C3|σ |Vw(τ−),

QswS(τ−) − QswS(τ+) ≤ C3|σ |, QswR(τ−) − QswR(τ+) = −|σ |.
(122)

Now we choose A and B:

B = 4C3 and A = 3C1(1+ B). (123)

Hence for a suitable c1 > 0 one has: for τ > TI , if Vw(τ+) < c1,





Q(τ−) − Q(τ+) ≤ −(A/2)|σ | |σ ′| in a weak-weak interaction,
Q(τ−) − Q(τ+) ≤ −(1/2)|σ | in a strong shock-weak shock interaction,
Q(τ−) − Q(τ+) ≤ −(B/2)|σ | in a strong shock-weak rarefaction interaction.

(124)
Hence there is some K > 0 such that as long as τ > TI and Vw(τ+) < c1,

τ 0→ Vw(τ) + KQ(τ) and τ 0→ Vs(τ ) + KQ(τ) are nonincreasing as τ decreases,
τ 0→ Vs(τ ) − KQ(τ) is nondecreasing as τ decreases.

(125)
Moreover, at each interaction time, the decrease (resp. increase) of the above quantities is
at least (K/2)7Q.

It follows as in Section 3 that provided Vw(0) is small enough, one has Vw(τ) < c1
and hence (125) satisfied for all t in [TI , 0], at least as long as the approximation is well-
defined.

For times t ≤ TI , the total strength can be estimated in the same way but the situation
is much simpler, because there is no rarefaction front outside the triangular zone delimited
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by the initial interval {0} × [0, 1] and the two strong shocks before their interaction (or
outside the triangle determined by the strong shock until it quits the domain, when there
is only one strong shock). One gets again

τ 0→ Vw(τ) + KQ(τ) is nonincreasing as τ ≤ T −
I decreases,

τ 0→ Vs(τ ) + KQ(τ) is nonincreasing as τ ≤ T −
I decreases,

τ 0→ Vs(τ ) − KQ(τ) is nondecreasing as τ ≤ T −
I decreases,

Vw(τ) = O(1)Vw(0) ∀τ ≤ TI .

(126)

(Note that Vw andQww are continuous at time TI .)

Step 2. Validity of the domain. We prove that if the total variation of u1 is small enough,
then all the states considered in the approximations lie in the domain D introduced in
Subsection 5.4, and the previous estimates are valid.

We denote by 2−(τ ) (resp. 2+(τ ), 2i(τ)) the zone in R of points on the left of the
left strong shock (resp. on the right of the right strong shock, between the two strong
shocks). If one of the two shocks is missing (i.e. u1 -∈ D2 according to Subsection 5.2),
we agree that there is no 2i(τ) and that 2−(τ ) (resp. 2+(τ )) is the zone to the left (resp.
right) of the unique strong shock.

Denote by S1 (resp. S2) the position of the strong 1-shock (resp. 2-shock) (see Fig-
ure 4).

First, it is quite easy to see that the states in 2−(τ ) (resp. 2+(τ )) stay close to u−
1

(resp. u+
1 ) if the total variation of u1 has been chosen small enough. Indeed, we observe

that
Vw(τ) ≤ Vw(0) + KQ(0) ≤ K2T V (u1).

Hence the total variation on these zones satisfies

T V2−(τ )∪2+(τ ) ≤ LK2T V (u1),

with L defined as in (65).
As in the previous construction the leftmost (resp. rightmost) state isU−

1 (resp.U
f
n (1)

with |Uf
n (1) − U+

1 | = O(1/n)), the claim follows, at least for n large enough.
It remains to see that in 2i(τ), the states are close to u1 for τ ≥ TI and to ũ1 for

τ ≤ TI . Concerning the first point, it follows from (125) that the strength of the strong
shocks is as close to the original one as wanted if T V (u1) is small enough. As the left
state is close to u−

1 , it follows that the state Un(τ, S1(τ )+) is as close to u1 as required.
The claim for τ ≥ TI follows as previously. All the same, the claim for τ ≤ TI follows
from (95) and the same procedure.

Step 3. Estimate on the size of the waves

Rarefaction fronts. This is done essentially as the estimate of rarefaction fronts in Sec-
tion 3. All the calculations in this step are valid as long as there is no interaction between
fronts of one family. This will allow us to prove in the next step that such interactions are
not possible, and hence that the estimates here are valid for all times.



Controllability of the Euler equation 39

Let us first remark that all the interactions of two fronts in the algorithm are solved in
terms of at most two outgoing fronts, and that one can track the front after interactions by
considering the outgoing front of the same family.

We consider a rarefaction front ν, and introduce Vν as in (66) where we now say
that µ and ν are approaching one another if they are in opposite families and the 2-wave
is on the right of the 1-wave. For a quantity g depending on the approximation, define
7g(τ) = g(τ−) − g(τ+). Recalling that the meeting of ν with a strong shock ends the
rarefaction front, the evolution of Vν is ruled by weak interactions, for which we still have
Glimm type estimates. Hence as in Section 3 (see (67)), this leads to

|σν(t)| ≤ 1
n2
exp(C1(Vw(0) + KQ(0))) = O(1/n2). (127)

Weak shocks before any strong interaction. We consider a weak shock front α, and in-
troduce Vα by (66) as well. We consider the evolution of the strength of the shock before
any interaction with a strong wave. One has

• during an interaction which does not involve α:

7σα = 0 and 7(Vα + KQ) ≤ 0,

• during an interaction which involves α and a weak wave (denoted β):

7σα ≤ C1|σ−
α | |σβ | and 7(Vα + KQ) ≤ −|σβ |.

Now we introduce the function

G(t) := |σα(t)| exp(g(t)) with g(t) := −C5(Vα(t) + KQ(t)),

where we fix the constant C5 := 4C1. It is clear that in the first case, G decreases with t

(that is, increases as t decreases). For the second case, we remark that thanks to (125), if
T V (u1) is small enough, one has for all times

−1 ≤ g(t) ≤ 0.

Since 1− ex ≥ −(1− 1/e)x on [−1, 0], one gets, for each interaction time,
7G(t) = G(t+){7|σα| + |σα|[1− exp(g(t+) − g(t−))]}

≥ G(t+){7|σα| − |σα|(1− 1/e)(g(t+) − g(t−))}
≥ G(t+){−C1|σα| |σβ | + |σα|(1− 1/e)(C5|σβ |)} ≥ 0.

Hence G decreases with t (i.e. increases as t ↓), and hence we deduce

|σα(t)| ≥ 1
n
exp(−C5(Vw(0) + KQ(0))). (128)

Shocks after a strong interaction. Clearly, after a strong interaction, by (92), the size of
the outgoing wave is connected to the size of the incoming wave via

|σ(τ−
i )| ≤ C2|σ(τ+

i )|,
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where τi is the time of interaction of the weak wave with a strong shock. Hence the same
argument as previously leads to the conclusion that for all weak waves γ one has, for
τ ≤ TI ,

|σγ (τ )| ≤ |σγ (τ+
i )| exp(C1(Vw(0) + KQ(0))) ≤ |σγ (0)| exp(2C1(Vw(0) + KQ(0))),

where it is to be understood that when a rarefaction front meets a strong shock, it is
“continued” as a shock of the opposite family.

5.8. Interactions inside a family

1. No shock/rarefaction interaction inside a family. We only consider the case of the
first family, since the case of the second family is treated similarly. Let us suppose that
such a meeting happens, and consider the first (in decreasing time) of these meetings:
consider, say, the case of a 1-rarefaction front separating ul and um, on the left of a 1-
shock separating um and ur , the pattern with the shock on the left of the rarefaction front
being again treated similarly. Hence ur ∈ S1(um) and ul ∈ Rl

1(um).
The respective speeds of these fronts are by construction s(ul, um) and s(um, ur). The

fact that these two fronts meet implies that

s(um, ur) > s(ul, um). (129)

Clearly, s is a symmetric function, and hence

s(um, ur) > s(um, ul). (130)

We remark that in the (ρ, m) plane, the left rarefaction curve Rl
1(um) is above the shock

curve S1(um): this follows from the fact that Rl
1 has the same expression as R1(um) with

ρ > ρm and from the Cauchy–Schwarz inequality.
Now we introduce the state ũr as the intersection in the (ρ, m) plane of the curve

S1(um) with the interval [um, ul]. Note that this intersection exists because Rl
1(um) is

(strictly) concave, hence [um, ul] is strictly below the tangent to Rl
1(um) at um. Conse-

quently, [um, ul] is locally below S1(um) (which has the same tangent) as well. Hence
together with the preceding remark, this proves the existence of ũr .

Now by construction
s(um, ul) = s(um, ũr ),

and hence by (130) we get
s(um, ur) > s(um, ũr ). (131)

Now one sees that s(um, ·) decreases along the Rankine–Hugoniot curve. Indeed, on the
1-Rankine–Hugoniot curve, one has

s = m − mm

ρ − ρm
= mm

ρm
−

√

κ
ρ

ρm

ργ − ρ
γ
m

ρ − ρm
for ρ > ρm.
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We deduce that on the S1(um) curve, ur is between ũr and um. Hence, in the usual Eu-
clidean norm,

|um − ur | < |um − ũr | < |um − ul |,
which contradicts our previous estimates on the strengths of the shocks and the rarefaction
fronts, at least for large n.

2. Noncrossing of rarefaction fronts inside a family. This follows from the Glimm–
Lax theory on the spreading of the rarefaction waves (see [22]). We consider the case of
1-waves, since the 2-waves can be treated similarly. We consider two consecutive rarefac-
tion fronts, that is, a pair of rarefaction fronts which at the beginning t = 0 do not enclose
any other 1-front. Note that we do not consider the case when they are separated by a
1-shock since by the previous point and (128), such rarefaction fronts do not collide.

Denote by C1 and C2 the two rarefaction fronts as in Figure 5, with X = C1(0) and
Y = C2(0). These curves are contained in 2i(t) when there are two strong shocks, or
in a fixed 2+ or 2− when there is only one strong shock, since they do not meet the
strong shock of their family, and the meeting with the strong shock of the opposite family
destroys them. We suppose that no meeting of fronts of the same family has occurred yet.

t = 0
C1 C2

2-wave

σt

τt

C1(t∗)

C2(t)

C2(t! )

Fig. 5. Focusing of rarefaction fronts.

In what follows, the radius r which measures the oscillation of the solution between
the two strong shocks (or on the side of the strong shock which contains the “initial do-
main” {0} × [0, 1] when there is only one strong shock) is taken small enough. Let us
underline that r is to be chosen small enough, independently of n. As we saw earlier,
considering a final state of sufficiently small total variation yields an approximation sup-
ported in D with r arbitrarily small. All the states considered in this subsection lie in
B(u1; r).

Given t < 0, we construct two straight lines σt and τt as follows. We fix

λ̌i := inf
u∈B(u1;r)

λi(u) and λ̂i := sup
u∈B(u1;r)

λi(u),
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and then set
λ∗ = λ̌2 − r and λ∗ = λ̂2 + r.

We define σt to pass through C2(t) with speed λ∗; this curve intersects C1 at the point
C1(t∗). Then we define τt to pass through C1(t∗) with speed λ∗ (see Figure 5).

From now on, C1 are C2 are considered as maps R+ → R (mapping t to the position
of Ci (t) on the x-line). Define the “horizontal” distance between C2(t) and C1(t∗):

D∗(t) := C2(t) − C1(t∗). (132)

One has
d

dt
D∗(t) = Ċ2(t) − Ċ1(t∗)

dt∗

dt
.

Also, C2(t) − C1(t∗) = λ∗(t − t∗) yields

dt∗

dt
= 1+ Ċ2(t) − Ċ1(t∗)

Ċ1(t) − λ∗
.

In turn, this leads to

dD∗

dt
= (Ċ2(t) − Ċ1(t∗))

λ∗
λ∗ − Ċ1(t)

= (Ċ2(t) − Ċ1(t∗))
λ∗

λ∗ − λ1
(1+ O(r)).

But Ċ2(t) − Ċ1(t∗) can be estimated by

Ċ2(t) − Ċ1(t∗) = A + B, (133)

where

A(t) := [Ċ2(t) − λ1(C2(t)−)]− [Ċ1(t∗) − λ1(C1(t∗)−)],
B(t) := λ1(C2(t)−) − λ1(C1(t∗)−).

We have the following estimate on A, using (33):

A = 1
2
[λ1(C1(t∗)+) − λ1(C1(t∗)−)]+ 1

2
[λ1(C2(t)+) − λ1(C2(t)−)]+ o

(
1
n2

)

= 1
2

∂λ1
∂w2

(u1)(σ1(t
∗) + σ2(t)) + o

(
1
n2

)
+ O(r[σ1(t∗) + σ2(t)]). (134)

For B, we have

B(t) = λ1(C2(t)−) − λ1(C1(t∗)−)

=
∑

2-waves
crossing σt

∂λ1
∂w1

(u1)[w1]+
∂λ1
∂w2

(u1)[w2]+ O(r)
∑

2-waves
crossing σt

|[w1]| + |[w2]|. (135)

Hence
B(t) ≤ C

∑

σ a 2-wave
crossing [C2(t! ),C2(t)]

|σ |.
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We write σ1 for σ1(t∗) and σ2 for σ2(t). We have

D∗(t) = D∗(0) + (1+ O(r))
λ∗

λ∗ − λ1

∫ t

0

(
1
2
(σ1 + σ2)ξ1 + o

(
1
n2

))

+ O(1)
∫ t∗

0

( ∑

σ a 2-wave
crossing [C2(s! ),C2(s)]

|σ |
)

ds.

Now in the last term, each wave crossing C2 (at a point C(θ)) is counted when C(θ) ∈
[C2(s!), C2(s)]. Clearly, the time interval for which this happens is of lengthO(rD∗(θ)).
Hence one gets

D∗(t) = D∗(0)+(1+O(r))
λ∗

λ∗ − λ1

∫ t

0

(
1
2
(σ1+σ2)ξ1+o

(
1
n2

))
+O(r)

∫ t

0
D∗(s) ds.

A simple Gronwall argument yields

D∗(t) ≥ exp(−O(r)t)D∗(0)

+ (1+ O(r))

∫ t

0

[
1
2
(σ1 + σ2)

λ∗
λ∗ − λ1

ξ1 + o

(
1
n2

)]
exp(−O(r)τ) dτ.

Now (102) yields

D∗(0) ≥ λ∗ X − Y

λ∗ − λ1

≥ 1
1− α

λ∗

λ∗ − λ̌1

ξ1
n2
max

(
λ2 − λ1
1− Y

,
λ1
X

,
−λ1
1− Y

)−1
. (136)

Note that using (127), we have

1
2
(σ1 + σ2) = 1+ O(T V (u1))

n2
. (137)

Hence we see that, provided T V (u1) (and hence also r) is small enough independently
of n, and for n large enough,

D∗(t) > 0 for t such that −t <
1

1− α/2
max

(
λ2 − λ1
1− Y

,
λ1
X

,
−λ1
1− Y

)−1
. (138)

We consider three cases according to the value of the maximum:

• If the maximum is the first term, then one sees that for some t satisfying (138), the
curve C2 has met the strong 2-shock, and hence has ceased to exist. Indeed, from the
fact that on both sides of the strong 2-shock the states are in the domain described in
Subsection 5.4, one sees that its speed satisfies

Speed(S2(t)) ≥ λ2 − β,
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at least if r is chosen small enough. The curve C2 also has states on both sides in the
domain described in Subsection 5.4, hence its speed satisfies

Ċ2(t) ≤ λ1 + β.

Now choosing β such that

1
λ2 − λ1 − 2β

<
1

1− α/2
1

λ2 − λ1
(139)

yields the conclusion.
• If the maximum is the second term, then one sees that for some t satisfying (138), the
curve C2 has left the domain [0, 1] (through 0). (Note that this term is useful only when
λ1 > 0.)

• If the maximum is the third term, then one sees that for some t satisfying (138), the
curve C2 has left the domain [0, 1] (through 1).

This ends the proof that rarefaction fronts do not merge (inside the domain).

5.9. End of the proof of Proposition 4

Step 1. Convergence. This is the same argument as in Section 3. The approximations
constructed above have a uniform total variation according to the variable x, and thanks
to (68), a uniform Lipt (L

1
loc) bound as well. It follows again by Helly’s theorem that, up

to a subsequence that we do not relabel,

Un → U in L1loc((−∞, 0]× [0, 1]; R+∗ × R). (140)

Step 2. Proof that (EI) and the entropy condition are satisfied. Here, we prove that
the limit U that we obtained satisfies (EI) in weak form, and the entropy inequalities. This
is not very different from the case of the direct problem with small total variation (see for
instance [8, Section 7.4]), but we give the proof for completeness. Moreover, although in
this section all shocks travel with exact shock speed, we write the proof in the context
where weak fronts can be traveling with a speed which differs from the shock speed by at
most 1/2n. Hence, the proof here applies in the context of Section 3.

We first prove that U is a weak solution of (EI). Let ϕ ∈ C∞
0 ((−∞, 0) × (0, 1); R)

be given. From (140) and the uniform bound on Un, we see that it suffices to prove that

In :=
∫

(−∞,0]×[0,1]
(ϕtU

n + ϕxf (Un)) → 0 as n → ∞.

Assuming that ϕ = 0 for t ≤ −T , and denoting xα the curve corresponding to the front α,
we have, by Stokes’ formula,

In =
∫ 0

−T

∑

α

ϕ(t, xα){ẋα(t)(Un(t, x+
α )−Un(t, x−

α ))−(f (Un(t, x+
α ))−f (Un(t, x−

α )))} dt.
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Denote by Iα the term of the sum corresponding to the wave α. We write [φ](xα) for
φ(x+

α ) − φ(x−
α ). The term Iα depends on the type of the wave α:

• If α is a strong shock, it moves at the exact Rankine–Hugoniot speed, hence Iα = 0.
• If α is a weak shock, it moves at the exact speed, up to 2−n, hence Iα = O(1)2−n|σα|.
• If α is a rarefaction front (of the family i), it is easy to see that

[f (u)](xα(t)) − s(u(xα(t)−), u(xα(t)+))[u](xα(t)) = O(|σα|2),
which yields

Iα = O(1)
(
1
n2

+ 1
2n

)
|σα|.

If we use the uniform bound on the total strength of the fronts, this leads to the fact that
In → 0, which was to be proved.

We now turn to the entropy inequality. We consider an entropy/entropy flux pair
(η, q), with η convex. In order to prove (5), it suffices to prove that

lim inf Jn ≥ 0, where Jn :=
∫

(−∞;0]×R
(ϕtη(Un) + ϕxq(Un)).

As previously, we have

Jn =
∫ 0

−T

∑

α

ϕ(t, xα){ẋα(t)[η(Un)](xα(t)) − [q(Un)](xα(t))} dt

≥
∫ 0

−T

∑

α
weak wave

ϕ(t, xα){ẋα(t)[η(Un)](xα(t)) − [q(Un)](xα(t))} dt. (141)

Indeed, the strong shock waves (which travel at exact speed) satisfy the entropy condition
(see for instance [1, Lemma 4.1])

s[η(Un)](x+
α (t)) − [q(Un)](xα(t)) ≥ 0. (142)

This is seen by differentiating the above left hand side along the shock curve. Set u+ :=
Un(t, x+

α ) and u− := Un(t, x−
α ), u+ = -i(η, u−). We have

d

dη
(s[η]− [q]) = ds

dη
(η(u+) − η(u−)) + sD(η(u+))

du+

dη
− Dq(u+)

du+

dη

= ds

dη
(η(u+) − η(u−)) + D(η(u+))

[
s
du+

dη
− Df (u+)

du+

dη

]

= ds

dη
(η(u+) − η(u−)) − D(η(u+))

[
ds

dη
(u+ − u−

]
,

where we differentiated the Rankine–Hugoniot relation in the last step. Now we use the
fact that ds/dη < 0 globally along the shock curve (which is easily checked using (30)-
(31)) and the convexity of η; this yields (142).

Again, denote by Jα the general term in (141), which depends on the type of the
wave α.
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• If α is a weak shock, it moves at the exact speed, up to 2−n, hence Jα ≥−O(1)2−n|σα|.
• If α is a rarefaction front (of the family i), it follows all the same from (26)–(27) that

[q(Un)](xα(t)) − s(Un(xα(t)−), Un(xα(t)+))[η(u)](xα(t)) = O(|σα|2),

which yields

Jα ≥ −O(1)
(
1
n2

+ 1
2n

)
|σα|.

Using the uniform bound on the total strength and the estimate on the size of the rarefac-
tion front, this yields lim inf Jn ≥ 0, which was to be proved.

Step 3. Proof that u|t=−T3 is constant. Let us prove that for t sufficiently negative, there
are no fronts inside the domain [0, 1], for all the approximations Un. Then the function u

obtained as a limit is constant for t sufficiently negative.
It follows from the fact that the states considered in the approximations are in the

domain D defined in Subsection 5.4 that the strong 1-shock leaves it through x = 1
and that the strong 2-shock leaves the domain through x = 0, before a time −T a

3 easily
computable. As a consequence, if there is a front inside the domain for times t ≤ −T a

3 , it
lies in 2i(t).

We note that a front under the two strong shocks is necessarily a shock: a rarefaction
front cannot meet the strong shock of its own family, and the meeting with the front of
the other family destroys it. Then, any shock-shock interaction is solved in terms of two
shocks (as seen in Subsection 5.3). Recall that there are no backward interactions of fronts
of the same family. Consequently, one can follow each front under the strong shocks, as
a front of a fixed family, and no new fronts appear. Using the definition of the domain
in Subsection 5.4 (the states close to the critical curves are avoided), one sees that these
fronts must leave the domain.

6. The Lagrangian case

6.1. Introduction

In this section we prove Theorem 2. The structure of the proof is the same as the one of
Theorem 1: in a first step, one shows that one can drive the system from u0 to a constant
state, then in a second step, one proves that it is possible to travel between arbitrary
constant states, and finally in the last step, it is proved that there exists a solution starting
from a constant state and reaching u1. Only the first step is really different from the one
in the proof of Theorem 1. Hence the goal of this section is to prove:

Proposition 5. Let u0 be as in Theorem 2. Then there exist ω ∈ R+∗ × R and an entropy
solution u of (P) in [0, 1]× [0, 1] such that

u|t=0 = u0, (143)
u|t=1 = ω. (144)
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Before proving Proposition 5, let us recall that if we write the state u = (τ, v), the system
(P) has eigenvalues λ1 = −

√
κγ τ−γ−1 and λ2 =

√
κγ τ−γ−1 with respective eigenvec-

tors

r1(u) = 2√
κγ (γ + 1)

τ (γ+3)/2
(

1
−λ1(u)

)
,

r2(u) = − 2√
κγ (γ + 1)

τ (γ+3)/2
(

1
−λ2(u)

)
,

(145)

normalized in order that ∇λi · ri = 1. The rarefaction curves are

Ri : v−v− = (−1)i 2
√

κγ

γ − 1
[τ−(γ−1)/2−τ

−(γ−1)/2
− ] with (−1)i(τ −τ−) < 0, (146)

and the shock curves are

Si : v − v− =
√

−κ(τ−γ − τ
−γ
− )(τ − τ−) with (−1)i(τ − τ−) > 0. (147)

We parameterize Lax’s wave curves (that we still denote -i) by λ(ur) for the rarefac-
tions and by 2(λ(ur) − s) for the shocks, which makes them C2-regular (see [26]).
Again we put an “l” exponent for left curves. When (u1, u2) determines an i-wave,
u2 = -i(σ (u1, u2), u2), we take |σ(u1, u2)| as a measure of the strength of this wave.

As previously, when τ1 -= τ2, we write

s(u1, u2) = −v1 − v2
τ1 − τ2

,

whether (u1, u2) determines a shock or not. It is again elementary to establish that on a
rarefaction curve u+ = Ri(s, u

−), s > 0, we have

s(u−, u+) = λi(u
−) + λi(u

+)

2
+ O(|u− − u+|2) and λ(u−) < s < λ(u+). (148)

Finally, recall that the Riemann invariants here are given by (7).
We begin the proof of Proposition 5 by introducing a domain for the solution that we

are going to construct.

6.2. Domain for the solution

As for Theorem 1, one of the ideas is to let a strong 2-shock enter the domain. We begin by
determining the shock. We consider U−

0 such that (U
−
0 , u0) is a 2-shock of speed greater

than 3 and such that λ1(U−
0 ) ≤ −3. This is possible since by (147) the shock speed is

given by

s =
√

−κ
(τ 0)−γ − (τ−

0 )−γ

τ 0 − τ−
0

→ +∞ as τ−
0 → 0+, (149)
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where U−
0 = (τ−

0 , v−
0 ) and u0 = (τ 0, v0), and since

λ1(U
−
0 ) = −√

κγ (τ−
0 )(−γ−1)/2 → −∞ as τ−

0 → 0+.

To fix notations, we write u0 = -2(p, U−
0 ).

Now the domain considered in what follows has the form

D = B(U−
0 ; r) ∪ B(u0; r), (150)

where r is small enough that: the vacuum is avoided, Glimm’s estimates are satisfied in
each component of D, the speeds are strictly separated in each component of D, any
simple wave leading from a state of B(U−

0 ; r) to a state of B(u0; r) is a 2-shock with
speed greater than 2, and a state ω ∈ B(U−

0 ; r) satisfies λ1(ω) ≤ −2. Other conditions
on r are found in the next lemmas.

Remark 8. One could have used an arbitrarily small shock here, but we underline that
the constant r described above depends on the reference shock and tends rapidly to 0 as
the shock shrinks. Also, we would not be able to require λ1(ω) ≤ −2 and the speed of the
strong shock to be greater than 2, but rather λ1(ω) ≤ −c < 0 and the speed of the strong
shock to be greater than c > 0 (and the time of controllability T is of course affected).
Note also that one can make the same type of construction for (EI) provided the base point
u0 satisfies λ1(u0) < 0 < λ2(u0).

6.3. Two lemmas

Before constructing the front-tracking approximations for a solution to Proposition 5, we
establish two preliminary lemmas. The general idea of these lemmas is to prove that, if
we are able to send supplementary 2-shocks towards the strong shock at the right time
and with the right strength, one can get rid of the 1-shocks that would naturally emerge
from the strong shock. These shocks are the principal obstruction to reaching a constant
state.

Lemma 11. If r is small enough then the following holds. Let ul ∈ B(U−
0 ; r) and

um, ur ∈ B(u0; r) be such that

(ul, um) is a 2-shock and (um, ur) is a 1-shock.

Then there exists ũl such that

(ũl, ul) is a 2-shock and (ũl, ur ) is a 2-shock,

and moreover

σ(ũl, ul) = O(σ(um, ur)), (151)
σ(ũl, ur ) = σ(ũl, um) + O(σ(um, ur)). (152)
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Lemma 12. If r is small enough then the following holds. Consider ul ∈ B(U−
0 ; r) and

um, ur ∈ B(u0; r) such that

(ul, um) is a 2-shock and (um, ur) is a 2-rarefaction front.

Then there exists ũl such that

(ũl, ul) is a 2-shock and (ũl, ur ) is a 2-shock,

and moreover

σ(ũl, ul) = O(σ(um, ur)), (153)
σ(ũl, ur ) = σ(ul, um) + O(σ(um, ur)). (154)

2S
2S

2S
2S

ũl

um

ur

ũl

um

ur

ul
ul

2S 2S1S 2R

Fig. 6. Lemmas 11 and 12.

Proof of Lemmas 11 and 12. We begin with Lemma 11. To fix the notations, we write
um = -2(p, ul), ur = -1(σ1, um), ul = -2(σ2, ũl), and s the speed of the shock
(ul, um). By Lemma 1, the Riemann problem (ũl, ur ) is solvable, at least if r is small
enough. Let (σ ′

1, p
′) be the strengths of the resulting waves, that is,

ur = -2(p
′, -1(σ

′
1, ũl)).

We consider the mapping

(F, G) : (ul, σ1, σ2, p) 0→ (σ ′
1, p

′).

Then F(ul, 0, 0, p) = 0 for ul ∈ B(U−
0 ; r) and p in a neighborhood of p. It follows from

Lemma 1 that

[∂σ2F ](ul, 0, 0, p) = λ2(ul) − s

λ1(ul) − s
· det(r2(ul), um − ul)

det(r1(ul), um − ul)
. (155)

Now we remark that um − ul = (τm − τl)
t (1, −s) and

r2(ul) = − 2√
κγ (γ + 1)

τ
(γ+3)/2
l

t (1, −λ2(ul)),

r1(u
l) = 2√

κγ (γ + 1)
τ

(γ+3)/2
l

t (1, −λ1(ul)).
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By Lax’s inequalities, one has τm > τl , λ2(um) < s < λ2(ul) and s > λ1(ul). We get

[∂σ2F ](ul, 0, 0, p) = −λ2(ul) − s

λ1(ul) − s
· λ2(ul) − s

λ1(ul) − s
< 0.

Hence the equation F(ul, σ1, ·, p) = 0 can be solved for (ul, σ2, p) in a neighborhood of
(U−
0 , 0, p). Moreover,

[∂σ1F ](ul, 0, 0, p) = λ1(um) − s

λ1(ul) − s
· det(r1(um), um − ul)

det(r1(ul), um − ul)
. (156)

Hence by Lax’s inequalities,

[∂σ1F ](ul, 0, 0, p) > 0. (157)

If r is chosen small enough so that the above derivatives are bounded and bounded away
from 0, the existence of σ2 and (153) and (154) follow from the local inversion theorem.
Moreover the solution σ2 is negative when σ1 < 0, which implies that the wave (ũl, ul)

is indeed a shock. Hence this establishes Lemma 11.
The proof of Lemma 12 is entirely similar with ur = -1(σ1, um), σ1 < 0, replaced

by ur = -2(ς2, um), ς2 > 0. Then defining again

(F, G) : (ul, ς2, σ2, p) 0→ (σ ′
1, p

′),

one gets

[∂ς2F ](ul, 0, 0, p) = λ2(um) − s

λ1(ul) − s
· det(r2(um), um − ul)

det(r1(ul), um − ul)
< 0, (158)

which yields the conclusion.

Remark 9. Note in passing that one recovers by (156)–(157) and (158) the fact that,
at least for small waves, the interaction of a 1-shock (resp. 1-rarefaction front, 2-shock,
2-rarefaction front) with the strong 2-shock generates a shock (resp. rarefaction front,
rarefaction front, shock) in the first family. This is also true for (EI), and Lemmas 11 and
12 could also be proven in that case.

6.4. Construction of front-tracking approximations

In this subsection, we explain the construction of front-tracking approximations of a solu-
tion to Proposition 5. This is done in two steps: first we construct an approximate solution
“before the interaction with the strong shock”, and then we complete the approximation
“after the interaction with the strong shock”.

We begin by introducing approximations un
0 of the initial state u0, on [0, 1], satisfying:

T V (un
0) ≤ T V (u0),

un
0 → u0 in L1((0, 1)),

un
0 is piecewise constant.

(159)
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Step 1.

a. For fixed n, we locally solve approximately the Riemann problem for any discontinuity
point in (0, 1) (that is, with rarefaction waves replaced by rarefaction fans with accuracy
1/n as described in Section 3).

b. At point 0, we solve the Riemann problem U−
0 , un

0(0
+); we keep only the 2-wave

(which is a 2-shock if n is large enough that un
0(0

+) ∈ B(u0; r)). This front is called
strong.

c. We extend different fronts to their first interaction point. Here the convention is that
an interaction point is either the intersection of two fronts, or the crossing of a front with
the boundary [0, +∞) × {0} ∪ [0, +∞) × {1}. We modify if necessary the speeds of the
waves by an amount 1/2n in order that, at a given time, at most one interaction takes
place, involving either two fronts, or one front and the boundary. We denote by ûn the
resulting piecewise constant function that we construct progressively.

Now we explain how we extend ûn past interaction points. This depends on the na-
ture of the interaction. We suppose that the states on the left of the strong shock lie in
B(U−

0 ; r), and those on the left in B(u0; r).

1. Weak-weak interaction. If two weak fronts (ul, um) and (um, ur) interact, then we ex-
tend the solution by the approximate Riemann solution of the problem (ul, ur), with
the convention that we do not split rarefaction fronts again.

2. Front/boundary interaction.When a front meets the boundary, we extend the solution
by just ending the front (say, for instance, if the front (ul, um) meets the boundary {0}
at time t , then ûn is extended for times larger than t by um).

3. Strong/weak interaction. We suppose that the strong wave (ul, um) interacts with the
weak wave (um, ur) on its right (with ul ∈ B(U−

0 ; r) and um, ur ∈ B(u0; r)). Then
(ul, um) is a strong 2-shock, say um = -2(p, ul). We discuss the various extensions
of ûn according to the nature of the weak wave (um, ur).
α. (um, ur) is a 1-rarefaction front. In that case, by Schochet’s lemma, there exist ε′

1
and ε′

2 such that
ur = -2(p + ε′

2, -1(ε
′
1, ul)),

with the estimates
|ε′
2| + |ε′

1| = O(σ(um, ur)). (160)

Moreover, it follows from the expression of Schochet’s matrix (see also (157)) that
ε′
1 > 0. We fix ũl := -1(ε

′
1, ul). Then we extend the approximation ûn past the

interaction point by ul and ũl separated by a horizontal line on the left, and ũl and
ur separated by a single jump at speed s(ũl, um). (See Figure 7.)
Hence in the above construction, there is a horizontal discontinuity between ul and
ũl , which is certainly not intended to satisfy equation (P) even approximately. This
is modified in the second step of the construction.

β. (um, ur) is a 2-shock. Still by Schochet’s lemma, there are some ε′
1 and ε′

2 such that

ur = -2(p + ε′
2, -1(ε

′
1, ul)),
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with the estimate (160) still fulfilled. Moreover, it follows from the expression of
Schochet’s matrix (see also (158)) that ε′

1 > 0. Then we extend ûn past the time of
interaction as in the previous case.

γ . (um, ur) is a 1-shock. Here we use Lemma 11. Hence there is some ũl such that
ul = -2(α2, ũl), α2 < 0, and ur = -2(p + ε′

2, ũl). Recall that we have estimates
(151) and (152). Then we extend ûn past the time of interaction as previously, with
a horizontal discontinuity between ul and ũl .

δ. (um, ur) is a 2-rarefaction. Here we use Lemma 12. Again there is some ũl such
that ul = -2(α2, ũl), α2 < 0, and ur = -2(p + ε′

2, ũl). Then we extend ûn past
the time of interaction as previously, with a horizontal discontinuity between ul and
ũl . Here we have estimates (153) and (154).

In each case, the 2-wave outgoing from the interaction point is called strong. All other
waves are called weak.

Let us remark that there is no interaction on the left of the strong shock since there are
only horizontal discontinuity lines there. The first step is represented in Figure 7.

1 x0

t

strong 2-shock

weak 2-shock

1-shock

2-rarefaction

Fig. 7. Step 1.

If we assume for the moment that there are only a finite number of fronts and of inter-
action points, and that all states considered on the left of the strong wave lie in B(U−

0 ; r)

and all states on the right of it lie in B(u0; r), the above algorithm is well-defined. More-
over, the strong wave is a 2-shock of speed greater than 2 and hence it has left the domain
before t = 1/2.

Now we modify the approximation “after the strong shock”. The goal is to make it a
suitable approximation of an entropy solution, intended to satisfy (144).

Step 2. We denote by S(t) the position of the strong 2-shock at time t . We let S(x) be
the time when the strong 2-shock reaches x ∈ [0, 1]. We define TI := S(1). The goal is
to reconstruct properly the above approximation on the domain

9 =
⋃

x∈[0,1]
[S(x), +∞) × {x}. (161)

The main point is to consider 1−x as time, and [S(x), +∞) as the space domain. Hence
we get a problem in a varying domain, with boundary conditions on the “moving bound-
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x

t = TI
x = 1

x = 0

t = 0

Fig. 8. Second step.

ary” S(x), as described in Figure 8. The new piecewise constant function constructed in
this section will be denoted Un.

We let t1, . . . , tk be the different times of interaction of a weak shock with the strong
shock that occurred in the previous step, in increasing order. We denote by x1, . . . , xk the
corresponding positions in [0, 1]. We add tk+1 = TI , xk+1 = 1, t0 = 0 and x0 = 0. For
each [ti , ti+1), i = 0, . . . , k, there is a state ũi+1 on the left of the strong shock (in the
(t, x) plane, or on its right in the (1− x, t) plane) constructed in the above algorithm.

We start from Un = ũk+1 on [TI , +∞) at “time 1 − x = 0” (hence there is no front
in the domain). We let the fronts evolve in the domain (at the beginning, there are none),
until one of the following two situations occurs: either 1− x reaches 1− xi , or two fronts
meet in the domain 9.

First situation. For each i = k, . . . , 1, we have the following alternative, as seen in the
construction of Step 1: either

• ũi+1 = -2(ε
i
2, ũi) for some εi

2 < 0 (this corresponds to cases γ and δ of Step 1), or
• ũi+1 = -1(ε

i
1, ũi) for some εi

1 > 0 (this corresponds to cases α and β of Step 1).

In the first case, we extend the function Un over “time” 1 − x = 1 − xi on the right of
the strong 2-shock (in (t, 1− x) plane) by ũi and ũi+1, separated by a backward-in-time
2-front (which is a shock when seen in the usual direction of time) at shock speed, that is,
by the straight line passing through (ti , xi), with equation

(x − xi) + (t − ti )s(ũi , ũi+1) = 0, t ≤ ti .

Note that this front enters the domain (161) by Lax’s inequalities.
In the second case, we distinguish two possibilities:

• For xi that corresponds to the action of a 1-rarefaction front in Step 1, that is, in case
α above, we extend the function Un past time x = xi by ũi and ũi+1, separated by a
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forward-in-time 1-front (which is a rarefaction front) at shock speed, that is, again by
the straight line passing through (ti , xi), with equation

(x − xi) + (t − ti )s(ũi , ũi+1) = 0, t ≥ ti .

• For xi that corresponds to the action of a 2-shock in Step 1, that is, in case β above, we
extend the function Un beyond time 1− x = 1− xi by a (forward-in-time) rarefaction
fan of accuracy 1/n from ũi to ũi+1, each (rarefaction) front evolving at shock speed.

Note that these fronts lie in9, because they evolve forward in time (with negative speed).
Here we need not modify the speeds of the fronts, since, as we will see, there can only

be binary interactions. Simultaneous interactions (in different places) can be treated as
successive interactions.

Second situation.We extend the different fronts that enter the domain and let them evolve
at constant speed in the domain as 1− x increases until two of these fronts meet.

Let us remark that in this scheme, in the domain (161), two 1-fronts do not meet be-
cause they are 1-rarefaction fronts evolving forward in time (see (148)), and two 2-fronts
do not meet because they are 2-shock fronts evolving backward in time, as a consequence
of Lax’s inequalities. (Note that, in particular, 2-shocks do not meet S once they have
entered the domain.) Consequently, there can only be binary interactions. As a result, one
just has to deal with the meeting of a 1-rarefaction front with a 2-shock, as described in
Figure 9.

1R

1R

2S

2S

˜um

ur
t

x

ul

um

Fig. 9. Interactions in the second step.

We consider a 2-shock (ur , um) interacting with a 1-rarefaction front (ul, um). We
remark that, as in Figure 9, the 2-shock is “on top” of the 1-rarefaction front in (t, x) co-
ordinates, because the first one evolves backward in time, while the latter evolves forward
in time. Hence

ur = -l
2(ε2, -1(ε1, ul))

with ε1 > 0 and ε2 < 0. We have:
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Lemma 13. Suppose that all the states considered are in B(U−
0 ; r). There are some ε′

1
and ε′

2 such that
ur = -1(ε

′
1, -

l
2(ε

′
2, ul))

with
|ε1 − ε′

1| + |ε2 − ε′
2| = O(1)|ε1||ε2|. (162)

Proof. This lemma is obtained exactly as Lax’s theorem by the implicit function theorem,
noting that

d

dε
-l
2(·, ω)|ε=0 = −r2(ω).

We fix ũm := -l
2(ε

′
2, ul). The approximation Un is extended over the interaction

point by ul , ũm and ur with (see Figure 9):

• ul and ũm separated by a backward-in-time 2-front at shock speed,
• ũm and ur separated by a forward-in-time 1-front at shock speed.

Note that if all the states are in B(U−
0 ; r) and r is small enough, then the front (ũm, ur)

is a 1-rarefaction front, and (ũm, ul) is a 2-shock (see (162)).

In the above construction, the finite number of waves and interaction points is a conse-
quence of the fact that fronts of the same family do not meet. So in order to prove that the
above algorithm is well-defined, we only have to prove that all states stay in B(U−

0 ; r).

6.5. BV estimates and well-posedness of the algorithm

We first establish estimates on the piecewise constant function ûn constructed after the
first step of the algorithm. Then we look for estimates on Un.

a. Estimates on ûn. The BV estimate on ûn is obtained as in the Eulerian case, and is
even simpler, because the “fronts” that go out of an interaction with the strong 2-shock
do not interact since they are all horizontal. We infer that there are only a finite number
of fronts and interaction points analogously as in Section 3. We omit the details.

In particular, if T V (u0) < ε0, then all the states under consideration on the right of
the strong 2-shock are in B(u0; r).

Moreover, there is some constant C > 0 such that
∑

α meets S
at time τ

|σα(τ−)| ≤ C · T V (u0). (163)

Indeed (see for instance [8]), we consider an increasing sequence of piecewise affine
space-like curves 40, . . . , 4N such that: the curves 4i are under S, 40 starts at (0, 0+) and
there is no interaction point between 40 and {0} × [0, 1], there is exactly one interaction
point between 4i and 4i+1 (including the “front/boundary” interaction points), and there
is no interaction point between 4N and S. See Figure 10.
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.

.

.

1 x0

t

40

4N

Fig. 10. 40, . . . , 4N .

Then we fix

Vi :=
∑

σ intersects 4i

|σ | and Qi :=
∑

σ,σ ′ approaching
and intersecting 4i

|σ | |σ ′|.

Then one gets Vi + CQi decreasing for suitable C, which yields (163).
Finally, as in the Eulerian case, we get: for any rarefaction front σ (that one can trace

beyond interactions because of the convention that we made),

|σ(t)| ≤ C|σ(0)| = O(1/n), (164)

for t a time before interaction with the strong 2-shock.

b. Estimates on Un. From (163), (151), (153) and Schochet’s lemma (the transmission
matrix is bounded when the states on the sides of the shock lie in D), we get

∑

σ entering 9

|σ | ≤ C′ · T V (u0), (165)

where the fronts considered are those in Un; also for any rarefaction front that extends a
rarefaction front interacting with the strong 2-shock,

|σ(t+)| = O(1)|σ(t−)| ≤ C|σ(0)| = O(1/n), (166)

where |σ(t+)| (resp. |σ(t−)|) is the value of the strength of σ after (resp. before) inter-
action with the strong shock. Of course, for “new” rarefaction fronts (that come from the
interaction of a weak 2-shock with the strong 2-shock), one has σ(τ+) ≤ 1/n.

For x ∈ [0, 1], we introduce the curve :(x) as the union of [S(x), +∞)×{x} and of
the part ofS fromS(0) toS(x) (see Figure 11(a)). Also, letA(x) be the set of all couples
(σ, σ ′) intersecting :(x) and approaching (that is, σ is a 1-front and σ ′ is a 2-front, with
σ ′ above σ , that is, in that case, located later in time).

Then we can define

V(x) :=
∑

σ intersects :(x)

|σ | and Q(x) :=
∑

(σ,σ ′)∈A(x)

|σ | |σ ′|,
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Then again, for suitable C0, V(x) + C0Q(x) decreases as 1 − x increases. In particular,
using (165), we have the estimate

V(x = 0) ≤ O(1)T V (u0).

Note in particular that V(x = 0) dominates T VR+(Un
|R+×{0}).

:(x)

t = TI
x = 1

x = 0

t = 0

x

(a) The curve :(x)

t = TI

x = 1
t = 0

τ

x = 0

ℵ(τ )

(b) The curve ℵ(τ )

Fig. 11. Two families of curves.

Now, we introduce a family of curves depending on the time τ , as described in Figure
11(b): the curve ℵ(τ ) is composed of [τ, +∞) × {0}, the horizontal line from (τ, 0) to
the point (τ, S−1(τ )) (if S−1(τ ) is defined, and (τ, 1) otherwise), and then the curve
following S (along its left side) to the right boundary of the domain.

As previously, we define V andQ along the curve ℵ(τ ). Note that by what precedes, V
computed on ℵ(0) is of order O(1)T V (u0). Then one easily sees that V + CQ computed
along ℵ(τ ) is nonincreasing, which leads to

T V{t}×[0,S(t))(U
n) ≤ C′′T V (u0)

for any t and suitable C′′. This implies that the states considered are in the domain de-
scribed in Subsection 6.2 if T V (u0) is small enough. All the same, we also conclude that
all rarefaction fronts satisfy

|σ | = O(1/n), (167)

by distinguishing the rarefaction fronts that come from a rarefaction front “crossing” the
strong shock, and rarefaction fronts that come from the interaction of the strong 2-shock
with another 2-shock (the latter have original strength of order 1/n when leaving the
strong 2-shock). We omit the details.
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6.6. Conclusion

As previously, we also deduce a Lipt (L
1
x) bound on Un, and hence, up to a subsequence,

one gets
Un → U in L1loc([0, +∞) × [0, 1]).

The fact that the limit is an entropic solution of (P) is deduced as previously, using (164)
and (167): all fronts travel approximately at shock speed, and the rarefaction fronts are all
of size O(1/n).

It remains to justify that U reaches a constant state. It is sufficient to prove that

Un(t, ·) is constant for t ≥ 1. (168)

But this is a consequence of the construction which implies that there are only 1-rarefac-
tion fronts in the domain for t ≥ Ti . This can be seen as follows. The fronts above the
strong 2-shock come from a point (ti , xi). These fronts are only 1-rarefaction fronts or
shock 2-fronts (and each i-front keeps its nature—rarefaction front or shock—after suc-
cessive interactions). But the 2-shocks evolve backward in time. Consequently, for t ≥ Ti ,
only 1-rarefactions fronts can be left in the domain. But rarefaction fronts going forward
in time do not interact. Using the definition of r (characteristic speeds are bounded away
from 0), we deduce (168). This ends the proof of Proposition 5.

Now, in order to finish the proof of Theorem 2, it remains to establish corresponding
Propositions 3 and 4 for (P). Proposition 3 for (P) is simpler to prove than for (EI), because
there is only one zone in which λ1 < 0 < λ2. We omit the details. Then the proof of
Proposition 4 for the system (P) is similar to the one for (EI), with both strong shocks to
be retained. This is left to the reader.

Acknowledgments. The author wishes to thank the referee for stimulating remarks on the first ver-
sion of the paper.
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[13] Corli, A., Sablé-Tougeron, M.: Perturbations of bounded variation of a strong shock wave.
J. Differential Equations 138, 195–228 (1997) Zbl 0881.35071 MR 1462267

[14] Coron, J.-M.: Global Asymptotic stabilization for controllable systems without drift. Math.
Control Signal Systems 5, 295–312 (1992) Zbl 0760.93067 MR 1164379

[15] Coron, J.-M.: On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl.
75, 155–188 (1996) Zbl 0848.76013 MR 1380673

[16] Coron, J.-M.: Local controllability of a 1-D tank containing a fluid modeled by the shal-
low water equations. ESAIM Control Optim. Calc. Var. 8, 513–554 (2002) Zbl 1071.76012
MR 1932962

[17] Di Perna, R. J.: Global solutions to a class of nonlinear hyperbolic systems of equations.
Comm. Pure Appl. Math. 26, 1–28 (1973) Zbl 0256.35053 MR 0330788

[18] Dubois, F., LeFloch, P. G.: Boundary conditions for nonlinear hyperbolic systems of conser-
vation laws. J. Differential Equations 71, 93–122 (1988) Zbl 0649.35057 MR 0922200

[19] Glass, O.: Exact boundary controllability of 3-D Euler equation, ESAIM Control Optim. Calc.
Var. 5, 1–44 (2000) Zbl 0940.93012 MR 1745685

[20] Glass, O.: On the controllability of the Vlasov–Poisson system. J. Differential Equations 195,
332–379 (2003) Zbl pre02032993 MR 2016816

[21] Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure
Appl. Math. 18, 697–715 (1965) Zbl 0141.28902 MR 0194770

[22] Glimm, J., Lax, P. D.: Decay of solutions of systems of nonlinear hyperbolic conservation
laws. Mem. Amer. Math. Soc. 101 (1970) Zbl 0204.11304 MR 0265767

[23] Gugat, M., Leugering, G.: Global boundary controllability of the de St. Venant equa-
tions between steady states. Ann. Inst. H. Poincaré Anal. Non Linéaire 20, 1–11 (2003)
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