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Abstract

We study the Cauchy problem for general nonlinear strictly hyperbolic
systems of partial differential equations in one space variable. First, we re-visit
the construction of the solution to the Riemann problem and introduce the notion
of a nondegenerate (ND) system. This is the optimal condition guaranteeing, as we
show it, that the Riemann problem can be solved with finitely many waves only;
we establish that the ND condition is generic in the sense of Baire (for the Whitney
topology), so that any system can be approached by a ND system. Second, we intro-
duce the concept of inner speed variation and we derive new interaction estimates
on wave speeds. Third, we design a wave front tracking scheme and establish its
strong convergence to the entropy solution of the Cauchy problem; this provides a
new existence proof as well as an approximation algorithm. As an application, we
investigate the time regularity of the graph solutions (X, U ) introduced by LeFloch,
and propose a geometric version of our scheme; in turn, the spatial component X
of a graph solution can be chosen to be continuous in both time and space, while
its component U is continuous in space and has bounded variation in time.

1. Introduction

In this paper, we are interested in entropy solutions to general nonlinear strictly
hyperbolic systems of partial differential equations in one space variable, and we
investigate several important issues of the theory, especially the Riemann problem,
the wave interaction estimates, and the graph solutions. In particular, a version of the
wave front tracking scheme is introduced below, which extends schemes originally
introduced by Dafermos [14], DiPerna [17], Bressan [9] and Risebro [40] for
genuinely nonlinear systems of conservation laws (see also [4]). The new version
applies to general systems that need not be genuinely nonlinear nor in conservative
form.
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Recall that the front tracking scheme is a variant of the random choice scheme
introduced by Glimm [18] for genuinely nonlinear conservative systems. Recently,
Glimm’s scheme was extended to conservative systems with general flux by
Bianchini [7], Iguchi and LeFloch [23], and Liu and Yang [38]. The key
contributions in the above works were the derivation of sharp estimates for the
solution of the Riemann problem, together with the introduction of suitable inter-
action functionals controling the total variation of solutions to the Cauchy problem.
The analysis in [7, 23, 38] took its roots in earlier works, pioneered by Liu in 1981,
on particular systems (see Liu [34–37], LeFloch et al. [28, 21, 30], Chern [13],
and Ancona and Marson [1–3]), and in the recent developments on the vanishing
viscosity method by Bianchini and Bressan [8]. Further important material on
hyperbolic systems can be found in [12, 15, 19, 20, 25, 29].

In comparison to the Glimm scheme, implementing a front tracking scheme
is more demanding since, in addition to the interaction estimates and functionals
controling the growth of wave strenths (provided in [7, 23, 38]), we also need a
precise control of wave speeds. In a front tracking method, when dealing with a
general hyperbolic system and in order to guarantee that the limiting function is the
entropy solution of interest, it is often necessary (at interactions) to split a given
front into several fronts (of smaller strength, say). Clearly, it is preferable to avoid
repeating this splitting step too often during the evolution — otherwise this could
lead to a finite time blow-up of the algorithm with the number of wave fronts or of
interactions points becoming infinite.

We found it convenient to introduce wave fronts that are not just single shocks
or single rarefactions but, rather, wave packets consisting of (finitely or possibly
infinitely) many shock and rarefaction waves propagating at the same speed. To
control the speed of a j-wave packet (u−, u+) we introduce the notion of inner
speed variation ϑ j (u−, u+), defined as the largest minus the smallest wave speeds
within the wave packet under consideration. One contribution in the present work
is to provide sharp interaction estimates on ϑ j (u−, u+) via suitable convexity and
wave interaction arguments.

The present paper also provides a significant generalization of the earlier anal-
ysis by Iguchi and LeFloch [23] which dealt with general systems approached by
piecewise genuinely nonlinear (PGNL) systems. We introduce below the notion of
a nondegenerate (ND) system and we show that the ND condition is the optimal
condition guaranteeing that the Riemann problem is solvable with finitely many
waves only. Moreover, the nondegeneracy condition is shown to be fully generic in
the sense of Baire (in the Whitney topology), so that any system can be approached
by a nondegenerate one.

We also include below a discussion of hyperbolic systems in nonconservative
form. Recall that, for such systems, the standard notion of a distributional solu-
tion does not apply, and it was recognized in the 1990s by LeFloch [26, 27] and
Dal Maso, LeFloch and Murat [16], that we must supplement the hyperbolic
system with a prescribed family of continuous paths, related with the “interior
structure” of discontinuities in solutions and typically constructed from the set of
all traveling wave solutions associated with a given parabolic regularization. The
Riemann problem was solved in [16] for nonconservative genuinely nonlinear sys-
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tems, and a suitable generalization to the Glimm scheme was proposed by LeFloch
and Liu [33]. We observe in this paper that both techniques developed in [8] and
[23] allow for generalizations to nonconservative systems.

In summary, our results provide a new proof of the global existence of the
entropy solution (in the class of functions with tame variation) to the Cauchy
problem associated with a strictly hyperbolic system, and represent an alternative
approach as well as a generalization to the proofs given in [18, 33] (for genuinely
nonlinear systems) and, more recently, in [7, 8, 23, 38].

On the other hand, recall that the uniqueness of the entropy solution was estab-
lished earlier by Bressan and LeFloch [11] (for genuinely nonlinear conservative
systems), Baiti, LeFloch and Piccoli [5] (for general conservative or nonconser-
vative systems and arbitrary jump relations), and Bianchini and Bressan [8] (for
vanishing viscosity limits based the identity viscosity matrix).

Finally, we apply our front tracking scheme and investigate the time regular-
ity of the graph solutions (X, U ) introduced in LeFloch [31, 32]. We propose
a geometric version of our scheme and, in turn, provide here a new (more regu-
lar) parametrization of the graph solutions, which is not only continuous in space
but also continuous in time, except at countably many times where wave
cancellations/interactions take place.

A brief outline of this paper follows. Section 2 deals principally with the Rie-
mann problem and generalizes the approach developed by Iguchi and LeFloch. In
particular, it includes the discussion of the nondegeneracy condition, wave inter-
action estimates, and inner speed variation estimates. Section 3 provides a second
proof of the inner speed variation estimates which follows the approach developed
by Bianchini and Bressan. Section 4 contains a brief discussion of generalizations
of our results to nonconservative systems. Section 5 provides our new version of
the front tracking scheme, together with the convergence proof. Finally, Section 6
shows how to apply the previous framework in order to investigate the time regu-
larity of graph solutions.

2. Nondegenerate hyperbolic systems of conservation laws

2.1. Notation

In the present section and in the following one we are primarily interested
in conservative systems. However, as we will explain in Section 4 many of the
forthcoming arguments carry over to nonconservative systems, with only minor
modifications. We thus consider a strictly hyperbolic system of conservation laws,

∂t u + ∂x f (u) = 0, u = u(t, x) ∈ RN , t ! 0, x ∈ R, (2.1)

where, as is usual, we assume that all solutions take values in a neighborhood of
some constant state in RN —which is normalized to be the origin. We denote by Bδ

the open ball in RN centered at the origin and having radius δ > 0, and we assume
that all values u(t, x) ∈ Bδ1 for some δ1 > 0. In (2.1), the map f : Bδ1 → RN

is smooth and, for each u ∈ Bδ1 , A(u) := D f (u) admits N real and distinct
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eigenvalues λ1(u) < · · · < λN (u). We denote by r j (u) and l j (u) the left and right
eigenvectors associated with λ j (u), i.e.

A(u) r j (u) = λ j (u) r j (u), l j (u) · A(u) = λ j (u) l j (u),

and normalized so that

|r j (u)| = 1, l j (u) · r j (u) = 1,

li (u) · r j (u) = 0 for i $= j.

In [23], Iguchi and LeFloch advocated the use of, for each j-wave family, a
foliation of Bδ1 based on a global parameter u %→ µ j (u), satisfying

∇µ j (u) · r j (u) $= 0.

Each wave curve s %→ ψ j (m) = ψ j (m; u0) is parametrized to ensure that the state
ψ j (m) lies on the submanifold

{
µ j (u) = m

}
, i.e.

µ j (ψ j (m)) = m.

In the present paper we adopt a particular global parametrization. We fix a constant
vector l̂ such that l̂ · r j (u) never vanishes,

l̂ · r j (u) $= 0,

and we set

µ j (u) = µ(u) := l̂ · u.

Hence, our global parameter is also independent of the specific wave family under
consideration. The following formulae will involve the renormalized eigenvectors

r̂ j := r j

∇µ j · r j
= r j

l̂ · r j
.

Recall that for the j-integral curve

O j (u−) =
{
w j (m; u−) / m& " m " m&

}

defined by

∂mw j = r̂ j (w j ), w j (m−; u−) = u−,

where m− := µ(u−), we can check that there exists δ2 < δ1 such that the following
property holds. For all u− ∈ Bδ2 , the map [m&, m&] ' m %→ w j (m−; u−) is smooth
and takes its values in Bδ2 , and the endpoints m∗, m∗ (depending on u−) satisfy
w j (m∗; u−), w j (m∗; u−) ∈ ∂Bδ2 . Moreover, we have

w j (m; u0) = u0 + (m − m0) r̂ j (u0) + O(m − m0)
2

with m0 := µ(u0).
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Similarly, the j-Hugoniot curve

H j (u−) :=
{
v j (m; u−)/m& " m " m&

}
,

defined by

−λ j (u−, v j (m; u−))
(
v j (m; u−) − u−

)
+ f (v j (m; u−)) − f (u−) = 0,

satisfies

v j (m; u0) = u0 + (m − m0) r̂ j (u0) + O(m − m0)
2,

whereas the j-shock speed λ j (m; u−) := λ j (u−, v j (m; u−)) satisfies

λ j (m; u0) = λ j (u0) + 1
2

(
∇λ j · r̂ j

)
(u0) (m − m0) + O(m − m0)

2.

As usual, we restrict attention to propagating discontinuities (u−, u+) with
u+ ∈ H j (u−) satisfying the following entropy criterion [39, 41, 34–37]. Setting
m− := µ(u−), m+ := µ(u+), and

u+ = v j (m+; u−),

the shock (u−, u+) is said to be admissible if and only if

λ j (u−, u+) " λ j (m; u−) for all m between m− and m+.

In other words, the shock speed achieves its minimum value at the point m+.
Following [24, 37, 23], we will be interested in combining rarefaction curves and
shock curves and constructing the j-wave curve issuing from a given left-hand state
u0 ∈ Bδ2 ,

W j (u0) :=
{
ψ j (m; u0) / m& " m " m&

}
,

where the endpoints of the curve satisfy

m& = m j&(u0) < µ(u0) < m&
j (u0) = m&.

2.2. The Riemann problem for nondegenerate systems

Recall that, following Liu’s pioneering contribution to the subject [34–37],
Iguchi and LeFloch [23] constructed and investigated the regularity of the entropy
solution to the Riemann problem, for systems with piecewise genuinely nonlinear
(PGNL) flux (see below for a definition). Here, we introduce a larger class and we
establish that all of the results in [23] remain valid. Recall that all of the key estimates
depend on the C2 norm of the flux only, and allowed Iguchi and LeFloch [23] to
cover any flux realized as a limit of PGNL functions. Our more general condition
will be shown to be fully generic, so that, by density, we can cover systems with
fully arbitrary flux.
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It will be convenient to introduce the notation (1 " j " N , u ∈ Bδ1 )

π
(1)
j (u) := r j (u) · ∇λ j (u),

π
(k+1)
j (u) := r j (u) · ∇π

(k)
j (u), k = 1, 2, . . . ,

together with the following definition. Note that the definition clearly makes sense
for a general matrix-valued mapping A which need not be a Jacobian matrix.

Definition 2.1. The matrix-valued mapping A = A(u) (u ∈ Bδ1 ) is called
nondegenerate (ND) if for every j = 1, . . . , N and every u ∈ Bδ1 , not all of the
values π

(k)
j (u) (1 " k " N + 1) are zero,

(
π

(1)
j (u), π

(2)
j (u), . . . , π

(N+1)
j (u)

)
$=

(
0, 0, . . . , 0

)
.

When the ND condition holds, we will also say that (2.1) is a nondegenerate
system or that, in the conservative case, f is a nondegenerate flux.

For instance, in the scalar case N = 1 a function f : R → R is nondegenerate
if and only if f ′′ and f ′′′ do not vanish simultaneously.

Given any nondegenerate flux f we can associate with each point u ∈ Bδ1 its
critical exponent p = p j (u) as the smallest index k ! 1 such that π

(k)
j (u) $= 0.

Our definition includes the genuinely nonlinear flux for which π
(1)
j (u) never van-

ishes (so that p j (u) = 1), as well as the piecewise genuinely nonlinear (PGNL)
flux introduced in [23] where it was assumed that π

(1)
j (u), π

(2)
j (u) never vanish

simultaneously (so that p j (u) equals 1 or 2). The case of linearly degenerate fields
for which π

(1)
j (u) vanishes identically could be easily included in the present dis-

cussion, but for simplicity in the presentation we prefer to cover this case later via
a general density argument.

Our first objective is to generalize the construction in [23] and to prove that the
Riemann problem for ND flux can be solved uniquely and that the solution contains
finitely many waves, only.

Theorem 2.1 (Riemann problem for nondegenerate flux). Let (2.1) be a strictly
hyperbolic system of conservation laws with nondegenerate flux f : Bδ1 → RN .
Then there exists δ2 < δ1 depending only upon the C2 norm of f , such that the
following properties holds.

1. For all u0 ∈ Bδ2 and all j = 1, . . . , N there exist m& = m j&(u0) and m& =
m&

j (u0) and a mapping ψ j = ψ j (m; u0) defined for m& " m " m& and
Lipschitz continuous in both arguments, such that

ψ j (m; u0) ∈ Bδ2 , m& < m < m&,

ψ j (µ(u0); u0) = u0,

ψ j (m&; u0), ψ j (m&; u0) ∈ ∂Bδ2 .

2. For each m ∈ [m&, m&] there exist an integer q and a finite sequence of states
u1, u2, . . . , u2q+1 ∈ Bδ2 such that

u2q+1 = ψ j (m; u0)
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and ( for all relevant values of k) u2k is connected to u2k+1 by a j-rarefaction
wave while u2k+1 is connected to u2k+2 by an admissible j-shock, with

λ j (u0) " λ j (u1) " λ j (u1, u2) " λ j (u2) " · · ·
· · · " λ j (u2q−1, u2q) " λ j (u2q) " λ j (u2q+1).

3. For any Riemann data ul , ur ∈ Bδ2 the Riemann problem (2.1),

u(0, x) =
{

ul , x < 0,

ur , x > 0,

admits a unique self-similar solution made of finitely many rarefaction waves
and admissible shock waves.

To establish these results we will explain how the arguments in [23] can be
extended to cover nondegenerate flux. Certain monotonicity properties of the shock
speed along the Hugoniot curve and its critical values play a central role in the con-
struction of the wave curves, and this will be the subject of the following section.

Once the Riemann problem is solved and provided finitely many waves only
arise in the construction, we can follow [23] and derive additional regularity and
interaction estimates. Indeed, we emphasize that the proofs therein rely only on the
facts that the Riemann solution contains finitely many waves and that all Hugoniot
and integral curves associated with (2.1) are smooth maps. We summarize here the
results that we will need later.

Proposition 2.2 (Regularity of the wave curves). Under the assumptions of
Theorem 2.1, for each j = 1, . . . , N the map ψ j = ψ j (m; u) is Lipschitz con-
tinuous with respect to both m, u (with Lipschitz constant depending only on the
C2 norm of f ). Moreover, the first-order derivatives of ψ j with respect to m, u are
Lipschitz continuous at the point m = µ(u), that is

ψ ′
j (m; u) = r̂ j (u) + O(m − µ(u)),

Duψ j (m; u) = Id − r̂ j (u) ⊗ l̂ + O(m − µ(u)),

where ⊗ denotes the tensor product of two vectors.

With any left-hand state u− and a right-hand state u+ = ψ j (m+; u−), we
associate the wave strength

ε j (u−, u+) := µ(u−) − µ(u−)

and the associated wave speed function λ j (s, m+; u−), which by definition yields
the speed of waves making up the wave fan. Given two j-waves (u−, u+) and
(u′

−, u′
+) we introduce the generalized angle between them, as follows

θ j (u−, u+; u′
−, u′

+) :=
∫ m+

m−

∫ m′
+

m′
−

(
λ j (s′, m′

+; u′
−) − λ j (s, m+; u−)

)
−

(m+ − m−) (m′
+ − m′

−)
ds ds′,

where m± := µ(u±) and m′
± := µ(u′

±).
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Proposition 2.3 (Interaction estimates). For all ul , um, and ur ∈ Bδ2 and 1 "
i, j " N the following property holds. Suppose that ul is connected to um by
an i-wave fan and that um is connected to ur by a j-wave fan. Then, the wave
strengths εk(ul , ur ) of the outgoing Riemann solution connecting ul to ur satisfy
(1 " k " N )

εk(ul , ur ) = εk(ul , um) + εk(um, ur ) + O(1) Q(ul , um, ur ),

where Iguchi and LeFloch’s interaction potential is defined by

Q(ul , um, ur ) :=
∑

i! j

*i j (ul , um, ur ) |σi (ul , um) σ j (um, ur )|

and

*i j (ul , um, ur ) :=






0, i < j,
1, i > j,
1, i = j, σ j (ul , um) σ j (um, ur ) " 0,

θ j (ul , um; um, ur ), i = j, σ j (ul , um) σ j (um, ur ) > 0.

In the rest of this section, we derive a key estimate on wave speeds. Let us
introduce the following notion.

Definition 2.2. The inner speed variation of a j-wave connecting a left-hand state
u− to a right-hand state u+ = ψ j (m+; u−) is defined as

ϑ j (u−, u+) = ϑ j (m+; u−)

:= λ
max
j (u−, u+) − λ

min
j (u−, u+)

:= λ j (m+, m+; u−) − λ j (m−, m+; u−).

For instance, ϑ j (u−, u+) = 0 if and only if u− and u+ are connected by a
single admissible discontinuity, while ϑ j (u−, u+) = λ j (u+) − λ j (u−) if (but not
only if) u− and u+ are connected by a single rarefaction wave.

Theorem 2.4 (Properties of the inner speed variation).

1. For any u−, u′
−, m it holds

ϑ j (µ(u′
−) + m; u′

−) = ϑ j (µ(u−) + m; u−) + O(m) |u′
− − u−|.

2. For any ul , um, ur with um = ψ j (µm; ul) and ur = ψ j (µr ; um), setting u′
r :=

ψ j (µr ; ul),

ϑ j (ul , u′
r ) = ϑ j (µr ; ul) = ϑ j (µm; ul) + O(|µr − µm |).

3. For any ul , um, ur with um = ψ j (µm; ul) and ur = ψ j (µr ; um) and monoton-
ically ordered along the wave curve,

ϑ j (µr ; ul) " max
(
ϑ j (ul , um), ϑ j (um, ur )

)

+
(
λ

min
j (um, ur ) − λ

min
j (ul , um)

)

+
+O(1) Q(ul , um, ur ). (2.2)
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In the application of Theorem 2.4 in the context of the front tracking scheme,
every front (u−, u+) will propagate with the speed λ

min
j (u−, u+), so that the

term
(
λ

min
j (um, ur ) − λ

min
j (ul , um)

)

+
vanishes if the fronts (ul , um) and (um, ur )

interact.
Finally, after establishing a density result of the class of nondegenerate flux

(Theorem 2.13 below) we can conclude that:

Corollary 2.5. All of the results stated in the present section remain valid for
general strictly hyperbolic flux that need not be nondegenerate with the modification
that a Riemann solution may contain (not finitely many but) countably many waves.

2.3. Fundamental properties at critical points

From now it will convenient to work with the following variant of the maps π j ,
obtained by replacing the vectors r j by the normalized vectors r̂ j , i.e.

π̂
(1)
j (u) := r̂ j (u) · ∇λ j (u),

π̂
(k+1)
j (u) := r̂ j (u) · ∇π̂

(k)
j (u), k = 1, 2, . . . ,

Clearly, for every u and every j , the condition

π
(1)
j (u) = · · · = π

(k)
j (u) = 0, π

(k+1)
j (u) $= 0

is equivalent to

π̂
(1)
j (u) = · · · = π̂

(k)
j (u) = 0, π̂

(k+1)
j (u) $= 0,

so that a statement involving the coefficients π̂ j can be immediately restated with
the coefficients π j .

It is a well-known fact that rarefaction curves and Hugoniot locus have a
second-order tangency property at their base point. Here, we prove a new higher-
order tangency property which is satisfied at critical points. Recall that by differ-
entiating the Rankine–Hugoniot it follows that

(m − m−) ∂mλ j (m; u−) = κ j (m; u−)
(
λ j (v j (m; u−)) − λ j (m; u−)

)
, (2.3)

where the function κ j = κ j (m; u−) > 0 is smooth, bounded and bounded away
from zero, and satisfies κ j (m−; u−) = 1.

Lemma 2.6 (Tangency property at critical points (I)). Suppose that, at some point
u& ∈ Bδ1 and for some p ! 1,

π̂
(k)
j (u&) = 0, k = 1, . . . , p − 1,

π̂
(p)
j (u&) $= 0. (2.4)

Then, the shock curve v j and the rarefaction curve w j issuing from u& are tangent
at u& up to the order p + 1,

∂(k)
m v j (m&; u&) = ∂(k)

m w j (m&; u&), k = 1, . . . , p + 1, (2.5)
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while the shock speed satisfies

∂(k)
m λ j (m&; u&) = 0, k = 1, . . . , p − 1,

∂
(p)
m λ j (m&; u&) =

π̂
(p)
j (u&)

p + 1
. (2.6)

Proof. Proceeding by induction on k we first note that, for all m,

∂(k+1)
m λ j (w j (m; u&)) = ∂m π̂

(k)
j (w j (m; u&))

= ∇π̂
(k)
j (w j (m; u&)) · ∂mw j (m; u&),

= π̂
(k+1)
j (w j (m; u&)). (2.7)

Now, (2.5) and (2.6) are proven by induction: we consider the induction hypoth-
esis at the rank q (for 0 " q " p):

∂
(k)
m λ j (m&, u&) = 0 holds for k = 1, . . . , q−1 and ∂

(k)
m (v−w)(m&, u&) = 0

holds for k = 0, . . . , q.

This is clearly satisfied at rank q = 0. Suppose this is true at rank q " p − 1; let
us establish it at rank q + 1.

For the claim on ∂
(q)
m λ j we proceed as follows. In view of (2.3) and after

differentiation with respect to m we obtain

∂(k)
m λ j (m; u&) + ∂(k)

m

( m − m&

κ j (m; u&)
∂mλ j (m; u&)

)
= ∂(k)

m λ j (v j (m; u&)). (2.8)

Considering (2.7) at the point m = m&, using (2.7) and the induction hypothesis, it
follows easily that ∂

(k)
m λ j (m&, u&) = 0 for k = q with q < p.

We now consider the second claim about ∂
(q+1)
m (v(m&, u&) − w(m&, u&)) = 0.

By differentiating the Rankine–Hugoniot relation, we find

∂mλ j (m) (v j (m) − u−) =
(

A(v j (m)) − λ j (m)
)

∂mv j (m),

which is to be compared with the equation characterizing the integral curvew j (m) =
w j (m; u0),

0 =
(

A(w j (m)) − λ j (w j (m))
)

∂mw j (m).

The map z(m) := v j (m; u−) − w j (m; u0) satisfies z(m0) = 0. From the above
identities we deduce that

(
A(w j ) − λ j (w j )

)
∂m z

= ∂mλ j (v j − u−) +
(

A(w j ) − A(v j ) − λ j (w j ) + λ j
)

∂mv j . (2.9)

Using (2.4), (2.7), and the induction hypothesis on λ j (now proven up to the
q-th order derivative) and by differentiating in m, the equation (2.9) yields

(
A(u0) − λ j (u0)

)
∂

(q+1)
m z(m&, u&) = 0.



Nonlinear Hyperbolic Systems and Graph Solutions 419

(In the case q = 0, no assumption on ∂
(k)
m λ j (m&, u&) is needed, but only λ j (m&; u&)

= λ j (u&).) We deduce that, for some β(q+1) ∈ R, we have ∂
(q+1)
m z(m&, u&) =

β(q+1)r j (u&). Now, the parameter along the curves is such that

µ(w j (m)) = m = µ(v j (m)). (2.10)

Differentiating this relation and using, again, the induction hypothesis we obtain

∇µ(u&) ∂
(q+1)
m w j (m&) = ∇µ(u&) ∂

(q+1)
m v j (m&),

which yields ∂
(q+1)
m z(m&, u&) = 0, and completes the induction.

It remains to prove (2.6) at the rank p and (2.5) at the rank p +1. Using Leibniz
identity and retaining only the nonzero terms, we deduce from (2.8):

∂
(p)
m λ j (m; u&) + p

∂
(p)
m λ j (m&; u&)

κ j (m; u&)
= ∂

(p)
m λ j (v j (m&; u&)) = π̂

(p)
j (u&),

which establishes the first claim. For the second claim, differentiating (2.9) p times,
using Leibniz identity, and keeping the relevant terms only, we obtain

(
A(w j ) − λ j (w j )

)
∂

p+1
m z(m&, u&)

=
(

p ∂
p
mλ j (m&, u&) − ∂

p
mλ j (w j (m&, u&)) + ∂

p
mλ j (m&, u&)

)
r̂ j (u&) = 0,

in view of (2.6). Using again (2.10), this establishes (2.5). +,
It follows from (2.3) that, at a critical point m0 where

∂mλ j (m0; u−) = 0,

the shock speed must coincide with the characteristic speed,

λ j (m0; u−) = λ j (v j (m0; u−)),

and it can also be checked from the Rankine–Hugoniot relation that

∂mv j (m0; u−) = r̂ j (v j (m0; u−)). (2.11)

Generalizing this observation we now prove:

Lemma 2.7 (Tangency property at critical points (II)). If, for some u−, m0, and p,

∂(k)
m λ j (m0; u−) = 0, k = 1, . . . , p,

∂
(p+1)
m λ j (m0; u−) $= 0, (2.12)

then at the critical point u0 := v j (m0; u−) we have

π̂
(k)
j (u0) = 0, k = 1, . . . , p − 1,

π̂
(p)
j (u0) $= 0,

(m0 − m−) ∂
(p+1)
m λ j (m0; u−) = κ j (m0; u−) π̂

(p)
j (u0), (2.13)
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and the Hugoniot curve issuing from u− is tangent up to order p to the integral
curve issuing from u0, that is

∂(k)
m v j (m0; u−) = ∂(k)

m w j (m0; u0), k = 0, . . . , p. (2.14)

Proof. We first rely on (2.8). By the assumption (2.12) the left-hand side van-
ishes at m = m0 for all k < p. Hence, we deduce that, for all k < p, we have
∂

(k)
m λ j (v j )(m0; u−) = 0. With (2.11) we then deduce

∂mλ j (v j (m0; u−)) = ∇λ j (v j (m0; u−)) ∂mv j (m0; u−) = ∇λ j · r̂ j (v j (m0; u−)).

Hence, π̂
(1)
j (v j (m0; u−)) = 0. Therefore, using (2.9) and (2.10), we see, as in

Lemma 2.6 that (2.14) is valid for p = 2.
More generally, if (2.14) is already established at the rank k then using (2.7) it

follows that

∂(k)
m λ j (v j (m0; u−)) = ∂(k)

m λ j (w j (m0; u0))

= π̂
(k)
j (u0).

Hence, we conclude that π̂
(k)
j (u0) = 0. Using the same procedure as above, we

deduce (2.14) at the rank k + 1.
For k = p the left-hand side of (2.8) at m0 is a multiple of the left-hand side of

(2.13),

m0 − m−
κ j (m0; u−)

∂
(p+1)
m λ j (m0; u−),

while the right-hand side equals π̂
(p)
j (u0). Thus, (2.13) holds. +,

Some further observations are in order.

Lemma 2.8 (Propagating discontinuities with coinciding speeds). Suppose that
(u0, u1) and (u1, u2) are shock waves satisfying the entropy criterion and propa-
gating with the same speed .,

u1 = v j (m1; u0), u2 = v j (m2; u1),

λ j (u0, u1) = λ j (u1, u2) = .,

where m1 and m2 satisfy µ(u0) < m1 < m2. Then, the discontinuity (u0, u2) is a
shock satisfying the entropy criterion and propagating with the speed .,

u2 = v j (m2; u0), λ j (u0, u2) = ..

Lemma 2.9 (Equivalent formulation of the entropy criterion). A discontinuity
(u−, u+) with u+ ∈ H j (u−) satisfies the entropy criterion if and only if

λ j (u−, u+) " λ j (m; u−) for all m between m− and m+,

where m− = µ(u−) and m+ = µ(u+).
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We only give the proof of Lemma 2.9, the proof of Lemma 2.8 being similar.

Proof. Set m− := µ(u−) and m+ := µ(u+) and, for definiteness, assume that
m− < m+. We must show that

. := λ j (u−, u+) ! λ j (m; u+), m− " m " m+.

By contradiction let us assume that there exists a “first” point m0 ∈ [m−, m+) at
which the above condition fails, that is

. ! λ j (m; u+), m− " m " m0,

. = λ j (m; u+), m = m0,

. < λ j (m; u+), 0 < m − m0 - 1,

(2.15)

On the other hand, since the shock connecting u− to u+ being entropy admissible,

. " λ j (m; u−), m− " m " m+. (2.16)

We treat the case where m− < m0 < m+, the case where the point m0 coincides
with the left endpoint m− of the interval being analogous.

Let us expand λ j (m; u+) in a neighborhood of m = m0,

λ j (m; u+) = . + (m − m0)
p+1

(p + 1)! ∂
(p+1)
m λ j (m0; u+) + O

(
(m − m0)

p+2),

where ∂
(p+1)
m λ j (m0; u+) $= 0. By Lemma 2.7 we know that up to a positive

multiplicative constant

∂
(p+1)
m λ j (m0; u+) = π̂

(p)
j (u0),

while all π̂
(k)
j (u0) = 0 for k = 1, . . . , p − 1. On the other hand, since the shocks

(u−, u+) and (u0, u+) propagate at the same speed, ., the shock speed of (u−, u0)

is also .. (This is an elementary fact, already stated in Lemma 2.8.) Therefore
λ j (m0; u−) = . and, similarly as above, we can write

λ j (m; u−) = . + (m − m0)
q+1

(q + 1)! ∂
(q+1)
m λ j (m0; u−) + O

(
(m − m0)

q+2),

where

∂
(q+1)
m λ j (m0; u−) = π̂

(q)
j (u0),

while all π̂
(k)
j (u0) = 0 for k = 1, . . . , q − 1. Obviously, q = p. However, in view

of conditions (2.15) on λ j (m; u+) we see that p must be even (with π̂
(p)
j (u0) >

0), while the condition (2.16) on λ j (m; u−) implies that p must be odd (with
π̂

(p)
j (u0) > 0). This is a contradiction. +,
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2.4. Construction of the wave curves

In the rest of this section we sketch the proof of Theorem 2.1. Most of the
arguments in [23] carry over under our weaker assumption on f , and we will not
repeat them. We will only give the new ingredients of the proof. For definiteness,
we assume that (∇λ j · r̂ j )(u0) > 0, and we construct the part m > µ(u0) of the
wave curve. Locally near u0 we can use the integral curve O j (u0).

Suppose that along the integral curve there exists a “first point” with coordi-
nate µ1(u0) where ∇λ j · r j vanishes and changes sign, that is by setting u1 :=
w j (µ

1(u0); u0)

(∇λ j · r̂ j )(w j (m; u0)) > 0, µ(u0) " m < µ1(u0),

(∇λ j · r̂ j )(u1) = 0, (2.17)

(∇λ j · r̂ j )(w j (m; u0)) < 0, 0 < m − µ1(u0) << 1,

π̂
(k)
j (u1) = 0 (k = 1, . . . , p), π̂

(p+1)
j (u1) < 0.

Note that, clearly, p must be an odd integer.
It should be noted here that there cannot be accumulation points in the critical set

along an integral curve. Indeed, if ml → m∞ (l → ∞) were a sequence such that

(∇λ j · r̂ j )(w j (ml; u0)) = 0.

Then, by induction on k ! 1 and using the intermediate value theorem we could
find sequences mk,l such that

π̂
(k)
j (w j (mk,l; u0)) = 0.

Letting l → ∞ we would conclude that, at the point u∞ := w j (m∞; u0),

π̂
(k)
j (u∞) = 0, k = 1, 2, . . . ,

which is impossible since f is nondegenerate.
Note that the wave curve coincides with the integral curve up to the value

µ1(u0):

ψ j (m; u0) := w j (m; u0), µ(u0) " m " µ1(u0).

We claim that µ1 is a continuous function of its argument. Namely, consider the
function

Fj (m; u) := π̂
(1)
j (w j (m; u)),

which is smooth with respect to m and u. Since by assumption the state u0 is such
that Fj (µ

1(u0); u0) = 0,

(∂
(p)
m Fj )(µ

1(u0); u0) = π̂
(p+1)
j (w j (m; u)) < 0.

Therefore, we can locally solve the equation Fj (µ, u) = 0 in a neighborhood of
u0, in a continuous manner.
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To extend the wave curve we need a pattern made of a rarefaction wave followed
by a shock wave (actually a left-contact wave). For all meaningful values (n, m; u)

we set

G j (m, n; u) :=






1
m − n

(
λ j (m;w j (n; u)) − λ j (w j (n; u))

)
, m $= n,

1
2

(
∇λ j · r̂ j

)
(w j (m; u)), m = n,

where u1 := w j (µ
1(u); u). We will now apply the implicit function theorem to the

equation

G j (m, n; u) = 0, (2.18)

and show that it defines a function n = ν1(m; u) in the neighborhood of the point
(m, u) = (µ1(u0), u0). As presented above, our construction is associated with the
point u1 at which r j · ∇λ j (u1) = 0. The special case of a PGNL flux is straight-
forward since it can be checked that r j · ∇ · (r j · ∇λ j )(u1) $= 0 implies that
∂nG j (µ

1(u0), µ
1(u0), u0) $= 0. Handling a general nondegenerate flux is much

more delicate and this is discussed now. We regard u as a parameter and, for con-
venience, in the presentation we simply fix the point u0 and skip the dependence
in u. We are interested in the corresponding singular point u1 along the rarefaction
curve from u0, where π̂ (p+1)(u1) $= 0 and we must analyze (2.18) near

m1 := µ1(u0).

Consider first the case of a scalar conservation law. The function G j is inde-
pendent of the variable u, and the equation under consideration reads

f (n) − f (m)

n − m
− f ′(n) = 0.

Using that f has a nondegenerate point at m1, precisely, f (p+2)(m1) $= 0 so that

f (m) ∼ f (p+2)(m1)

(p + 2)! (m − m1)p+2,

we can check geometrically on the graph of the function f that the above condi-
tion determines a unique solution n = ν1(m) which, furthermore, can be easily
expanded near m1:

ν1(m) ∼ cp (m − m1),

where the constant cp < 0 is the unique negative root of the equation

1 − cp+2
p

1 − cp
= (p + 2) cp+1

p .

We now extend the above result to systems.
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Lemma 2.10. For α, β > 0 sufficiently small, introduce the small cone

C :=
{
|(n − m1) − cp (m − m1)| " α |m − m1|

}
.

Near the point (m, n) = (m1, m1) within the cone C the function G j admits the
expansion

G j (m, n) = Q j (m, n) + O(1)
(
(m − m1)p+1 + (n − m1)p+1), (2.19)

where

Q j (m, n) =
(
(n − m1) − cp (m − m1)) R j (n, m),

R j (m, n) = π̂ (p+1)(u1) (m − m1)p−1 S j (n, m), (2.20)

and the function S j is smooth and close to 1,

|S j (m, n) − 1| < β. (2.21)

Once this lemma is established, the implicit function theorem straightforwardly
applies to the mapping G̃ j defined by

G̃ j (m, n) := G j (m, n)

(m − m1)p−1 S j (m, n)
in the cone C,

and extended arbitrarily outside C as a smooth map. By the above claim, we have

G̃ j (m, n) = π̂ (p+1)(u1)
(
(n − m1) − cp (m − m1))

+O(1)
(
|m − m1|2 + |n − m1|2

)
,

so that there exists a unique function ν1 = ν1(m) defined in a neighborhood of
m = m1 and such that

G̃ j (m, ν1(m)) = 0,

which, moreover, satisfies

ν1(m) = m1 + cp (m − m1) + o(m − m1).

In turn, the solution remains within the cone C (in a sufficiently small neighborhood
of m1, at least), and therefore ν1(m) is a solution of the original equation (2.18).

It remains to prove Lemma 2.10 above. Relying on the tangency property be-
tween the Hugoniot and integral curves (Lemma 2.6), we can replace the Hugoniot
curve by the rarefaction curve in the definition of G j while making an error of order
(m − m1)p+1 + (n − m1)p+1. Let us introduce the reduced flux

f j (u) := l̂ · f (u)

and set

f̂ j (m) := f j (w j (m; u0)).
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We can rewrite the equation G j (m, n) = 0 in the following form

f̂ j (m) − f̂ j (n)

m − n
= f̂ ′

j (n) + O(1)
(
(m − m1)p+1 + (n − m1)p+1).

The behavior of the flux in the neighborhood of u1 leads to

f̂ j (m) ∼ π̂ (p+1)(u1)

(p + 2)! (m − m1)p+2,

and the expression in (2.17) can be expanded exactly as in the scalar case leading
to the result stated in the claim.

The mixed curve is now defined locally, and we discuss its extension.
Consider the shock speed of an arbitrary discontinuity connecting w j (n; u0) to v j
(m;w j (n; u0)), that is,

. j (m, n) := λ j (m;w j (n; u0)).

By construction, at n = ν1(m) the shock speed coincides with the characteristic
speed:

. j (m, ν1(m)) = λ j (w j (ν
1(m); u0)).

We can show that

∂mν1(m) = 1
(∇λ j · r̂ j )

(
w j (ν1(m); u0)

)
(
∂m. j

)
(m, ν1(m)).

Since ν1′
(µ1) < 0, it follows that ν1′

(m) < 0 for m sufficiently close to µ1 and
therefore

(
∂m. j

)
(m, ν1(m)) < 0, 0 < m − µ1(u0) - 1.

This means that the speed of the left-contact decreases as m increases. The function
ν1(m; u0) is well defined until ∂m. j eventually vanishes (see in particular ∂m Gi )
at some point with coordinate denoted by µ2 = µ2(u0),

(∂m. j )(µ
2, ν1(µ2; u0)) = 0.

The wave curve is determined from the map m %→ v j (m;w j (ν
1(m; u0); u0)) by

ψ j (m; u0) =
{

w j (m; u0), µ(u0) " m < µ1(u0),

v j (m;w j (ν
1(m; u0); u0)), µ1(u0) " m " µ2(u0).

As in [23] we can check that for each m ∈ (µ1, µ2) the state w j (ν
1(m); u0) is

connected to the right-hand state v j (m;w j (ν
1(m); u0)) by a shock wave satisfying

the entropy criterion. All of the remaining arguments of the construction of the
wave curve in [23] can be extended in a similar way as we have explained above.

We observe that the construction requires finitely many waves only. Otherwise,
if the wave curve was made of infinitely many shock and rarefaction pieces, then
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there would be an accumulation point of critical points, ml → m∞ (l → ∞) such
that

π̂
(1)
j (ψ j (ml; u0)) = 0.

Then, by induction on k ! 1, using the intermediate value theorem and the higher-
order tangency property between shock and rarefaction curves as stated in Lemma
2.7, we would obtain

π̂
(k)
j (ψ j (m∞; u0)) = 0

for all k, which is impossible since f is nondegenerate.
After the wave curves are constructed, the Riemann problem can be solved as

in [23]. This completes the discussion of Theorem 2.1. Propositions 2.2 and 2.3
are then immediate from the results in [23]. From our construction, the following
property of the Riemann solution follows immediately.

Lemma 2.11 (Splitting property for the Riemann problem). Consider a wave fan
u+ = ψ j (m+; u−), with m− < m+ for definiteness, associated with the inter-
mediate states u0, . . . , u2q+1 as defined in Theorem 2.1. Then the following two
properties hold.

1. For k = 0, . . . , q and m ∈ [µ(u2k), µ(u2k+1)], the solution of the Riemann
problem (u−, ψ j (m; u−)) (resp. (ψ j (m; u−), u+)) coincides with the
restriction of the solution of the Riemann problem (u−, u+) to the interval
[λ j (m−, m+; u−), λ j (ψ j (m; u−))] (resp. [λ j (ψ j (m; u−)), λ j (m+, m+; u−)]).

2. For k = 0, . . . , q and m ∈ [µ(u2k+1), µ(u2k+2)], the solutions of the
Riemann problems (u−, ψ j (m; u−)) (respectively (ψ j (m; u−), u+)) and
(u−, u+) coincide in the interval [λ j (m−, m+; u−), λ j (u2k+1)] (respectively
[λ j (u2k+2), λ j (m+, m+; u−)]).

We end this section with another property of Riemann solutions: roughly speak-
ing, the speeds within a wave fan can be determined by a convex or concave hull
argument, which is similar to what is classically done for a scalar conservation law.
This property will not be directly used in the rest of this paper.

Lemma 2.12 (Construction of a wave packet using the convex hull). Let u+ =
ψ j (m+; u−) with m− := µ(u−) < m+, and introduce the intermediate states
u1,…,u2q+1 as in Theorem 2.1. By setting

f j (m) := l̂ · f (ψ j (m; u−)), m− " m " m+,

the convex hull g j := conv[m−,m+] f j is precisely

g j (m) =






f j (m) = f j (m2k) +
∫ m

m2k

λ j (ψ j (m′; u−)) dm′,

m2k " m " m2k+1,

f j (m2k+1) + λ j (u2k+1, u2k+2) (m − m2k+1),

m2k+1 " m " m2k+2.

(2.22)
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Moreover, f j cannot be affine in a subinterval of [m−, m+] where it coincides with
conv[m−,m+] f j and, in consequence, the set of the intermediate values mk is nothing
but the boundary of the set

{
m ∈ [m−, m+]/g j (m) = f j (m)

}
.

When m+ < m−, the same statements hold by replacing the convex hull by the
concave one.

Note that, even though the wave curves ψ j are only Lipschitz continuous, the
function g j above is of class C1 as is clear from its definition.

Proof Let us here denote by g j the right-hand side of (2.22) defined successively
on each interval [mk, muk+1]. We will show that g j = conv[m−,m+] f j . Observe that
g j is a convex function, as a consequence of the fact that the wave speed function
λ j (m, m+; u−) introduced earlier is nonincreasing in m.

First of all, within a rarefaction interval [m2k, m2k+1] the identity

f j (ψ j (m, u−)) = f j (m2k) +
∫ m

m2k

λ j (ψ j (m′; u−))dm′ (2.23)

follows directly by differentiating this relation and using the definition of the rare-
faction together with the normalization µ(v j (m)) = m.

Second, considering a shock wave (u2k, u2k+1) and using the Rankine–
Hugoniot relation, we obtain (for the endpoint values)

f j (u2k+2) − f j (u2k+1) = λ j (u2k+1, u2k+2) l̂ · (u2k+2 − u2k+1)

= λ j (u2k+1, u2k+2) (m2k+2 − m2k+1).

Hence, combining with the identity within rarefaction, we conclude that f j and g j
coincide within rarefaction intervals,

f j (m) = g j (m), m ∈ [m2k, m2k+1]. (2.24)

Consequently, to establish (2.22) it is sufficient to prove that g j " f j . More-
over, since these functions coincide on the intervals [m2k, m2k+1], we need only
show g j " f j on each interval [m2k+1, m2k+2]. So, we now establish that, for any
ũ = ψ j (m̃; u−) with m2k+1 " m̃ " m2k+2,

f j (m̃) ! f j (u2k+1) + λ j (u2k+1, u2k+2)(m̃ − m2k+1)

= g j (m̃). (2.25)

To this aim, we consider the Riemann problem (u−, ũ) and the restriction of f j
to the interval [m−, m̃],

f̂ j := f j |[m−,m̃]

and we define ĝ j by (2.22) with the intermediate states u′
1, . . . , u′

2q ′+1 correspond-
ing to this problem. It follows from previous observations that, at the endpoint m̃,

f̂ j (m̃) = ĝ j (m̃).
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In view of the splitting property in Lemma 2.11, it is clear that ĝ j (m2k+1) =
f j (m2k+1), and

ĝ′
j (m) ! ĝ′

j (m2k+1), m2k+1 " m " m̃. (2.26)

Now, if u2k+1 $= u−, we have

ĝ′
j (m2k+1) = f̂ ′

j (u2k+1)

= λ j (u2k+1) = λ j (u2k+1, u2k+2),

since the two Riemann solutions coincide on a whole interval. If u2k+1 = u−, we
have

ĝ′
j (m2k+1) = λ j (u2k+1, ũ) ! λ j (u2k+1, u2k+2),

as follows from the entropy criterion. This establishes (2.25).
Consider now the last statement in the lemma and suppose that f j is affine and

coincides with conv f j in some subinterval [m1, m2] (m1<m2). Clearly, (m1, m2)

does not intersect a rarefaction interval (m2k , m2k+1) since this would contradict the
nondegeneracy assumption. Introducing ũ as above, we see that the inequality (2.26)
is strict unless (u2k+1, ũ) is a single shock of the same speed as (u2k+1, u2k+2).
However, if v j (·; u2k+1) had this property on [m1, m2], it would follow that
v j (·; u2k+1) = w j (·; u2k+1) in that interval which, again, would contradict the
nondegeneracy of the flux. +,

2.5. Proof of the inner speed variation estimates

Proof of Theorem 2.4.
1. We only treat the case m ! 0 since the case m < 0 is similar. From the estimates
on the strengths we have:

sup
0"n"m

|ψ j (µ(u−) + n; u−) − ψ j (µ(u′
−) + n; u′

−)| # |m| |u′
− − u−|. (2.27)

Observe also that the variation of the shock speeds is essentially equivalent to the
variation of the characteristics speeds, as follows

λ j (µ(u′) + n; u′) − λ j (µ(u) + n; u)

= λ j (u′) − λ j (u) + O(n) |u′ − u|. (2.28)

This is a consequence of the fact that all functions under consideration are smooth,
and that the equality holds (without remainder) when either n = 0 or u′ = u.

Denote u′
+ := ψ j (µ(u′

−) + m; u′
−) and u+ := ψ j (µ(u−) + m; u−). To prove

the first statement in Theorem 2.4, we will establish

λ
max
j (µ(u′

−) + m; u′
−) − λ

max
j (µ(u−) + m; u−)

= λ j (u′
+) − λ j (u+) + O(m) |u′

+ − u+| (2.29)

λ
min
j (µ(u′

−) + m; u′
−) − λ

min
j (µ(u−) + m; u−)

= λ j (u′
−) − λ j (u−) + O(m) |u′

− − u−|. (2.30)
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This implies the desired estimate, since by (2.27),

λ j (u′
+) − λ j (u+) = λ j (u′

−) − λ j (u−) + O(m) |u′
− − u−|

and |u′
+ − u+| = |u′

− − u−| + O(m) |u′
− − u−|.

We only consider (2.29), since (2.30) can be checked similarly. To prove (2.29),
it is sufficient to establish the inequality

λ
max
j (µ(u′

−) + m; u′
−) − λ

max
j (µ(u−) + m; u−)

" λ j (u′
+) − λ j (u+) + O(m) |u′

+ − u+|. (2.31)

This is so since u− and u′
− play completely symmetric roles.

Each of the Riemann problems (u−, u+) and (u′
−, u′

+) are solved by a suc-
cession of rarefaction waves and shock waves. Call m (resp. m′) the real in [0, m]
defined as follows:

If the problem (u−, u+) (resp. (u′
−, u′

+)) ends with a nontrivial rarefaction wave,
we set m = m (resp. m′ = m).

If the problem (u−, u+) (resp. (u′
−, u′

+)) ends with a nontrivial shock wave (ũ, u+)

(resp. (ũ, u′+)), we set m = µ(ũ) − µ(u−) (resp. m′ = µ(ũ) − µ(u′−)).

We distinguish between two main cases:

Case 1: if m′ ! m. By the entropy criterion, the shock speed enjoys a monotonicity
property and we have

λ j (µ(u−) + m′; u+) " λ j (µ(u−) + m; u+) = λmax
j (u−, u+),

and the conclusion follows easily from (2.28).

Case 2: if m′ < m. In that case, there are two subcases:

(2a) If the point û of parameter value µ(u−) + m′ in the problem (u−, u+) cor-
responds to a rarefaction wave. In that case, we clearly have

λ j
(
µ(u−) + m, µ(u−) + m; u−

)
! λ j (û).

Hence, using Lemma 2.11, we can prove (2.31) as in Case 1, by considering
the Riemann problems (u−, ψ j (µ(u−) + m′; u−)) and (u′

−, ψ j (µ(u′
−) +

m′; u′
−)). (In fact, in this case we only compare characteristic speeds.)

(2b) If the point û of parameter value µ(u−) + m′ in the problem (u−, u+) cor-
responds to a shock wave, say (u1, u2), then

λ j (µ(u−) + m, µ(u−) + m; u−) ! λ j (u2).

Again, using Lemma 2.11, we can apply Case 1 to the problems (u−, u2) and
(u′

−, ψ j (µ(u′
−) + µ(u2) − µ(u−); u′

−)). Note here that the latter problem
coincides with (u′

−, u′
+) up to the parameter µ(u′

−) + m′ and has speeds
greater than the ones in (u′

−, u′
+).
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2. Fix a left-hand state ul , and let um, u′
r be two states on the j-wave curve from

ul , with u′
r := ψ j (µr ; ul). Using the standard Lipschitz continuity property of the

wave speed along a given wave curve based at the point ul we obtain

λ
max
j (ul , u′

r ) = λ
max
j (ul , um) + O(µm − µr ),

λ
min
j (ul , u′

r ) = λ
min
j (ul , um) + O(µm − µr ),

which yields the desired statement on the inner speed variation ϑ j (ul , ur ) =
λ

max
j (ul , u′

r ) − λmin
j (ul , u′

r ).

3. Introduce ũr := ψ j (µr ; ul). As we could construct “left-hand” wave curves as
we did for (right-hand) wave curves, we can introduce ũm such that

µ(ũm) = µm, ũr = ψ j (µr ; ũm).

It follows from the regularity of the left-hand wave curves and the wave interaction
estimates that

|ũm − um | = O(|ũr − ur |) = O(1) Q(ul , um, ur ).

Now, using the first statement of the theorem, we deduce

λ j (·, µr ; ũm) = λ j (·, µr ; um) + O(1) Q(ul , um, ur ).

We introduce two values of the parameter in the Riemann problem (ul , ũr ):

ma := max
{
m ∈ [µl , µm], / the point in the problem (ul , ũr )

with parameter m corresponds to a rarefaction wave
}
,

mb := min
{
m ∈ [µm, µr ], / the point in the problem (ul , ũr )

with parameter m corresponds to a rarefaction wave
}
,

with the convention that ma = µl (resp. mb = µr ) when there is no rarefaction
wave in the corresponding parameter range. In the terminology of Lemma 2.12, the
above conditions can be stated as f j (m) = conv[µl ,µr ] f j (m).

We now distinguish several cases that depend upon the values of ma and mb.

(a) Suppose that µl < ma " mb < µr . In that case, using Lemma 2.11, we see
that the Riemann problem (ul , ũr ) can be obtained by gluing three Riemann
problems together: (ul , ψ j (ma; ul)), (ψ j (ma; ul), ψ j (mb; ul)) (a single con-
tact discontinuity), and (ψ j (mb; ul), ũr ). We then deduce that

ϑ j (ul , ũr )

= λ j (µr , µr ; ũm) − λ j (µl , µm; ul)

=λ j (µr , µr ; ũm) − λ j (µm, µr ; ũm)+λ j (µm, µr ; ũm) − λ j (µl , µm; ul)

=ϑ j (um, ũr ) + λ j (µm, µr ; um)−λ j (µl , µm; ul) + O(1) Q(ul , um, ur ),

and the desired inequality (2.2) follows.
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(b) Suppose µl = ma < mb < µr (resp. µl < ma < mb = µr ). In that
case, by the same arguments, we have ϑ j (ul , ũr ) = ϑ j (ψ j (mb; ul), ũr ) (resp.
ϑ j (ul , ũr ) = ϑ j (ul , ψ j (ma; ul))) and, again, (2.2) follows.

(c) Suppose µl = ma < mb = µr . This case is obvious since the left-hand side
of (2.2) vanishes.

This completes the proof of Theorem 2.4. +,

2.6. Proof of the density property

We will now establish that the nondegeneracy condition is generic. This section
will cover both conservative and nonconservative systems characterized by a flux
f or a matrix A, respectively.

Let 1 be an open set in RN . We are interested in matrix-valued mappings
A = A(u) (u ∈ 1) of class C∞ satisfying the strict hyperbolicity property, that is,
for any u ∈ 1, the matrix A(u) admits N distinct and real eigenvalues,

λ1(A, u) < · · · < λN (A, u), (2.32)

and basis of left and right eigenvectors l j (A, u), r j (A, u), normalized so that

|r j (A, u)| = 1, l j (A, u) · r j (A, u) = 1,

li (A, u) · r j (A, u) = 0 (i $= j). (2.33)

Let H be the subset of C∞(1) consisting of all mappings A satisfying the strict
hyperbolicity condition (2.32) and such that the associated maps λ j , l j , r j are
smooth. Recall that, in a sufficiently small neighborhood of any constant matrix
and under the assumption (2.32), the maps λ j , l j , r j indeed depend smoothly upon
u. In this subsection, however, we need not assume that the set 1 is small.

With every map A ∈ H we associate the following functions, by induction,

π
(1)
j (A, u) := r j (A, u) · ∇uλ j (A, u),

π
(k+1)
j (A, u) := r j (A, u) · ∇uπ

(k)
j (A, u), k = 1, 2, . . . (2.34)

We claim that:

Theorem 2.13 (Density of the set of nondegenerate systems). Given any matrix-
valued map A ∈ H there is a sequence Al ∈ H such that

Al → A in the (strong) C∞ Whitney topology, (2.35)

and Al is nondegenerate in the sense that, for l = 1, 2, . . ., u ∈ 1, and j =
1, . . . , N,

(
π

(1)
j (Al , u), π

(2)
j (Al , u), . . . , π

(N+1)
j (Al , u)

)
$= (0, 0, . . . , 0). (2.36)

Moreover, in the special case that A is conservative, i.e. A = D f , the sequence
can be chosen to be conservative, Al = D f l , and f l converges to f in the Whitney
topology.
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Hence, all the results established earlier in this section for nondegenerate flux
extend to arbitrary strictly hyperbolic flux, and this leads and to Corollary 2.5. In
the following, a map A ∈ H (conservative or not) is fixed, and we consider the set

F :=
{
(u, A(u)), u ∈ 1

}
.

Clearly, (2.32) is an open condition and, therefore, for each u ∈ 1 we can find
δ > 0 such that the ball Bδ(u) centered at u is included in 1 and all matrices
B ∈ Bδ(A(u)) have N real and distinct eigenvalues:

.1(B) < · · · < .N (B),

and, therefore, basis of left and right eigenvectors L1(B), . . . , L N (B) and R1(B),

. . . , RN (B), which we will normalize so that

|R j (B)| = 1, Li (B) · Ri (B) = 1,

Li (B) · R j (B) = 0 (i $= j). (2.37)

Clearly, the maps . j , L j , R j depend smoothly upon B (at least locally), and repre-
sent extension of the maps λ j , l j , r j to the ball Bδ(A(u)). Reducing δ if necessary,
we can assume that for all B1, B2 ∈ Bδ(A(u))

Li (B1) · Ri (B2) ! 1/2.

Now, in view of the paracompactness property of F , there exists a locally finite
covering of F by open sets finer than Bδ/2((u, A(u))). We define G as the union of
all balls in such a covering. We define R j (B) and L j (B) on G for B ∈ Bδ/2(A) as
the value of R j (B) determined in that ball. It follows easily from this construction
that this does not depend on the ball that contains B. Hence, we conclude that in G
the maps G ' A %→ . j (A), L j (A), R j (A) are smooth.

To fix the idea we discuss the conservative case with A = D f for some flux f .
Minor modifications are needed to cover the nonconservative case, which we omit.

Let O ⊂ C∞(1, RN ) be a small neighborhood of the flux f , chosen so that
(u, Dg(u)) ∈ G for all g ∈ O and u ∈ 1. Introduce the subset

Jk(O) =
{

j k
g (u) :=

(
u, g(u), g(1)(u), . . . , g(k)(u)

)
/ u ∈ 1, g ∈ O

}

⊂ J k(1, RN ),

consisting of all k-th jets of maps from 1 into RN . Here, g( j) denotes the j-order
differential of the map g, and the mapping j k

g is the k-th jet extension of g.

It follows easily from the definition (2.34) that the functions u %→ π
(k)
j ( f, u)

can be expressed in terms of jets, that is

π
(k)
j ( f, u) = ϕk(u, f (u), f (1)(u), . . . , f (k+1)(u))

= ϕk( j k+1
f (u)), (2.38)

where the functions ϕk : J k+1(1, RN ) → R are smooth in Jk+1(O). Note in
passing that π

(k)
j ( f, u) does not depend upon the first two components of the jet, u

and f (u).
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The proof of Theorem 2.13 follows from Thom’s transversality theorem, which
we recall for the reader’s convenience (for a proof see, for instance, [22]), and a
technical lemma that we establish below.

Theorem 2.14 (Thom). Let X and Y be two smooth manifolds, and Z be a sub-
manifold of the k-th jet space J k(X, Y ) for some k ! 0. Then, there exists a Baire set
of second category E ⊂ C∞(X, Y ) for the (strong) C∞ Whitney topology such that
the k-th jet extension of any f ∈ E is transverse to Z, and consequently ( j k

f )
−1(Z)

is either the empty set or a submanifold of M having the same codimension as Z.

Recall that a Baire set is a set whose complement is the union of at most count-
ably many, nowhere dense sets.

Lemma 2.15. For any k ! 2, the set

Z :=
{

q ∈ Jk(O) / ϕ j (q) = 0, j = 1, . . . , k − 1
}

⊂ J k(1, RN )

is a submanifold of codimension k − 1.

Proof of Theorem 2.13. Applying Lemma 2.15 with k = N + 2, we obtain a
submanifold Z of J N+2(1, RN ). By Theorem 2.14, the set E of maps g : 1 → RN

such that g is transversal to Z is a Baire set of second category. For g ∈ E we intro-
duce

3g : u %→ (π
(1)
j (g, u), . . . , π

(k−1)
j (g, u)).

For any g ∈ E , 3−1
g (0) is either empty or is a submanifold of codimension N + 1.

Clearly, there is no submanifold of codimension N + 1 in 1 ⊂ RN , and hence
3−1

g (0) = ∅. Thus, we can find a sequence f k ∈ E converging to f for the
Whitney topology. +,
Proof of Lemma 2.15.. It is enough to prove that the differential dψk of the
mapping

ψk : J k(1, RN ) ' q %→ (ϕ1(q), . . . , ϕk−1(q))

has constant maximal rank k−1 for each q in J k(1, RN ). Let us write (A0, A1, . . . ,

Ak−1) for a general vector of the tangent space at q, Tq J k(1, RN ), with A0, A1 ∈
RN , Ai ∈ Rdi , i ! 1, where di = (N + i − 1)!/[(N − 1)!i !].

By a straightforward induction argument we can check that it is sufficient to
prove, for every k,

(0, . . . , 0, 1) ∈ Range(Dψk). (2.39)

Denoting by f (k) the k-th order differential of f , we first observe that

π1
j ( f, u) = Du[.i ( f (1)(u))](Ri ( f (1)(u)))

= (DA.i )( f (1)(u)) · ( f (2))(u) ·
[
Ri ( f (1)(u))

]
,

where f (2) is regarded as an element of L(RN ;L(RN , RN )).
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It is straightforward to check, by induction, that the term in ϕk−1 containing the
highest-order differential of f is

(DA.i )( f (1)(u)) · f (k)(u) · [⊗k−1 Ri ( f (1)(u))],

where f (k) is regarded as an element of L((RN )⊗k−1;L(RN , RN )). In other words,
we have

ϕk−1(u, f (u), . . . , f (k))(u))

=(DA.i )( f (1)(u)). f (k)(u).[⊗k−1 Ri ( f (1)(u))] + ψk−1(u, f (u),. . . , f (k−1)),

where ψk−1 is a smooth function of j k−1
f (u).

Hence, to establish (2.39), it is enough to prove that for all A ∈ H there exists

Ak ∈ L((RN )⊗k−1;L(RN , RN )) ≈ L((RN )⊗k; RN )

such that

DA.i (A) · Ak · (⊗k−1 Ri (A)) $= 0. (2.40)

Note that A, Ri (A) and .i (A) are related together via the identity

A Ri (A) = .i (A)Ri (A).

Differentiating this identity with respect to A (in the direction H ), we obtain

H Ri (A) + A · DA Ri (A) · H

= (DA.i (A) · H) Ri (A) + .i (A) DA Ri (A) · H.

Taking the product by the left eigenvector Li (A) and using (2.33), this yields

DA.i (A)H = Li (A)H Ri (A).

Hence, we arrive at (2.40) by considering Ak sending ⊗k Ri (A) to Ri (A) and other
elements of a basis of (RN )⊗k to 0, and A0 = 0,…, Ak−1 = 0. +,

Remark 2.1. It follows from the above proof that generically in f (or in A in the
non-conservative case), we have the stronger property that

{
u ∈ 1

/(
π

(1)
j (u), . . . , π

(k)
j (u)

)}

is a (possibly empty) submanifold of codimension k.
As a consequence, for such a flux and for almost every u ∈ 1, the

(Lipschitz continuous) wave curve starting from u does not meet any point where
(π

(1)
j (u), π

(2)
j (u)) = (0, 0).
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2.7. The PGNL condition is not generic

We have established that any flux can be approached by a sequence of flux
satisfying

(π
(1)
j (u), . . . , π

(N+1)
j (u)) $= (0, . . . , 0)

for all u and j . We will now prove that, in general, a flux cannot be approached by
a sequence of flux satisfying the stronger condition

(π
(1)
j (u), . . . , π

(N )
j (u)) $= (0, . . . , 0)

for all u and j . Hence, the latter condition is not generic. In particular, for N ! 2,
there exist fluxes that cannot be smoothly approached by PGNL fluxes. Note that
our counter-example below is “local”, in the sense that it persists even if we shrink
the neighborhood of the base point under consideration. Moreover, our result is
valid for both conservative or nonconservative hyperbolic systems.

Consider flux f : RN → RN of the following triangular form:

f (u1, . . . , uN ) =





f1(u1)

f2(u1, u2)
...

fN (u1, . . . , uN )




,

whose Jacobian matrix A(u1, . . . , uN ) is given by




∂u1 f1(u1) 0 . . . . . . 0
∂u1 f2(u1, u2) ∂u2 f2(u1, u2) 0 . . . 0

...
...

. . .
...

∂u1 fN (u1, . . . , uN ) ∂u2 fN (u1, . . . , uN ) . . . ∂uN fN (u1, . . . , uN )




.

Under the assumption

∂u1 f1 < ∂u2 f2 < · · · < ∂uN fN ,

the system of conservation laws associated with f is strictly hyperbolic, with

λ j (u1, . . . , uN ) = ∂u j f j (u1, . . . , uN ), rN (u1, . . . , uN ) =





0
...

0
1




.

It will be convenient to choose the component fN to be the following polyno-
mial expression

fN (u1, . . . , uN ) := u1 u2
N + u2 u3

N + · · · + uN−1 uN
N + uN+2

N ,
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while f1, . . . , fN−1 are chosen arbitrarily but so that the strict hyperbolicity
property holds for all u in the ball Bδ . We can compute

λN (u1, . . . , uN )

= 2u1uN + 3u2u2
N + . . . + NuN−1uN−1

N + (N + 2)uN+1
N , (2.41)

thus, since rN · ∇ = ∂uN ,

π
(1)
N (u1, . . . , uN ) := rN · ∇λN (u1, . . . , uN )

= 2 u1 + . . . + N (N − 1) uN−1 uN−2
N + (N + 2)(N + 1) uN

N , (2.42)

and so on for all π
(N−1)
j , in particular

π
(N−1)
N (u1, . . . , uN ) = N ! uN−1 + (N + 2)!

2
u2

N ,

π
(N )
N (u1, . . . , uN ) = (N + 2)! uN . (2.43)

Now, we claim that:

Proposition 2.16. Consider the triangular flux f introduced above. For any δ ∈
(0, 1) and for all g sufficiently close to f on Bδ (in the C N+1-norm), there exists a
state u∗ ∈ Bδ such that

(π
(1)
N (u∗), . . . , π

(N )
N (u∗)) = (0, . . . , 0). (2.44)

Our proof below remains valid if, instead of flux g, we consider mappings
A = A(u) (u ∈ Bδ) which are sufficiently close to d f .

Proof. Clearly, any perturbation g : Bδ → RN of f is still strictly hyperbolic.
Denote by RN [g], .N [g] the eigenvector and eigenvalues of Dg that are associ-
ated with the N -characteristic family, and define π

(1)
N [g](u), . . . , π

(N )
N [g](u) in the

usual way. To exhibit a state satisfying (2.44) we consider the following vector field
W [g] : Bδ → RN :

W [g](u1, . . . , uN ) :=




π

(1)
N [g](u1, . . . , uN )

...

π
(N )
N [g](u1, . . . , uN )



 .

From (2.41)–(2.43) we see that, for any (u1, . . . , uN ) ∈ Bδ ,

W [ f ](u1, . . . , uN ) · (u1, . . . , uN )

=
N−1∑

j=1

( j + 1)! u2
j + (N + 2)! u2

N + P(u1, . . . , uN ),

where P(u1, . . . , uN ) is a polynomial expression in u1, . . . , uN such that where
each term is of degree 3 at least. It follows that for some δ0 > 0 and for all δ ∈ (0, δ0)

and (u1, . . . , uN ) ∈ Sδ (the sphere with radius δ)

W [ f ](u1, . . . , uN ) · (u1, . . . , uN ) > 0.
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Consequently for δ ∈ (0, δ0), the index of the vector field W [ f ] around the sphere
Sδ is 1 (by a standard homotopy argument, for instance). Now, it follows that for all
g close to f , the vector field W [g] does not vanish on Sδ and is of index 1 around
Sδ . Hence, W [g] necessarily vanishes inside Bδ , and this establishes the claim. +,

3. A second proof of the inner speed variation estimates

3.1. Notation and preliminaries

In the present section, we rely on an alternative approach to the Riemann prob-
lem of Bianchini and Bressan [8, 7, 6] and we provide a second proof of the
inner speed variation estimate already derived in the previous section.

Throughout, we consider a strictly hyperbolic system of conservation laws (2.1)
and use the notation of Section 2. Note that the parametrization (often denoted by
the letter s) along the wave curves will be here different from the one in the previous
section. The sup norm in RN is used throughout the present section.

The following framework is based on a prescribed family of “traveling waves”,
the motivation for which we refer the reader to [27, 16, 31, 8, 6] and to the dis-
cussion in Section 4 below. Consider a given family of smooth vector-valued maps
r̃ j = r̃ j (u, v j , σ j ) for (u, v j , σ j ) ∈ RN × R × R (presumably associated with
viscous profiles of a regularized version of (2.1)). Given a base point which can be
assumed to be the origin in RN , and setting l0

j := l j (0) etc., we can normalize the
vectors r̃ j so that l0

j · r̃ j = 1.
From r̃ j we can determine the speed functions λ̃ j

λ̃ j (u, v j , σ j ) := l0
j · A(u) r̃ j (u, v j , σ j ),

and we assume as in [8] that, for some constant C0 > 0

r̃ j (u, 0, σ j ) = r j (u),

∣∣∣∣
∂ r̃ j

∂σ j
(u, v j , σ j )

∣∣∣∣ " C0 |v j |, (3.1)

and
∣∣∣∣
∂λ̃ j

∂v j
(u, v j , σ j )

∣∣∣∣ " C0 |u|,
∣∣∣∣
∂λ̃ j

∂σ j
(u, v j , σ j )

∣∣∣∣ " C0 |u| |v j |. (3.2)

In particular, it follows that λ̃ j (u, 0, σ j ) = λ j (u).
Then, the wave curves associated with the system (2.1) are constructed in the

following way. Fix some small δ1 < δ0 and, for j = 1, . . . , N , s ∈ [0, δ1), and
u− ∈ Bδ0 , define a family of curves 4 j (s; u−), issuing from u− and of “length” s,
as follows:

4 j (s; u−) :=
{
γ (τ) = (u(τ ), v j (τ ), σ j (τ )) ∈ Lip([0, s]; RN+2) /

u(0) = u−, µ j (u(τ )) = µ j (u−) + τ,

v j (0) = 0, |v j (τ )| " δ1, |σ j (τ ) − λ0
j | " 2C0 δ1

}
,
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where µ j (u) := l0
j · u. With any curve γ ∈ 4 j (s; u−) we associate its j-flux

function

f̃ j [γ ](τ ) :=
∫ τ

0
λ̃ j (u, v j , σ j )(τ

′) dτ ′.

Define also the nonlinear operator T j : γ %→ (̂u, v̂ j , σ̂ j ) on 4 j (s, u−) by

û(τ ) = u− +
∫ τ

0
r̃ j (u, v j , σ j )(τ

′) dτ ′,

v̂ j (τ ) = f̃ j [γ ](τ ) − conv[0,s] f̃ j [γ ](τ ), (3.3)

σ̂ j (τ ) = d
dτ

(
conv[0,s] f̃ j [γ ](τ )

)
.

Define a distance between γ, γ ′ ∈ 4 j (s, u−) by

D(γ, γ ′) := δ1‖u − u′‖L∞ + ‖v j − v′
j ‖L1 + ‖v j σ j − v′

j σ
′
j ‖L1 . (3.4)

It was established in [7] (Proposition 3.2 therein) that, for δ1 suitably small, the oper-
ator T j is a contraction with constant 1/2 in the metric space 4 j (s; u−) endowed
with the distance D. With any s and u− we can thus associate a unique curve
γ & = γ &

s,u− that satisfies T j (γ
&) = γ &.

This allows us to introduce the wave curve ψ j = ψ j (s; u−) by keeping, for
every s > 0, the endpoint of the curve at τ = s only, i.e.

ψ j (s; u−) := γ &
s;u−(s).

For every s > 0, the state u− is connected to the right-hand state u+ := ψ j (s; u−)

along the curve γ & = (u&, v&
j , σ &

j ) (associated with the given s, u−) and we can
define the corresponding j-wave fan:

u(t, x) :=






u−, x/t " σ j (0),

u(τ ), x/t = σ j (τ ),

u−, x/t ! σ j (s).

When s < 0 a similar construction is done using the concave hull (denoted below
by conc) instead of the convex hull.

The wave curves are Lipschitz continuous and, by the implicit function theo-
rem, any Riemann problem (ul , ur ) can be solved uniquely, by combining wave
curves together, i.e.

ur = 3(s; ul) := ψN (sN ; ψN−1(sN−1, . . . ψ1(s1; ul))),

where we use the notation s := (s1, . . . , sN ).
To estimate the interaction between waves we introduce Bianchini–Bressan’s

amount of interaction [7] as follows. First of all, consider two waves of the same
family

u+ = ψ j (s, u−), u′
+ = ψ j (s′; u′

−), (3.5)
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together with the corresponding curves γ and γ ′ and the corresponding j-flux
f̃ j = f̃ j [γ ] and f̃ ′

j = f̃ j [γ ′]. Define the real I = I(u−, u+; u′
−, u′

+) as follows,
where for definiteness we assume that s > 0. (When s < 0 we should replace all
convex/concave hulls by concave/convex hulls.)

(a) If s, s′ > 0, we set

f̃ j ∪ f̃ ′
j :=

{
f̃ j (τ ), τ ∈ [0, s],
f̃ j (s) + f̃ ′

j (τ − s), τ ∈ [s, s + s′], (3.6)

and

I(u−, u+;u′
−, u′

+)

:=
∫ s

0

∣∣∣conv[0,s]( f̃ j ∪ f̃ ′
j )(ξ) − conv[0,s+s′]( f̃ j ∪ f̃ ′

j )(ξ)
∣∣∣

+
∫ s+s′

s

∣∣∣conv[s,s+s′]( f̃ j ∪ f̃ ′
j )(ξ) − conv[0,s+s′]( f̃ j ∪ f̃ ′

j )(ξ)
∣∣∣ ,

(b) If −s " s′ < 0, we set

I(u−, u+; u′
−, u′

+) :=
∫ s+s′

0

∣∣conv[0,s] f̃ j (ξ) − conv[0,s+s′] f̃ j (ξ)
∣∣

+
∫ s

s+s′

∣∣conv[0,s] f̃ j (ξ) − conc[s+s′,s] f̃ j (ξ)
∣∣ ,

(c) If s′ < −s < 0, we set

I(u−, u+; u′
−, u′

+) :=
∫ −s

s′

∣∣∣conc[s′,0] f̃ ′
j (ξ) − conc[s′,−s] f̃ ′

j (ξ)
∣∣∣

+
∫ 0

−s

∣∣∣conc[s′,0] f̃ ′
j (ξ) − conv[−s,0] f̃ ′

j (ξ)
∣∣∣ .

More generally, define the amount of interaction associated with two Riemann
problems ur = 3(s; ul), u′

r = 3(s′; u′
l) by

I(ul , ur ; u′
l , u′

r ) :=
∑

i< j

|si s′
j | +

∑

j

I(u−, u+; u′
−, u′

+),

where the second sum is over all j-waves (u−, u+) and (u′
−, u′

+) in the Riemann
problems (ul , um) and (um, ur ), respectively. Now the interaction functional Q is
defined as

Q(ul , ur , u′
l , u′

r ) =
∑

i> j

|si s′
j | +

∑

j

∫ s j

0

∫ s′
j

0
|σ j (τ ) − σ ′

j (τ )|.

It will be convenient also to set Q(ul , um, ur ) := Q(ul , um; um, ur ) for all
ul , um, ur .

Finally, we will need another distance between curves. Consider two curves
γ ∈ 4 j (s j ; u) andγ ′ ∈ 4 j (s′

j ; u′), and restrict attention to the case where s j and
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s′
j have the same sign. If, for instance, both of them are positive we set s j :=

min(s j , s′
j ) and

P(γ, γ ′) := D(γ|[0,s j ], γ ′
|[0,s j ]) + |s j − s′

j |,

where the distance D introduced earlier is extended in an obvious way to any two
curves with the same length but not the same base point.

3.2. Interaction estimates on the inner speed variation

Recall from [7] the following version of Glimm’s interaction estimates.

Theorem 3.1.
1. Consider any three states ul , um, ur such that um =3(slm; ul), ur =3(smr ; um),
and ur = 3(slr ; ul). Then, the corresponding wave strength vectors satisfy

|slr − slm − smr | # I(ul , um, ur ). (3.7)

2. Let γ lm
j , γ mr

j , and γ lr
j be the curves associated with the j-waves in the Riemann

solutions under consideration. Define γ̂ j by

γ̂ j :=






γ lm
j ∪ γ mr

j on [0, slm
j + smr

j ], Ê if slm
j , smr

j ! 0,

γ lm
j |[0,slm

j +smr
j ] on [0, slm

j + smr
j ], Ê if − slm

j < smr
j < 0,

γ mr
j |[smr

j ,−slm
j ](· − slm

j ) on [slm
j + smr

j , 0], if smr
j < −slm

j < 0,

where γ lm
j ∪ γ mr

j is defined by

γ lm
j ∪ γ mr

j :=
{

γ lm
j (τ ), 0 " τ " slm

j ,

γ lm
j (slm

j ) + γ mr
j (τ − slm

j ), slm
j " τ " slm

j + smr
j ,

(3.8)

(the definition when slm
j , smr

j are negative being similar). Then, the curves satisfy
the following interaction estimates:

∑

j

P(γ̂ j , γ lr
j ) # I(ul , um, ur ).

3. Consider a piecewise constant function with small total variation u : R → RN .
Let u′ be the function obtained from u by replacing two consecutive Riemann prob-
lems (uk, uk+1) and (uk+1, uk+2) by (uk, uk+2). Then, for some c > 0 we have the
estimate

Q(u′) " Q(u) − c I(uk, uk+1, uk+2). (3.9)

4. In the situation above, let Q′ be the interaction amount associated with u but
with the i-th curve γ i

k in the Riemann problem (uk, uk+1) being replaced by γ ′
i cor-

responding to another problem u′
1 = ψi (u′

0). This modifies the Q in the following
way:

|Q′ − Q(u)| # P(γ k
i , γ ′

i ). (3.10)
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We now turn to the investigation of the inner speed variation ϑ j (defined in the
previous section) which here takes the following form: given ur = ψ j (s, ul) with
corresponding curve γ = (u, v j , σ j ):

ϑ j (ul; ur ) = σ j (s) − σ j (0).

We provide a new proof of the estimate already derived in the previous section.

Proposition 3.2 (Inner speed variation—same family). Consider two j-wave fans

um = ψ j (slm; ul), ur = ψ j (smr ; um),

and denote by γlm = (ulm, vlm
i , σ lm

i ) and γmr = (umr , vmr
i , σ mr

i ) the associated
curves. Set u′

r := ψ j (slm + smr ; ul) and denote by γ ′ := (u′, v′
j , σ ′

j ) the associ-
ated curve. Then, the inner speed variation of the j-wave fan (ul , ũr ) satisfies the
following estimates (assuming slm ! 0):

(a) Monotone case. 0 " slm, smr .

ϑ j (ul , u′
r ) " max

(
ϑ j (ul , um), ϑ j (um, ur )

)

+
(
σ mr

j (0) − σ lm
j (0)

)
+ + O(1) I(ul , um, ur ). (3.11)

(b) Non-monotone case (I). 0 " slm + smr " slm.

ϑ j (ul , u′
r ) " ϑ j (ul , um) + O(1) |smr |. (3.12)

(c) Non-monotone case (II). slm + smr " 0 " slm.

ϑ j (ul , u′
r ) " ϑ j (um, ur ) + O(1) slm . (3.13)

Moreover, completely similar estimates hold in the case slm " 0.

Proposition 3.3 (Inner speed variation—artificial wave fronts). Consider three
states ul , um, ur satisfying solely

ur = ψ j (s; um),

and let γ = (u, v j , σ j ) be the curve associated with the wave (um, ur ). Introduce
u′

m := ψ j (s; ul) and the corresponding curve γ ′ := (u′, v′
j , σ ′

j ). Then, it holds

ϑ j (ul , u′
m) = ϑ j (um, ur ) + O(s) |um − ul |.

A completely similar statement holds when (ul , um) is a j-wave and (um, ur ) is an
arbitrary jump discontinuity.

In fact, from the above statement, we can also deduce the desired estimate for
the interaction of waves of different families.
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Proposition 3.4 (Inner speed variation — different families). Consider three states
ul , um, ur such that, for i $= j ,

um = ψ j (slm; ul), ur = ψi (smr ; um),

and denote by γ lm = (ulm, vlm
j , σ lm

j ) and γ mr = (umr , vmr
i , σ mr

i ) the curves
associated with the wave (ul , um) and (um, ur ), respectively. Set also ũm :=
ψi (smr ; ul) and ũr := ψi (slm; ũm), and denote by γ ′lm := (u′lm, v′lm

j , σ ′lm
j ),

γ ′mr := (u′mr , v′mr
i , σ ′mr

j ) the corresponding curves. Then, we have

ϑ j (ũm, ũr ) = ϑ j (ul , um) + O(slm smr ),

ϑ j (ul , ũm) = ϑi (um, ur ) + O(slm smr ).

Corollary 3.5. Consider four states u0, u′
0, u1, u′

1 such that

u1 = ψ j (s; u0), u′
1 = ψ j (s′; u′

0)

with 0 < s < s′. Denote by γ = (u, v j , σ j ) and γ ′ = (u′, v′
j , σ ′

j ) the curves
associated with the waves (u0, u1) and (u′

0, u′
1), respectively. Then, we have

|σ ′
j (s

′) − σ ′
j (0) − σ j (s) + σi (0)| # |u0 − u′

0| + |s′ − s|. (3.14)

Clearly, Proposition 3.4 follows from the fact that

s # |ψ j (s; u) − u| # s.

We postpone the proof of the other statements to Subsection 3.4. In the next
subsection, we derive some additional properties of the Riemann solver constructed
via (3.3), which will be useful in our proofs but are also of independent interest.

3.3. Additional properties of the Riemann solver

To derive the inner speed variation estimates stated earlier, it will be convenient
to decompose the problem of finding a fixed point of (3.3) in two steps: on one
hand, finding the geometric wave curves (that is the component u) and, on the other
hand, finding the speed of propagation of the wave fan (that is the components
(v j , σ j )). This is the subject of the following proposition. Consider the set

ϒ j (s; u−) :=
{
(v j (·), σ j (·)) ∈ Lip([0, s]; R2)

/

v j (0) = 0, |v j (τ )| " δ1, |σ j (τ ) − λ0
j | " 2C0 δ1

}

endowed with the sup norm ‖(v j , σ j )‖∞ := ‖v j ‖∞ + ‖σ j ‖∞. Given u∗ ∈
Lip([0, s]; RN ) satisfying u∗

j (τ ) = u− + τ and |u∗
j (τ ) − u−| " τ , consider

the operator

1u∗
s : (v j , σ j ) %→

{
v̂ j (τ ) := f̃ j [u∗, v j , σ j ](τ ) − conv[0,s] f̃ j [u∗, v j , σ j ](τ ),

σ̂ j (τ ) = d
dτ

(
conv[0,s] f̃ j [u∗, v j , σ j ]

)
(τ ).
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Lemma 3.6. Fix u∗ ∈ Lip([0, s]; RN ) satisfying u∗
j (τ ) = u− + τ and |u∗

j (τ ) −
u−| " τ . Provided the range of u∗ is included in a sufficiently small neighborhood
of 0, the operator 1u∗

s admits a unique fixed point in ϒ j (s; u−), which will be
denoted by (V u∗

s , 9u∗
s ). Moreover, for some C1 > 0,

‖(V u1

s , 9u1

s ) − (V u2

s , 9u2

s )‖∞ " C1 ‖u1 − u2‖∞.

Proof. We will prove that if the range of u∗ is included in a sufficiently small
neighborhood of 0, then the map 1u∗

s is a contraction with constant 1/2. Indeed,
we have

‖1u∗
s (v1, σ1) − 1u∗

s (v2, σ2)‖∞ # ‖ d
dτ

f̃ j (·, u∗, v1, σ1) − d
dτ

f̃ j (·, u∗, v2, σ2)‖∞

# ‖̃λ j (u∗, v1, σ1) − λ̃ j (u∗, v2, σ2)‖∞.

With (3.2) this yields

‖1u∗
s (v1, σ1) − 1u∗

s (v2, σ2)‖∞
# C0‖u∗ − u0‖∞(1 + ‖v j ‖∞)‖(v1, σ1) − (v2, σ2)‖∞,

This proves the first part of the lemma.
To establish the second part, we use the above contraction property and write

‖(V u1
s , 9u1

s ) − (V u2
s , 9u2

s )‖∞ # ‖1u1
s (V u2

s , 9u2
s ) − (V u2

s , 9u2
s )‖∞

# ‖̃λ j (u1, V u2
s , 9u2

s ) − λ̃ j (u2, V u2
s , 9u2

s )‖∞
# ‖u1 − u2‖∞,

where the regularity of the function λ̃ j has been used. This completes
the proof. +,

We now state some properties of the curve describing the wave fan, under
the assumption that the u-component is already known. Introduce the translation
operator τs : f %→ τs f , defined by

τs( f )(y) := f (y − s).

When a function u∗ is defined on an interval larger than [0, s], in order to simplify

the notation, we simply write (V u∗
s , 9u∗

s ) instead of
(
V

u∗
|[0,s]

s , 9
u∗

|[0,s]
s

)
.

Lemma 3.7 (A splitting property). Let 0 < s1 < s2 and u∗ ∈ Lip([0, s2], RN ) be
as in Lemma 3.6. If

V u∗
s2

(s1) = 0,

then (V u∗
s2

, 9u∗
s2

) coincides with (V u∗
s1

, 9u∗
s1

) on the interval [0, s1], and coincides

with the translate τs1

(
V

τ−s1 u∗
s2−s1

, 9
τ−s1 u∗
s2−s1

)
on the interval [s1, s2].
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Proof It suffices to check that (V u∗
s2

, 9u∗
s2

)|[0,s1] and τ−s1(V u∗
s2

, 9u∗
s2

)|[s1,s2] are fixed

points of the operators 1
u∗

|[0,s1]
s1 and 1

τ−s1 u∗
|[s1,s2]

s2−s1
, respectively. However, this prop-

erty is a direct consequence of the following fact: for every Lipschitz continuous
function g : [0, s2] → R and s1 ∈ [0, s2]

(conv[0,s2]g)(s1) = g(s1) =⇒ conv[0,s2]g ≡
{

conv[0,s1]g on [0, s1],
conv[s1,s2]g on [s1, s2]. +,

Now, we prove (compare with [6, Lemma 3.3]):

Lemma 3.8 (A monotonicity property). For any 0 < s1 < s2 and u∗ ∈ Lip([0, s2],
RN ) as in Lemma 3.6, it holds:

9u∗
s1

! 9u∗
s2

on [0, s1]. (3.15)

Proof. Set

s# := max
{

s ∈ [0, s1], V u∗
s2

(s) = 0
}
,

and note that the function conv[0,s2] f j (τ, u∗, V u∗
s2

, 9u∗
s2

) is affine on the interval
[s#, s1]. Suppose first that s# > 0. We have V u∗

s2
(s#) = 0 and, by Lemma 3.7, the

curves (V u∗
s1

, 9u∗
s1

) and (V u∗
s2

, 9u∗
s2

) coincide on the interval [0, s#].
Hence, it is clear that (3.15) is valid in [0, s#], so that on the interval [s#, s1]

we obtain

9u∗
s1

(s) ! 9u∗
s1

(s#) = 9u∗
s2

(s#) = 9u∗
s2

(s).

Recall here that, since γ is Lipschitz continuous, the function f̃ j (γ ) is W 2,∞.
Suppose next that s# = 0. As conv[0,s2] f j (τ, u∗, V u∗

s2
, 9u∗

s2
) is affine in [0, s1],

it suffices to establish (3.15) at s = 0. We distinguish between two cases:

(a) either 0 is an accumulation point of values s such that V u∗
s1

(s) = 0. In this
case, we have

9u∗
s1

(0) = d
dτ

f̃ j (0, u∗, V u∗
s1

, 9u∗
s1

) = λ j (u∗(0)),

and, on the other hand,

9u∗
s2

(0) " λ j (u∗(0)) = d
dτ

f̃ j (0, u∗, V u∗
s2

, 9u∗
s2

);

(b) or s8 is the smallest positive τ such that V u∗
s1

(τ ) = 0. In that case, both
9u∗

s1
and 9u∗

s2
are constant in the interval [0, s8], the former coinciding with

9u∗
s8 in [0, s8] thanks to Lemma 3.7. Now, let us use (3.2) and recall that both
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9u∗
s8 and 9u∗

s2
are constant in [0, s8]. Recall also that both V u∗

s8 and V u∗
s8 are

linear in [0, s8] and V u∗
s8 (s8) = V u∗

s8 (0) = V u∗
s2

(0) = 0. We then find:

‖ f̃ j (u∗, V u∗
s8 , 9u∗

s8) − f̃ j (u∗, V u∗
s2

, 9u∗
s2

)‖L∞(0,s8)

" ‖̃λ j (u∗, V u∗
s8 , 9u∗

s8) − λ̃ j (u∗, V u∗
s2

, 9u∗
s2

)‖L1(0,s8)

# ‖u∗‖∞‖(V u∗
s8 , 9u∗

s8) − (V u∗
s2

, 9u∗
s2

)‖L1(0,s8) " 1
2

V u∗
s2

(s8),

at least if u∗ remains within a small neighborhood of the base point 0. This
yields

f̃ j

(
u∗, V u∗

s8 , 9u∗
s8

)
(s8) ! conv[0,s2] f̃ j

(
u∗, V u∗

s2
, 9u∗

s2

)
(s) + 1

2
V u∗

s2
(s8),

which leads to (3.15) and completes the proof of Lemma 3.8. +,
From Lemma 3.8 we deduce:

Lemma 3.9. Let s1, s2 > 0, s̃ ∈ (0, s1), and u∗ ∈ Lip([0, s1 + s2]; RN ). If

V u∗
s1+s2

( s̃ ) = 0, (3.16)

then

V u∗
s1

( s̃ ) = 0. (3.17)

Similarly, if (3.16) holds for some s̃ ∈ (s1, s1 + s2), then V
τ−s1 u∗
s2 ( s̃ − s1) = 0.

Proof. We only prove the first statement since the second one is similar. We intro-
duce

ǔ := τ− s̃ u∗
|[ s̃ ,s1+s2], V ǔ

s1+s2− s̃ , 9ǔ
s1+s2− s̃ .

Using Lemma 3.7, we obtain

9u∗
s̃ ( s̃ ) = 9u∗

s1+s2
( s̃ )

= d
dτ

conv[0,s1+s2] f j

(
s̃ , u∗, 9u∗

s1+s2
, V u∗

s1+s2

)
.

Using V u∗
s1+s2

( s̃ ) = 0, we then have

9u∗
s̃ ( s̃ ) = d

dτ
f j ( s̃ , u∗, V u∗

s1+s2
, 9u∗

s1+s2
)

= λ̃ j (u∗( s̃ ), 0, 9u∗
s1+s2

( s̃ )) = λ j (u∗( s̃ )).

Now, from Lemma 3.8 and 3.7, we deduce

τ s̃ 9ǔ
s1− s̃ ( s̃ ) ! τ s̃ 9ǔ

s1+s2− s̃ ( s̃ ) = 9u∗
s1+s2

( s̃ ),

It follows that

τ s̃ 9ǔ
s1− s̃ ( s̃ ) ! λ1(u∗( s̃ )).
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However, on the other hand,

τ s̃ 9ǔ
s1− s̃ ( s̃ ) = d

dτ
conv[0,s1− s̃ ] f j (ǔ, V ǔ

s1− s̃ , 9ǔ
s1− s̃ )(0)

" d
dτ

f j (ǔ, V ǔ
s1− s̃ , 9ǔ

s1− s̃ )(0)

= λ̃1(u∗( s̃ ), 0, 9ǔ
s1− s̃ ) = λ1(u∗( s̃ )).

Hence, we obtain

τ s̃ 9
ǔ|[0,s1− s̃ ]
s1− s̃ ( s̃ ) = λ1(u∗( s̃ )) = 9

u∗
|[0, s̃ ]

s̃ ( s̃ ).

However, we have also

τ s̃ V
ǔ|[0,s1− s̃ ]
s1− s̃ ( s̃ ) = 0 = V

u∗
|[0, s̃ ]

s̃ ( s̃ ), and τ s̃ ǔ|[0,s1− s̃ ]( s̃ ) = u∗( s̃ ).

We introduce the curve (V , 9) : [0, s1] → R2 given by

(V , 9) ≡
{

(V u∗
s̃ , 9u∗

s̃ ), [0, s̃ ],
τ s̃ (V ǔ

s1− s̃ , 9ǔ
s1− s̃ ), [ s̃ , s1],

(3.18)

Clearly, γ is Lipschitz continuous. To prove (3.17), it suffices to prove that
(V u∗

s1
, 9u∗

s1
) = (V , 9), and hence that γ is a fixed point for 1ǔ

s1
.

Now the following property is satisfied by any Lipschitz continuous function
g : [0, s1] → R: if its convex hulls h1 := conv[0, s̃ ]g and h2 := conv[ s̃ ,s1]g satisfy

h1( s̃ ) = h2( s̃ ), h′
1( s̃ ) = h′

2( s̃ ),

then conv[0,s1]g coincides with h1 in [0, s̃ ] and with h2 in [ s̃ , s1]. Using the defi-
nitions of (V u∗

s̃ , 9u∗
s̃ ) and (V ǔ

s1− s̃ , 9ǔ
s1− s̃ ), we deduce (V u∗

s1
, 9u∗

s1
) = (V , 9) and

hence (3.18). This completes the proof of Lemma 3.9. +,

We conclude this section with a technical observation which will be useful in
the course of the proofs of the above statements.

Lemma 3.10. All of the curves γ obtained by a fixed point argument with the oper-
ator (3.3) are Lipschitz continuous with a uniform Lipschitz constant.

Proof. Consider first the component (u, v j ) part. The desired estimate is elemen-
tary in view of the property ‖d(conv f )‖∞ " ‖d f ‖∞. It remains to consider the
σ j -part and, precisely, to prove

|σ j (τ ) − σ j (τ
′)| " C |τ − τ ′|.

First of all, observe that for every f ∈ W 2,∞ and 0 " x " y " s the convex
hull h := conv[0,s] f satisfies

osc
[x,y]

(h′) " osc
[x,y]

( f ′).
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(This is easily checked by considering the contact points between f and h in [x, y]).
Hence, we have

|σ j (τ ) − σ j (τ
′)| # osc

[τ,τ ′]
(̃λ j (γ (τ )),

and it follows that

osc
[τ,τ ′]

(σ j ) " ‖∂u λ̃ j ‖∞ osc
[τ,τ ′]

(u) + ‖∂vλ̃ j ‖∞ osc
[τ,τ ′]

(v j ) + ‖∂σ λ̃ j ‖∞ osc
[τ,τ ′]

(σ j ).

Now, we already have uniform Lipschitz estimates on (u, v j ), and it follows from
(3.2) that the coefficient in front of osc(σ j ) is less than 1/2, which allows us to
conclude the proof. +,

3.4. Proof of the inner speed variation estimates

We begin with an elementary lemma.

Lemma 3.11. Given g ∈ W 2,∞([−M, M]), there exists a positive constant C1 =
C1(g) (depending upon M and sup |d2g/du2|) such that, for all −M " a " b "
c " M, we have

‖(conv[a,c]g)′
|[a,b] − (conv[a,b]g)′‖∞ " C1 (c − b), (3.19)

‖(conv[a,c]g)′
|[b,c] − (conv[b,c]g)′‖∞ " C1 (b − a). (3.20)

A similar statement stands for the concave hull.

Proof. We limit our attention to the proof of (3.19) in the case of the convex
hull since the other inequalities are proven in the same way. We use the notation
h[a,b] := conv[a,b]g, etc. In view of this definition we note that

h[a,c] " h[a,b] " g in [a, b],

and hence we can restrict attention to the case where a and c are the only contact
points between g and h[a,c]. Hence we get

h′
[a,c] ≡ g(c) − g(a)

c − a
.

As h′
[a,c](a) " h′

[a,b](a) it is sufficient to prove that

h′
[a,b](b) − g(c) − g(a)

c − a
" O(c − b).

Suppose that h[a,b] and g are not tangent at b, and denote by d < b the “last”
contact point of h[a,b] with g. It follows that

h′
[a,b](b) − g(c) − g(a)

c − a
= g(d) − g(b)

d − b
− g(a) − g(c)

a − c

" g(d) − g(b)

d − b
− g(d) − g(c)

d − c
.
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In the latter inequality we used the fact that the point (d, g(d)) is above the line con-
necting (a, g(a)) to (c, g(c)). The latter term in the inequality above is obviously
O(c − b).

Now, in the case where h[a,b] and f are tangent at b, the difference is

h′(b) − g(c) − g(a)

c − a
= g′(b) − g(a) − g(c)

a − c

" g′(b) − g(b) − g(c)
b − c

,

where we have used that (b, g(b)) is above the line connecting (a, g(a)) to
(c, g(c)). The right-hand side is also clearly O(c − b) and this completes the proof
of (3.19). +,

Proof of Proposition 3.2. To simplify the notation, we use the index 1 (resp. 2) to
denote the objects (s, γ = (u, vi , σi )) relative to the left-middle pattern (that is,
lm) (resp. the middle-right pattern mr ). We drop the index i corresponding to the
wave family (which is the same for all objects considered here). Recall that a prime
indicates an object corresponding the outgoing i-th wave.

We distinguish between three cases: s1, s2 > 0, −s1 < s2 < 0 and s2 < −s1 <

0. The cases where s1 < 0 are treated similarly using the concave hull.

Case 1. Assume s1, s2 > 0. Let us define γ1 ∪ γ2 by (3.8), let u# be the u-part of
it. It follows from Theorem 3.1 and Corollary 3.5 that

D(γ ′, γ1 ∪ γ2) = O(1) I(ul , um, um, ur ),

where the distance D is given by (3.4). In particular,

‖u# − u′‖∞ = O(1) I,

which in turn yields, using Proposition 3.6,

‖(V u#

s1+s2
, 9u#

s1+s2
) − (V u′

s1+s2
, 9u′

s1+s2
)‖∞ = O(1) I.

Hence, to establish (3.11) it is sufficient to prove

9u#

s1+s2
(s1 + s2) − 9u#

s1+s2
(0)

" max
(
σ 1(s1) − σ 1(0), σ 2(s2) − σ 2(0)

)
+

(
σ 2(0) − σ 1(0)

)
+. (3.21)

Let us introduce

sa := max
{

s ∈ [0, s1], V u#

s1+s2
(s) = 0

}
,

sb := min
{

s ∈ [s1, s1 + s2], V u#

s1+s2
(s) = 0

}
.

From Lemmas 3.7 and 3.9, we deduce that 9u#

s1+s2
coincides with 9

u1
s1 in [0, sa],

and with τs19
u2
s2 in [sb, s1 +s2]. Moreover, 9u#

s1+s2
is constant in [sa, sb]. Therefore,

we see that
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(a) if sa > 0 and sb < s1 + s2, then

9u#

s1+s2
(s1 + s2) − 9u#

s1+s2
(0) = 9u2

s2
(s2) − 9u1

s1
(0)

= 9u2
s2

(s2) − 9u2
s2

(0) + 9u2
s2

(0) − 9u1
s1

(0),

which yields (3.21);
(b) if sa > 0 and sb = s1 + s2 (the equivalent could be done in the case sa = 0

and sb < s1 + s2), then 9s1+s2 is constant in [sa, s1 + s2], and hence

9u#

s1+s2
(s1 + s2) − 9u#

s1+s2
(0) = 9u1

s1
(sa) − 9u1

s1
(0),

which yields again (3.21);
(c) if sa = 0 and sb = s1 + s2 then 9u#

s1+s2
is constant in [0, s1 + s2], and hence

the result is satisfied.

Case 2. Assume −s1 < s2 < 0. Let us write:

γ # := γ1|[0,s1+s2].

It follows from Theorem 3.1 and Corollary 3.5 that

D(γ̃ , γ #) = O(1) I,

and hence

‖(V u#

s1+s2
, 9u#

s1+s2
) − (V ũ

s1+s2
, 9ũ

s1+s2
)‖∞ = O(1) I.

We note that, as all the speeds are bounded, I = O(s2). Hence, to establish (3.12)
it suffices to show

σ #(s1 + s2) − σ #(0) " σ1(s1) − σ1(0) + O(s2).

As previously, using the contraction property, it is sufficient to prove that

‖1u#

s1+s2
(v1, σ1)|[0,s1+s2] − (v1, σ1)|[0,s1+s2]‖∞ = O(s2).

Computing the difference, we are led to establish that

‖[conv[0,s1] f̃ (γ 1)]|[0,s1+s2] − conv|[0,s1+s2] f̃ (γ 1)‖Li p = O(s2).

Using Lemma 3.11, the expression of f̃i and the smoothness of λ̃i , we see that it is
sufficient to prove a uniform Lipschitz continuous estimate for the curves γ . This
is precisely given by Lemma 3.10.

Case 3. Assume s2 < −s1 < 0.

This case is done similarly as the previous one, and this completes the proof of
Proposition 3.2. +,
Proof of Proposition 3.3. In the sequel, all objects (s, γ = (u, v j , σ j )) without a
prime are relative to the incoming j-wave. The objects with a prime are relative to
the outgoing one. Without loss of generality, we assume that s ! 0 and use convex
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hulls. We treat only the case that the given j-wave is (um, ur ), since the other case
is similar. Define

ũ(·) := u(·) − um + ul , γ̃ (·) := (ũ, v, σ )(·),
and consider d = um − ul . For 0 " τ " s we have

λ̃ j (γ )(s) − λ̃ j (γ̃ )(τ ) =
∫ |d|

0

∂

∂u
λ̃ j (u(s) + ς

d
|d| , v(s), σ (s))dς.

In consequence, using the uniform bound available on the second-order derivatives
of λ̃ j , we find

‖̃λ j (γ̃ )(·) − λ̃ j (γ )(·) + {̃λ j (γ̃ )(0) − λ̃ j (γ )(0)}‖L∞([0,s]) = O(s|d|),
and, in consequence,

‖ f̃ j (γ̃ )(τ ) − f̃ j (γ )(τ ) − τ {̃λ j (γ̃ )(0) − λ̃ j (γ )(0)}‖W 1,∞ = O(s|d|). (3.22)

Next, since ‖conv f − convg‖W 1,∞ " ‖ f − g‖W 1,∞ we deduce that

‖conv[0,s] f̃ j (γ̃ ) − conv[0,s] f̃ j (γ ) − τ {̃λ j (γ̃ )(0) − λ̃ j (γ )(0)}‖W 1,∞ = O(s|d|).
(3.23)

Let us now show that

‖(V ũ, 9ũ) − (v, σ + {̃λ j (γ̃ (0)) − λ̃ j (γ (0))})‖∞ = O(1) s|d|. (3.24)

In view of (3.1) we have

λ̃ j (γ (0)) = λ j (um), λ̃ j (γ̃ (0)) = λ j (ul).

We denote σ̃ := σ +λ̃ j (γ̃ (0))−λ̃ j (γ j (0)) and γ̌ = (ũ, v, σ̃ ). Using the contraction
property, to establish (3.24) it suffices to show

‖(v, σ̃ ) − 1ũ
s (v, σ̃ )‖∞ = O(1) s|d|.

Recall that ‖dconv f − dconvg‖∞ " ‖d f − dg‖∞, and observe that g − convg
remains unchanged if we add an affine function to g. Recalling also the definition
of the operator 1ũ

s , we obtain
∥∥(v, σ̃ ) − 1ũ

s (v, σ̃ )
∥∥

∞
=

∥∥ f̃ j (γ ) − conv[0,s] f̃ j (γ ) − f̃ j (γ̌ ) + conv[0,s] f̃ j (γ̌ )
∥∥

∞

+
∥∥ d

dτ
conv[0,s] f̃ j (γ ) + λ̃ j (γ̃ (0)) − λ̃ j (γ j (0)) − d

dτ
conv[0,s] f̃ j (γ̌ )

∥∥
∞

#
∥∥ f̃ j (γ ) − conv[0,s] f̃ j (γ ) − f̃ j (γ̃ ) + conv[0,s] f̃ j (γ̃ )

∥∥
∞

+
∥∥ f̃ j (γ̃ ) − conv[0,s] f̃ j (γ̃ ) − f̃ j (γ̌ ) + conv[0,s] f̃ j (γ̌ )

∥∥
∞

+
∥∥̃λ j (γ̃ (0)) − λ̃ j (γ (0)) + d

dτ
f̃ j (τ, γ ) − d

dτ
f̃ j (τ, γ̃ )

∥∥
∞

+
∥∥ d

dτ
f̃ j (τ, γ̃ ) − d

dτ
f̃ j (τ, γ̌ )

∥∥
∞.
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Taking (3.22)–(3.23) into account, this yields

‖(v, σ̃ ) − 1ũ
s (v, σ̃ )‖∞ # ‖̃λ j (τ, ũ, v, σ ) − λ̃ j (τ, ũ, v, σ̃ )‖∞ + O(1) s|d|,

and, using (3.2),

‖(v, σ̃ ) − 1ũ
s (v, σ̃ )‖∞ # O(1) ‖v‖∞‖σ − σ̃‖∞ + O(1) s|d|

# O(1) ‖v‖∞|um − ul | + O(1) s|d|.

Since v = O(1) s (thanks to the bound on λ̃ j in the domain under consideration)
we deduce (3.24), and it follows that

9ũ(s) − 9ũ(0) = 9u(s) − 9u(0) + O(1) s|d|.

In view of the proof in Bianchini [7] (cf. Lemma 3.8 therein) we have

D(γ̃ , γ ′) = O(s) |um − ul |.

(This follows by the same procedure, it is sufficient to prove that D(γ̃ , T i (γ̃ )) is
of order O(1) |s||um − ul |.) From Proposition 3.6 we deduce

‖(V u′
, 9u′

) − (V ũ, 9ũ)‖∞ = O(1) s|d|,

which yields the desired conclusion. This completes the proof of
Proposition 3.3 +,
Proof of Corollary 3.5. In view of Proposition 3.3, we see that it suffices to treat
the case u0 = u′

0. We can estimate ‖u1 − u2
|[0,s]‖L∞ by

‖u − u′
|[0,s]‖L∞ # D(T i

s (γ ′
|[0,s]), γ ′

|[0,s]).

Recalling Lemma 3.11 and the uniform W 2,∞ estimates on f̃i (γ
2) (by the regularity

of λ̃i and Lemma 3.10), we deduce that

‖u − u′
|[0,s]‖L∞ # |s′ − s|.

In turn, with Proposition 3.6, this yields ‖9u
s − 9u′

s ‖L∞ # |s′ − s|. Using the
uniform Lipschitz continuity estimates on σi to prove (3.14) it suffices to check

‖(9u′
s′ )|[0,s] − 9u′

s ‖L∞ # |s′ − s|,

which, again, follows from the contraction property and Lemma 3.11. +,
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4. A generalization to nonconservative hyperbolic systems

We now turn our attention to nonlinear hyperbolic systems in nonconservative
form, i.e.

∂t u + A(u) ∂x u = 0, u = u(t, x) ∈ RN , t ! 0, x ∈ R. (4.1)

As usual, we assume that the matrix A(u) has real and distinct eigenvalues λ j (u)

and a basis of left and right eigenvectors l j (u), r j (u), normalized as in Section 2.
Our aim is to extend to the nonconservative system (4.1) the theory of the Riemann
problem discussed in previous sections. Recall that the distributional definition
of solution does not make sense for nonconservative systems, and that a suitable
notion of weak solution for such systems was introduced in [26, 27, 16, 31] which
is based on a prescribed family of Lipschitz continuous paths. The Riemann prob-
lem for genuinely nonlinear and nonconservative systems was solved in [26, 16].
We are interested here in the generalization to systems that need not be genuinely
nonlinear.

Following LeFloch [27, 31] we can define the family of paths and, therefore,
the generalized Rankine–Hugoniot relation for (4.1) from the family of traveling
wave solutions associated with a regularization with small diffusion

∂t u + A(u) ∂x u = ε ∂x
(
B(u) ∂x u

)
, (4.2)

where the diffusion matrix B = B(u) is, say, positive–definite.
We first observe that Bianchini–Bressan’s arguments generalize straight-

forwardly to nonconservative systems. More precisely, the Riemann problem
admits a unique entropy solution if the maps r̃ j satisfy the conditions imposed
in the beginning of Section 3. On the other hand, the interactions estimates (stated
in Theorem 3.1) were established in [6] in the case that the nonconservative system
is regularized by an identity diffusion matrix B(u) = I d. The rest of this section
will thus be focused on extending Iguchi–LeFloch’s method.

Using the notation in Section 3 introduced in Bianchini–Bressan’s method,
this amounts to fix vectors r̃ j and to introduce the j-Rankine–Hugoniot curve
H j (s; u−) = u(s, s; u−) together with the shock speed λ j (s, u−) = σ j (s, s; u−),
where we define the map τ %→ (u, v j , σ j )(τ, s; u−) by the differential system:

∂τ u(τ ) = r̃ j (u, v j , σ j )(τ ),

∂τ v j (τ ) = λ̃ j (u, v j , σ j )(τ ) − σ j (0), (4.3)

σ j (τ ) = σ j (0) = 1
s

∫ s

0
λ̃ j (u, v j , σ j )(t)dt,

with initial condition

u(0, s) = u−, v j (0, s) = 0. (4.4)

Theorem 4.1. When the shock curves are defined by (4.3), all of the results in
Section 2, i.e. the Riemann problem, regularity of the wave curves, and interac-
tion estimates for wave strengths and inner speed variation, remain valid for the
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nonconservative system (4.1). In particular, the Hugoniot curves defined by (4.3)
satisfy

s∂sλ j (s; u−) = κ j (s; u−)
(
λ j (H j (s; u−)) − λ j (s; u−)

)
,

∂sH j (s, u−) = r j (H j (s, u−)) + κ̂ j (s; u−)(λ j (H j (s; u−)) − λ j (s; u−)), (4.5)

where the function κ j = κ j (s; u−) > 0 is smooth, bounded and bounded away
from zero, and satisfies κ j (s; u−) = 1, and κ̂ j is a smooth vector-valued map.

Observe that no assumption (of genuinely nonlinearity) need be imposed on
the matrix A. Our result extends the construction of the Riemann problem given by
Dal Maso, LeFloch and Murat [16] for genuinely nonlinear systems. Dealing
with nongenuinely nonlinear systems is more involved.

Observe also that no reference to the vectors r̃ j (u, v j , σ j ) is made in (4.5), so
that some further generalization of the above theorem is possible (see Remark 4.1
below).

Proof. The analysis in Section 2 relied on the key property (2.3) of the shock speed
and characteristic speed along the Rankine–Hugoniot curve. It is remarkable that
this property remains true when the shock waves for nonconservative systems are
defined from traveling waves. Differentiating (4.3) with respect to s, we obtain a
linear differential system for the “unknowns” u′ := ∂su, v′ := ∂sv, and σ ′ := ∂sσ :

∂τ u′ = ∇ur̃ j (u, v j , σ j ) · u′ + ∂v r̃ j (u, v j , σ j ) v′ + ∂σ r̃ j (u, v j , σ j ) σ ′, (4.6a)

∂τ v′ = ∇u λ̃ j (u, v j , σ j ) · u′ + ∂vλ̃ j (u, v j , σ j ) v′ + ∂σ λ̃ j (u, v j , σ j ) σ ′ − σ ′,
(4.6b)

σ ′ = 1
s
(λ j (u(s, s; u−)) − σ(s)) + 1

s

∫ s

0

{
∇u λ̃ j (u, v j , σ j ) · u′(t, s)

+ ∂vλ̃ j (u, v j , σ j ) v′(t, s) + ∂σ λ̃ j (u, v j , σ j )σ
′(s)

}
dt. (4.6c)

The term λ j (u(s, s; u−)) in (4.6c) arises from the fact that v j (s, s, u−) = 0 and
λ̃ j (u, 0, ·) = λ j (u).

In view of (4.4), we have u′(0, s) = 0 and v′(0, s) = 0. Hence, from
(4.6a)–(4.6b) it follows that, given any s,

‖u′‖L∞(0,τ ) + ‖v′‖L∞(0,τ ) # τ(‖u′‖L∞(0,τ ) + ‖v′‖L∞(0,τ ) + |σ ′|). (4.7)

Hence, using (4.7) within (4.6c) and noting that, by (3.1)–(3.2), we have |∂σ λ̃ j
(u, v j , σ j )| << 1, we can deduce (for sufficiently small τ, s)

|∂sσ(s)| #
∣∣∣∣
1
s
(̃λ j (u(s, s; u−), v j (s, s; u−), σ (s; u−)) − σ(s))

∣∣∣∣ . (4.8)

In other words, we have established the first equation in (4.5) with κ j bounded.
Considering next the map H j we see that

∂sH j (s; u−) = ∂τ u(s, s; u−) + ∂su(s, s; u−)

= r̃ j (u, v, σ )(s) + ∂su(s, s; u−).
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To handle the first term, we observe that v j (s, s; u−) = 0 and r̃ j (u, 0; σ) = r j (u).
For the second one, we use again (4.7) which, together with (4.8), yields the second
equation in (4.5) with κ̂ j bounded.

We next establish some regularity on κ j , κ̂ j . First, from (4.3) it follows that, for
every fixed s, the mapping (u, v, σ ) is of class C∞ with respect to the variable τ . On
the other hand, it was proven in [6] (see (3.26) therein) that this mapping is Lipschitz
continuous with respect to the variable s. Now, consider (4.6a)–(4.6b) as a linear
differential system, with Lipschitz continuous coefficients, the terms cointaining
∂sσ being viewed as a source-term. (Recall, moreover, that ∂sσ is independent of
τ .) Then, it follows that u′ and v′ can be written in the form

(u′, v′)(τ, s) = ∂sσ(s) (hu(τ, s), hv(τ, s)), (4.9)

where hu, hv are Lipschitz continuous in both variables and O(τ ) at most in the
sup norm. Taking (4.9) into account in (4.6c) yields

σ ′ = λ j (u(s, s; u−)) − σ(s)
s (1 − ρ)

,

ρ := 1
s

∫ s

0

(
∇u λ̃ j (u, v j , σ j ) · hu(t, s)

+∂vλ̃ j (u, v j , σ j ) hv(t, s) + ∂σ λ̃ j (u, v j , σ j )
)

dt,

where the coefficient ρ can be assumed to be sufficiently small. In consequence, κ j
is Lipschitz continuous. We can derive further regularity on (u, v) by (4.6a)–(4.6b),
and we conclude by a bootstrapping argument.

Finally, the condition κ j (0, u−) = 1 follows from (4.6c). Note here that the
second (integral) term is of order O(s) |̃λ j (u(s, s; u−)) − σ(s)| since u′, v′ and
∂σ λ̃ j are precisely of this order for t ∈ [0, s]. +,

Remark 4.1.
1. Dal Maso, LeFloch, and Murat’s definition allows for more general jump rela-
tions that need not be related to a specific regularized model associated with (4.1).
In view of the discussion above, especially Proposition 4.1 it seems natural to fix
a vector-valued map κ̂ j = κ̂ j (s; u−) and a function κ j = κ j (s; u−) satisfying
(κ j (0; u−) = 1) and to prescribe the Hugoniot curve via the following differential
system

∂sH j (s; u−) = r j (H j (s; u−)) + κ̂ j (s; u−)(λ j (H j (s; u−)) − λ j (s; u−)).

s ∂sλ j (s; u−) = κ j (s; u−)
(
λ j (H j (s; u−)) − λ j (s; u−)

)
, (4.10)

with the initial conditions

H j (0; u−) = u−, λ j (0; u−) = λ j (u−). (4.11)

Note the system is singular at s = 0. It is however not difficult to check that
(4.10)–(4.11) single out a unique (generalized) Hugoniot curve.
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2. To close this section, we point out that, more generally, it would be interesting
to identify, within the DLM framework, suitable conditions on the family of paths
ensuring that the Riemann problem admits a solution that enjoys the properties
exhibited in the present paper. Recall that, for genuinely nonlinear systems, it is
indeed known that the Riemann problem has a unique solution [27, 16] and that
the Glimm scheme converges [33].

5. Existence theorem and approximation scheme

5.1. Existence result

In the present section we consider the Cauchy problem for a conservative or
nonconservative strictly hyperbolic system

∂t u + A(u) ∂x u = 0, u = u(t, x) ∈ RN , (5.1)

with

u(0, x) = u0(x), x ∈ R, (5.2)

where the initial data u0 : R → RN has sufficiently small total variation T V (u0).
All wave speeds under consideration will remain within disjoint intervals(
λmin

j , λmax
j

)
. We establish here the convergence of a front tracking scheme for

the approximation of (5.1)–(5.2). Our original contribution in this section is the
introduction of a wave splitting strategy and the derivation of new interaction esti-
mates on wave speeds. In turn, this provides us with a new existence theorem.

Following Dafermos, DiPerna, Bressan, and Risebro we construct approximate
solutions to the Cauchy problem (5.1)–(5.2), which are piecewise constant and
consist of finitely many propagating fronts. In addition to the j-fronts (1 " j " N )
associated with one of the wave family of the system we will introduce artificial
fronts of small total strength. More precisely, given ε > 0 we are going to construct
a piecewise constant approximate solution uε = uε(t, x) satisfying the following
properties:

(a) The function uε(t, ·) admits a finite number of discontinuities for each time t ,
and the fronts meet at finitely many interaction points,

(b) The propagating discontinuities in uε are of two types:
(i) j-fronts (u−, u+) associated with a family j ∈ {1, . . . , N } and such

that u+ = ψ j (s; u−) for some s, and
(ii) artificial fronts (u−, u+) propagating with a fixed speed λN+1 larger

than λmax
N . We sometimes refer to such a front as an (N + 1)-front. No

condition is imposed on the jump, and the strength of such a front is
defined as

εN+1(u−, u+) := |u+ − u−|.
(c) The inner speed variation of each j-front (u−, u+) is uniformly small:

ϑ j (u−, u+) = O(ε).
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(d) The speed of any j-front (u−, u+) is uniformly close to its correct speed, that
is, calling λ the speed of the front,

λ = λ j (0; s; u−) + O(ε).

(e) The total strength of artificial fronts is uniformly small:

∑

artificial fronts

|u+ − u−| = O(ε).

We will refer to a sequence of functions uε = uε(t, x) satisfying the above
properties as an ε-approximate front tracking solution.

Theorem 5.1. Consider a general nonlinear strictly hyperbolic system in conserva-
tive or nonconservative form (5.1). Then there exists a constant c > 0 such that for
every initial data of bounded variation u0 with T V (u0) < c there exists a sequence
of ε-approximate front tracking solutions which, as ε → 0, converges to the entropy
solution of (5.1)–(5.2).

5.2. Exact and approximate Riemann solvers

We summarize the properties of the Riemann solver that were established earlier
via two different techniques (Iguchi–LeFloch’s explicit construction Bianchini–
Bressan’s vanishing viscosity approach). The Riemann solver is an application
which associates with any two states ul , ur ∈ Bδ1 (for some small δ1 > 0) the
self-similar solution u = u(ξ) (ξ = x/t) of the corresponding Riemann problem.
We distinguish between the three sets of conditions which we now describe.

Wave curves.

(a) The Riemann solution is determined from N wave curves ψ j = ψ j (s; u)

(1 " j " N ), which are globally Lipschitz continuous and locally differen-
tiable at the origin s = 0, with

ψ j (0; u) = u, ∂sψ j (0; u) = r j (u).

(b) It consists of N +1 states u j separated by N wave fans (u j , u j+1), determined
by

ur = ψN (sN ; ψN−1(sN−1, . . . , ψ1(s1; ul) . . .)),

u0 : = ul , . . . , u j+1 := ψ j (s j ; u j ), . . . , uN := ur .

The parameter values s j =: ε j (u j , u j+1) = ε j (ul , ur ) are referred to as the
wave strengths, and s = (s1, . . . , sN ) is referred to as the strength vector. We
also use the notation

3(s; ul) := ψN (sN ; ψN−1(sN−1, . . . , ψ1(s1; ul) · · · )).
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(c) Each j-wave packet (u j , u j+1) = (u j , ψ j (s j ; u j )) consists of (finitely or
countably) many shock and rarefaction waves defined as follows. Suppose
for definiteness that s j > 0. The range of the Riemann solution is a subset
of the wave curve s ∈ [0, s j ] %→ ψ j (s; u j ), determined by a continuous
non-decreasing wave speed

s ∈ [0, s j ] %→ λ j (s, s j ; u j ) ∈
[
λmin

j , λmax
j

]
.

Its generalized inverse ξ %→
(
λ j

)−1
(ξ, s j ; u j ) is a (possibly discontinuous)

function with bounded variation (which could be normalized to be right or left
continuous). The Riemann solution is given by

u(ξ) =






u j , ξ " λ j (0, s j ; u j ),

ψ j (s; u j ), s = λ
−1
j (ξ, s j ; u j ),

u j+1 = ψ j (s j ; u j ), ξ ! λ j (s j , s j ; u j ).

(5.3)

(d) Furthermore, the following superposition/decomposition property holds: given
any speed ξ ∈

(
λ j (0, s j ; u j ), λ j (s j , s j ; u j )) and introducing s′ := λ

−1
j

(ξ, s j ; u j ), the wave packet (u j , ψ j (s j ; u j )) can be obtained by simply patch-
ing together the wave packet (u j , ψ j (s′; u j )) and the wave packet (ψ j (s′; u j ),

ψ j (s j ; u j )).

Interaction estimates on wave strengths. With any two wave packets (u−, u+)

with u+ = ψ j (s; u−) and (v−, v+) with v+ = ψk(r; v−), we can associate the
potential of interaction and the amount of interaction

Q(u−, u+; v−, v+) ! 0, I (u−, u+; v−, v+) ! 0.

In turn, the potential of interaction between two Riemann problems (ul , ur ) =
(u0, . . . , uN ) and (vl , vr ) = (v0, . . . , vN ) is given by

Q(ul , ur ; vl , vr ) :=
∑

i! j

Q(ui−1, ui ; v j−1, v j ),

I (ul , ur ; vl , vr ) :=
∑

i! j

I (ui−1, ui ; v j−1, v j ),

and the interaction potential for a piecewise constant function is obtained by sum-
ming Q(ul , ur ; vl , vr ) over all the discontinuities.

The functions Q and I should satisfy the following properties:

1.

Q(ui , ui+1; v j , v j+1) = |εi (ui , ui+1)| |ε j (u j , u j+1)|, i $= j,

Q(ui , ui+1; v j , v j+1) # |εi (ui , ui+1)| |ε j (u j , u j+1)|,
Q(u0, ψi (s, u0); vl , vr ) = Q(u′

0, ψi (s′, u′
0); vl , vr )

+O(1)(|u0 − u′
0| + |s − s′|),

ε j (ul , ur ) = ε j (ul , um) + ε j (um, ur ) + O(1) Ilmr ,

where Ilmr := I (ul , um; um, ur ).
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2. For u a piecewise constant function u with small total variation, we have for
some c > 0:

Q(u′) " Q(u) − c Ilmr ,

where u′ is obtained by replacing the Riemann problems (ul , um), (um, ur )

with the Riemann problem (ul , ur ).

3. Q has the following behavior with respect to a decomposition of waves: if
the Riemann problem (u0, u2) can be decomposed into (u0, u1) and (u1, u2)

according to the property above, then the interaction functional remains un-
changed when splitting (u0, u2) as follows:

Q(u0, u2; vl , vr ) = Q(u0, u1; vl , vr ) + Q(u1, u2; vl , vr ),

Q(u0, u2; u0, u2) = Q(u0, u1; u0, u1) + Q(u1, u2; u1, u2)

+Q(u0, u1; u1, u2) + Q(u1, u2; u0, u1).

Since our construction requires the introduction of artificial fronts, it is necessary
to specify how the interaction amount Q(u−, u+; v−, v+) is extended to artificial
fronts. When at least one of the two fronts is artificial, we define

Q(u−, u+; v−, v+)

:=
{

|u+ − u−| ε j (v−, v+), artificial front (u−, u+) and j-front (v−, v+),

0, (v−, v+) artificial.

This definition is natural since artificial fronts meet all j-waves on their right-hand
side, but do not meet other artificial fronts nor waves on their left-hand side.

Interaction estimates on wave speeds. With each wave packet (u j , u j+1) =
(u j , ψ j (s j ; u j )) we associate its minimum and maximum speeds

λ
min
j (u j , u j+1) := λ j (0, s j ; u j ), λ

max
j (u j , u j+1) := λ j (s j , s j ; u j ),

respectively, as well as its inner speed variation

ϑ j (u j , u j+1) := λmax
j (u j , u j+1) − λmin

j (u j , u j+1).

More generally, when (u j , u j+1) is the j-wave packet in the Riemann solution
(ul , ur ), we use the notation

λ
min
j (ul , ur ) := λ

min
j (u j , u j+1), λ

max
j (ul , ur ) := λ

max
j (u j , u j+1),

ϑ j (ul , ur ) := ϑ j (u j , u j+1).

(a) When ur = ψ j (s; ul) and u′
r = ψ j (s′; u′

l),

|ϑ(ul , ur ) − ϑ(u′
l , u′

r )| # |s′ − s| + |u′
l − ul |, (5.4)

so that, in particular, ϑ(u, ψi (s, u)) # |s|.
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(b) When (um, ur ) is a j-wave packet with ur := ψ j (s; um), interacting with a
Riemann solution (ul , um) then, setting u′

m := ψ j (s; ul),

ϑ j (ul , u′
m) " ϑ j (um, ur ) + O(1) |ul − um | |s|. (5.5)

The same inequality holds if the j-wave is located on the right.
(c) When ul , um, ur is an interaction between two wave packets (of the same

wave family j) only:
(i) If ε j (ul , um) ε j (um, ur ) ! 0, then

ϑ j (ul , ur ) " max
(
ϑ j (ul , um), ϑ j (um, ur )

)

+
(
λ

min
j (um, ur ) − λ

min
j (ul , um)

)
+

+O(1) I (ul , um; um, ur ). (5.6)

(ii) If ε j (ul , um) ε j (um, ur ) " 0, then

ϑ j (ul , ur ) " max
(
ϑ j (ul , um), ϑ j (um, ur )

)

+O(1) min(|um − ul |, |ur − um |). (5.7)

Remark 5.1. The Riemann solvers described in Sections 2 and 3 satisfy the above
conditions with, in the first case, I = Q and, in the second case, distinct values Q
and I.

Approximate Riemann solvers. We now introduce several approximate solvers
which will be needed at each wave interaction points. The approximate Riemann
solutions are piecewise constant functions which we construct in two steps. First,
we introduce the intermediate states, that is, the u-components of the waves, and,
second, we specify the speeds of each waves. Note that the solutions contain j-
waves propagating with a speed close to one of the characteristic speeds of the
system, as well as artificial waves propagating at the (large, constant) speed λN+1.
First of all, we define the intermediate states, as follows.

(a) Accurate solver. The intermediate states here are determined straight-
forwardly from the ones in the exact Riemann solution (ul , ur ).

(b) Approximate ij-solver for different families j > i. Given a j-front and an
i-front,

um = ψ j (s1; ul), ur = ψi (s2; um),

the approximate solver consists of the i-wave (ul , ũ1), the j-wave (̃u1, ũ2),
and the artificial front (̃u2, ur ) determined by

ũ0 := ul , ũ1 := ψi (s2; ul), ũ2 := ψ j (s1; ũ1), ũ3 = ur .

(c) Approximate ii-solver for a single family i. Given three states ul , um, ur
connected by i-fronts,

um = ψi (s1; ul), ur = ψi (s2; um),

the approximate Riemann solution consists of the i-wave (ul , ũr ) and the
artificial front (ũr , ur ) determined by

ũr := ψi (s1 + s2; ul).
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(d) Artificial wave solver. When the left-hand front is an artificial front and the
right-hand one is an i-front satisfying

ur = ψi (s; um),

we introduce ũm := ψi (s; ul) and the approximate Riemann solution consists
of the i-wave (ul , ũm) and the artificial front (̃um, ur ).

The second part of our construction consists of prescribing the speeds of prop-
agation of the waves. Fronts having a large inner speed variation will need to be
split in two or more fronts. Fix a threshold ε > 0. First of all, note that artificial
fronts are never split and always travel at the speed λN+1. To handle j-wave packets
(u−, u+) = (u−, ψ j (s j ; u−)), we distinguish between two strategies:

(a) No-splitting strategy. In this case, we propagate (u−, u+) as a single front
traveling at the smallest speed of the associated wave fan.

(b) Splitting strategy. In this case, we replace the front by several smaller fronts
defined as follows. Using the wave speed function λ j (s′) := λ j (s′, s j ; u−)

we introduce

P :=
⌊

λ j (s j ) − λ j (0)

ε

⌋

+ 1,

µp := λ j (0) + p
P

[λ j (s j ) − λ j (0)], p = 0, . . . , P − 1,

where 9a: denotes the greatest integer less than or equal to a ! 0. Then, along
the wave curve from u−, we pick up the states associated with the speeds µp,
that is

wp := ψ j (s′
p; u−)

s′
p :=

{
min

{
s′ ∈ [0, s j ], λ j (s′) = µp

}
, s j ! 0,

max
{
s′ ∈ [s j , 0], λ j (s′) = µp

}
, s j < 0.

Then the i-wave packet is approximated by P fronts with small strength as
follows:

u(t, x) =






u−, x/t < µ0,

wp, µp−1 < x/t < µp, (p = 1, . . . , P − 1),

u+, x/t > µP−1,

where, for simplicity in the notation, the Riemann solution has been centered at
the point (t, x) = (0, 0). Note that each front corresponds to an exact solution
of the system of conservation laws (in the sense that the right-hand state lies
on the wave curve issuing from the left-hand state) although its propagation
speed (in general) only approaches the true speed.
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5.3. Front tracking approximations

We are now in a position to describe our algorithm, and we fix ε, δ > 0 satisfying

δ - ε2.

Let uε
0 be a piecewise constant approximation of u0 such that

‖uε
0 − u0‖L1 " ε, T V (uε

0) " T V (u0), (5.8)

uε
0 contains 1/ε discontinuity points, at most. (5.9)

At each discontinuity point of uε
0 we use the accurate solver described

earlier together with the splitting strategy and we define the approximate solu-
tion uε = uε(t, x) locally in time. The solution is extended until two fronts meet.
As usual, the speeds of the fronts may need to be modified (cf. Remark 5.2 below)
in order to ensure that only two fronts meet at every interaction. To extend the
approximate solutions, we distinguish between several types of interactions and
we use either the accurate or the approximate solver together with the splitting or
the no-splitting strategy.

As a rule, only fronts with inner speed variation less than or equal to ε will
be generated by the scheme. However, after one or several interactions, the inner
speed variation may have increased so much that it is greater than 2ε and need to
be split in two fronts.

(a) Large interactions. We call large interaction an interaction that involves an
i-front (ul , um) and a j-front (um, ur ) such that

I (ul , um; um, ur ) ! δ.

The solution is defined beyond the interaction time by using the accurate
Riemann solver, together with the following rules for the speeds of the fronts:

(i) For the outgoing i- or j-waves that have an inner speed variation
ϑ " 2ε, we use the no-splitting strategy.

(ii) For all other outgoing waves we use the splitting strategy.
(b) Small interactions. We call small interaction an interaction that involves an

i-front (ul , um) and a j-front (um, ur ) such that

I (ul , um; um, ur ) < δ.

The solution is defined beyond the interaction time by using the approximate
i j or i i solvers. The speeds of the fronts are determined exactly as in the case
of a large interaction (recall that artificial fronts are never split).

(c) Artificial wave interactions. At an interaction between a left-hand artifi-
cial front and a right-hand j-wave, we use the artificial interaction solver,
again with the same splitting/no-splitting strategy on the j-th outgoing wave.

Remark 5.2. The speeds of certain fronts may need to be slightly modified in
order to avoid both interaction points involving more than two fronts and interac-
tion times involving more than one interaction. Starting from t = 0 or a time t at
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which an interaction has occured, we let the fronts evolve at the speed determined
earlier. We consider the first time τ > t where two fronts meet. If there are only two
fronts involved, there is nothing to do. If there are three (or more) fronts interacting
at the time τ (possibly at different locations), we consider the most leftward fronts
α and β (with α on the left of β). Now, if α is a j-front (1 " j " N ), we increase
the speed of α by an amount less than ε, so that the new interaction time is beyond
the time t . If α is an artificial front, then β must be a j-front, and we diminish
the speed of β by an amount less than ε so that again that the new interaction
time is beyond time t . By this procedure, in both cases we have only decreased
the interaction time. Hence, as τ was the first interaction time greater than t , the
new interaction time τ ′ ∈ (t, τ ) corresponds to a single interaction of two fronts.
An important consequence of our construction is that two fronts that meet in the
process would have met regardless of the speed modification.

Based on the properties of the Riemann solver listed at the beginning of the
present section, it is a standard matter to derive uniform estimates for the following
Glimm-type functionals:

V (t) :=
∑

α

|εα|, Q(t) :=
∑

α,β

Qαβ,

where the summations are over all fronts α, β in the approximate solution at the
time t . Here, εα denotes the strength of the front α and Qαβ is the interaction amount
between two fronts α, β.

Proposition 5.2. There exist constants ν, c, C0 > 0 so that for every initial data
satisfying T V (u0) < ν and for every sequence uε

0 satisfying (5.8)–(5.9), (as long
as the number of waves and the number of interaction remain finite), the quan-
tity (V + C0 Q)(t) is nonincreasing in t and, more precisely, at every interaction
involving some fronts (ul , um), (um, ur )

[
V + C0 Q

]
(t)

:= (V + C0 Q)(t+) − (V + C0 Q)(t−) (5.10)

"
{

−c min(|um − ul |, |ur − um |), nonmonotone interactions,
−c I (ul , um; um, ur ), otherwise.

5.4. Total number of fronts and interaction points

In view of Proposition 5.2, to establish that the algorithm is well behaved we
need only show that the numbers of fronts and interaction points remain finite.
Define

N (t) :=
N∑

k=1

Nk(t),N j (t) := #
{

j-fronts at time t
}
,

*ε(t) :=
N∑

k=1

*ε,k(t), *ε, j (t) :=
∑

j-fronts

(
ϑα − ε

)
+

ε
,
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and introduce the functional

F(t) := C1 (V (t) + C0 Q(t)) + 3 *ε + N (t),

where C1 is some positive constant and C0 is the constant already introduced in
(5.10).

Lemma 5.3. For δ sufficiently small and C1 large enough (depending on ε and δ)

the functional F is nonincreasing.

Proof. The function F is constant away from interaction times. We distinguish
between every type of interaction. Each interaction involves a left-hand i-front α =
(ul , um) with strength sα (1 " i " N + 1) and a right-hand j-front β = (um, ur )

with strength sβ (1 " j " N ). We denote by θα, λα and θβ, λβ the inner speed
variation and wave speed function associated with the incoming waves. Call ηk the
outgoing k-waves (1 " k " N + 1) with inner speed variation ϑηk and wave speed
function ληk . Finally, call I the following modified amount of wave interaction:

I := I (the interaction amount at the point), unless the interaction is a non-
monotone interaction of waves of the same family,

I = the strength of the smallest incoming wave, if the interaction is a non-
monotone interaction of waves of the same family.

We will summarize the evolution of the terms arising in F in Table 1 according
to the nature of the interaction, the family of the wave considered, and whether the
splitting strategy is applied or not. In this table, “i $= j” (respectively “i = j”)
refers to interactions between waves of different (resp. same) family and “acc”
(respectively “app.”) stands for “accurate” (resp. “approximate”). We regard arti-
ficial interactions as approximate interactions between waves of different families.
Since artificial fronts are not considered in the last two terms of F , they are not
included in the table.

We fill up the cells of the table by relying on our interaction estimates on the
strengths and the inner speed variation, and the definition of the number of fronts
when the splitting strategy is applied. The following remarks are in order.

1. In the case of a monotone interaction between two fronts (ul , um) and (um, ur ),
the term

(
λ

min
i (um, ur ) − λ

min
i (ul , um)

)
+ in (5.6) vanishes. This is due to the

fact that fronts evolve at the minimum speed of the wave packet except in the
case described in Remark 5.2. In the latter case, however, two fronts that meet
would have met regardless of the slight change in speed.

2. When the i-th or j-th outgoing wave is split, we have (for instance for the
i-wave α):
In the case of a monotone interaction of waves of the same family,

[
Ni (t)

]
= 9ϑηi

ε
: − 1

" −1 + max(ϑα, ϑβ)

ε
+ O

(
1
ε

)
I(t).
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In the case of a nonmonotone interaction of waves of the same family,

[
Ni (t)

]
= 9ϑηi

ε
: − 1

" −1 + ϑα

ε
+ O

(
1
ε

)
I(t).

Otherwise,

[
Ni (t)

]
= 9ϑηi

ε
: " ϑα

ε
+ O

(
1
ε

)
I(t).

Moreover, we have

[
*ε,i (t)

]
"





−

(
max(ϑα, ϑβ) − ε

)
/ε, nonmonotone case,

−
(
ϑα − ε

)
/ε, otherwise.

(5.11)

The fact that the wave was split implies that ϑηi ! 2ε. From the estimate

ϑηi "
{

max(ϑα, ϑβ) + O(1)I(t), nonmonotone case,
ϑα + O(1)I(t), otherwise,

we deduce, in both cases,

[
*ε,i (t)

]
" −1 + O

(
1
ε

)
I(t).

Using again (5.11), this yields

3
[
*ε,i (t)

]
" −1 + O

(
1
ε

)
I −

{
max(ϑα, ϑβ)/ε, nonmonotone case,
ϑα/ε, otherwise.

Now, the desired conclusion follows from the inequalities summarized in
Table 1. At each interaction, we have

[
V + C0 Q

]
(t) " −(C0/2) I(t) as follows

from Proposition 5.2. Hence, it is sufficient to take C1 = O(1/ε), except for the
N − 2 (or N − 1) contributions of 1 in N (t) due to new fronts of families k $= i, j
in the accurate solver. However, such fronts appear only with the accurate solver;
hence, when I(t) ! δ, it suffices to take C1 = O(1/δ) to cover all cases. +,

Number of fronts and interaction points.

Finite number of j-fronts (1 " j " N ). It follows immediately from Lemma 5.3
that the total number of j-fronts is bounded for all times. Moreover, observe
that at all interactions generating new j-fronts an amount ! min(1, C0 C1δ/2)

is used out of F(t), this implies

N (t) # 1
δ
.
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Table 1. Estimates across each type of interaction

Interaction Wave k Strategy [Nk ] 3[*ε,k ]

i $= j , acc.
i or j

splitting " θα
ε + O(1/ε)I

" − θα
ε − 1

+ O(1/ε)I

no splitting 0 " O(1/ε)I

k $= i, j splitting 1 + O(1/ε)I 0

i = j , acc.
i

splitting
" max(ϑα,ϑβ)

ε

− 1 + O(1/ε)I
" − max(ϑα,ϑβ)

ε

− 1 + O(1/ε)I

no splitting −1 " O(1/ε)I

k $= i splitting 1 + O(1/ε)I 0

i $= j , app.
i or j

splitting " θα
ε + O(1/ε)

" − θα
ε − 1

+ O(1/ε)I

no splitting 0 " O(1/ε)I

k $= i, j splitting 0 0

i = j , app.
i

splitting
" max(ϑα,ϑβ)

ε

− 1 + O(1/ε)I
" − max(ϑα,ϑβ)

ε

− 1 + O(1/ε)I

no splitting −1 " O(1/ε)I

k $= i splitting 0 0

Number of accurate interaction points. From Proposition 5.2 it follows also that
the number of accurate interactions is finite.

Number of interaction points using the splitting strategy. At such points, as seen
in the table, F decreases of an amount of 1 at least. Hence, this case arises finitely
many times.

Number of approximate i-interaction points using the no-splitting strategy. This
number is also finite since an i-front is lost at these points.

Number of approximate i j interaction points using the no-splitting strategy.
When tracing forward a given front by taking any front of the same family as
its successor, we see that two fronts of different families that have met will not
meet again, since the speeds of different families are separated. Since interac-
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tion points from which at least three j-fronts leave are in finite number, this
yields that approximate i j points and artificial interaction points are finite in
number.

Number of artificial fronts. There are only a finite number of approximate
interactions and, therefore, the total number of artificial fronts is finite.

Number of artificial interaction points using the no-splitting strategy. The same
consideration as for the approximate i j interaction points using the no-splitting
strategy applies.

5.5. Number of fronts of early generations

We already have a bound on the total number of fronts, but it will be crucial in
the next paragraph to have a sharp bound on their number, if we restrict to fronts
of early generations, as we describe now.

Front generations. We define the generation gα of a front α as follows.

(a) All fronts outgoing from the initial line have generation 1.
(b) At an i j-interaction (an i-front α meeting a j-front β), the generation of out-

going i-fronts (resp. j , k $= i, j) is fixed as gα (resp. gβ , max(gα, gβ) + 1),
whether or not these fronts are split.

(c) At an i-interaction (of two i-fronts α and β), the generation of the outgoing
i-fronts (resp. k $= i) is fixed as min(gα, gβ) (resp. max(gα, gβ)+1), whether
or not these fronts are split.

(d) At an artificial interaction point the generation of each family is preserved.

Main estimate. We define

N k
(τ ) := #

{
fronts at time τ, of generation k

}
,

Pk := #
{
(α, β) fronts at time τ/ max(gα, gβ) = k, α and β approaching

}
,

*$k
ε :=

∑

α front of
generation "k

(ϑα − ε

ε

)

+
, *k

ε := *$k
ε − *$k−1

ε .

Two fronts are said to be approaching if they are of the same family, or else if
the front of the largest family is on the left. Hence, Pk represents the number of
potential interactions between fronts with a largest generation number equal to k.
Note that artificial fronts are taken into account in the above quantities (except for
what concerns the inner speed variation). Since there is no front of generation 0,
all these quantities vanish for k = 0.

Estimates on the number of fronts of generation " k are now derived.
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Lemma 5.4. There exist a constant C2 = C2(ε) > 0, an increasing sequence Ak =
Ak(ε) > 0, and two decreasing sequences Bk = Bk(ε) > 0 and Dk = Dk(ε) > 0,
such that for all k ! 0 the functional

Fk := C2 Ak(V + C0 Q) + 3Ak*$k
ε +

k∑

i=1

BiN
i +

k−1∑

i=1

DiP i (5.12)

is nonincreasing in time. This is true regardless of the value of δ (small enough with
respect to ε). Moreover, for each k, Ak(ε) is bounded above by a polynomial expres-
sion in 1/ε, while Bk(ε) and Dk(ε) are bounded below by polynomial expressions
in ε.

Corollary 5.5. For each k, the total number of fronts of generation less than or
equal to k is

k∑

i=1

N i " Jk(ε), (5.13)

where Jk(ε) is polynomial in 1/ε.

Proof of Lemma 5.4 and Corollary 5.5. We start with two observations. First,
from the proof in Section 5.4 that for some C2 = C2(ε) = O(1/ε), the functional

Gk := C2(V + C0 Q) + 3*
"k
ε ,

is nonincreasing in time. Hence, if the result in the lemma is established for a given
Ak , then it remains true with a larger Ak . Moreover, as seen in Lemma 5.3, Gk
decreases by 1, at least, when an incoming wave is split.

Next, when an interaction creates new fronts, the total number of new fronts
is at most O(1/ε), as follows from (5.4) and the fact that the total strength of the
waves is bounded.

Now, the proof is done by induction on k. The case where k = 1 is essen-
tially given by Lemma 5.3. In fact, when the fronts of generation g ! 2 need not be
considered, the estimate on C1 can be replaced by C2 = O(1/ε). (Note that there is
no artificial front of generation 1.) We can choose for instance D1 = 1 and B0 = 1.

From now on, let us only consider the passage from k to k + 1, which is the
heart of the proof. Suppose that for a certain k ! 1, the expression in (5.12) is
nonincreasing. Whenever the property stated in Lemma 5.4 is established at the
rank k, Corollary 5.5 at the rank k follows immediately. Hence, we can use (5.13)
at the rank k.

The goal is to determine Ak+1 (large enough) and Bk+1, Dk (small enough) so
that the desired property is valid. We distinguish between several cases when one
of the “new” terms (that appear in Fk+1 but did not appear in Fk), that is, N k+1

and
Pk , can grow. This will provide us with some conditions on Ak+1, Bk+1 and Dk ,
that we will be able to fulfill by choosing these constants sufficiently large or small.

Consider the interaction of two fronts with corresponding amount of interaction
I . We introduce the same notation I as previously (including the case of artificial
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interaction), that is, I := Q (the potential at the interaction) unless the interaction
is a nonmonotone interaction of waves of the same family, in which case I is the
strength of the smallest wave. There are two cases where Pk can grow, and two
cases where N k+1

can grow.

1. Cases that increase Pk . The value Pk can grow in two ways: (1) an existing
front of generation " k is split after an interaction with another wave; or (2) a new
front of generation " k is created after an accurate interaction where the maximal
generation of the incoming waves is exactly k − 1. Note that we can measure the
increase of Pk by

[Pk] " (number of new fronts ) × Jk(ε).

First case: splitting of a front of generation k. In that case, the number of new
fronts is of order O(1/ε); we can compensate the increase of Pk by taking
Ak $ Jk(ε)/ε, since the decrease of Gk in that case is at least 1.

Second case: creation of a new front generation k. We suppose that no incoming
wave is split (if not, enhancing Ak allows us to absorb this increase too.) Then,
Pk−1 decreases by 1, at least, and it suffices to consider Dk # εDk−1/Jk(ε).

2. Cases that increase N k+1
. The value N k+1

can grow in two ways: (1) an exist-
ing front of generation k + 1 is split after an interaction with another wave; or (2)
a new front of generation k + 1 is created after an accurate interaction where the
maximal generation of the incoming waves is exactly k.

First case: splitting of a front of generation k + 1. In that case, the increase of the
term N k+1

due to these new fronts is compensated by the decrease of Ak+1Gk+1
(at least Ak+1), provided Ak+1 > Bk+1 as seen in Table 1.
Second case: creation of a new front generation k + 1. Again we consider only the
case where there is no splitting of incoming waves. The increase of the term N k+1

due to these new fronts is of order N −2+O(1/ε)I (or N −1+O(1/ε)I). In that
case, N k (if incoming waves are of same family) or Pk (otherwise) decrease by 1.
Hence, taking Bk+1 small with respect to Bk and Dk allows us to get the decrease.

This concludes the proof of Lemma 5.4 and Corollary 5.5. +,

5.6. Conclusion

The fact that the scheme converges to the entropy solution in the limit is a
consequence of the following two properties:

(a) The j-fronts (1 " j " N ) travel approximately at the correct speed given by
the Rankine–Hugoniot relation.

(b) The total strength of artificial fronts remains uniformly small.

Both properties are now discussed.
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Accuracy of the speed of j-fronts. From our construction it follows that, for any
j-front α,

ϑα " 2ε.

Indeed, we have:

When the front under consideration is generated by the accurate solver (or by the
initial solver), then ϑα " ε.

When the front is generated by an approximate solver, then either ϑα " ε (if the
solver happens to split the wave of the family of α) or ϑα " 2ε (otherwise).

Furthermore, the front travels at a speed which is the lowest speed in the wave
packet up to a ε error at most. Therefore, calling λ the speed of the front and σ α(s)
any speed in the wave packet, we also obtain

|λ − σ α(s)| " 3ε.

Total strength of artificial fronts. We follow here the argument known in the
genuinely nonlinear/linearly degenerate case (see, for instance, [10] Section 7.3.6).

Strength of an artificial front. From our previous discussion it follows that, for any
artificial front α,

|εN+1(α)| = O(1) δ.

Indeed, with the previous convention and thanks to the interaction estimates, the
strength of any new artificial front is of order δ. We can follow it during suc-
cessive interactions. Calling Vα the total strength of fronts approaching α (that is, all
j-fronts on its right), we get ([10], p. 139)

|Sα(t)| " O(1) δ exp(C ′(Vα + C0 Q)).

Total strength of artificial fronts. For k ! 1, we call Vk (resp. V art
k ) the total strength

of fronts (resp. of artificial fronts) of generation ! k, and Qk defined as previously,
where the sum is over all couple of fronts α and β for which max(gα, gβ) ! k.

The estimates on the strengths of waves according to their generation remain
valid; hence, provided the total variation is small enough, we can deduce that, for
some γ < 1 and for all times t ,

Qk(t) " C3γ k, Vk(t) " C4γ k . (5.14)

Now, given any integer M we have

V art (t) =
∑

k"M

V art
k +

∑

k>M

V art
k .

The first term is estimated by
∑

k"M

V art
k " O(1) δ JM (ε),
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while, for the second one,

∑

k>M

V art
k " C4

γ M+1

1 − γ
.

Hence, given ε > 0, we can choose M so large that the second term above is less
than ε/2, and next we choose δ small enough so that the first term is less than ε/2
too; hence

V art (t) " ε. (5.15)

Convergence. Using the L∞
t (BVx ) bound and the uniform bound on the wave

speeds, it is a standard matter to derive a Li pt (L1
x ) bound. Relying on Helly’s

theorem, these estimates allow us to extract a converging subsequence, say

uε → u ∈ L1
loc(RN ).

We now check that u is an entropy solution. We will consider here the case of
a conservative system endowed with a convex entropy pair and prove that for
any nonnegative test function ϕ : R+ × R → R and for every smooth, convex
entropy/entropy-flux pair (η, q) : RN → R × RN .

lim inf
n→+∞

∫ ∞

t=0

∫

x∈R

(
η(uε) ϕt + q(uε) ϕx

)
dtdx ! 0. (5.16)

Calling In the above integral, for supp(ϕ) ⊂ [0, T ] × R we have

In =
∫ T

0

∑

α

(ẋα(t) [η(uε)]α(t) − [q(uε)]α(t))ϕ(t, xα) dt,

where xα is the trajectory of the front α and [h]α is the jump of a function h on the
front α. Thanks to the regularity of η and (5.15), the sum over artificial fronts is
O(ε). The statement (5.16) follows immediately from:

Lemma 5.6. For any j-front α and all times T1 and T2 we have
∫ T2

T1
(ẋα(t) [η(uε)]α(t) − [q(uε)]α(t))ϕ(t, xα)dt

$ −ε|sα||T2 − T1| ‖ϕ‖C1 . (5.17)

Proof. Consider a front α connecting u− to u+ = ψi (sα, u−), and denote by
λi (·, sα, u−) the corresponding wave speed function. Recall that the correspond-
ing solution is given in (5.3). Denote by ω̃ the corresponding Riemann solution
centered at the point (T1, xα(T1)). The solution satisfies

∫ T2

T1

∫

R
(η(ω̃)ϕt + q(ω̃)ϕx ) dtdx −

[∫

R
η(ω̃)ϕ(·, x) dx

]T2

T1

! 0. (5.18)

We also introduce, for t ∈ [T1, T2],

ωα(t, x) =
{

u−, x/t " λα,

u+, x/t ! λα,
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where λα is the speed of the front α (that is, λα = λi (0, sα, u−) up to the additional
change of speeds in Remark 5.2. Clearly the left-hand side of (5.17) is equal to
the left-hand side of (5.18) when we replace ω̃ by ωα . Hence, it is sufficient to
prove that each term in the the left-hand side of (5.18) yields an error of order
ε|sα||T2 − T1| ‖ϕ‖C1 when we replace ω̃ by ωα .

For the first integral, the difference is supported in a triangle whose area is of
order O(1) ε(T2 − T1), and the difference of the integrand is of order O(1) |sα|.
For the second integrals, the difference is supported in an interval whose length
is of order O(1) ε(T2 − T1), and the difference of the integrand is again of order
O(1) |sα|, which concludes the proof of Lemma 5.6. +,

6. Time regularity of graph solutions

We now use the front tracking scheme to study the regularity of graph solutions
introduced in [30]. To simplify the presentation it is convenient to assume that the
flux f (u) is defined for all u ∈ RN . To begin with, we need a few definitions from
[30]. (Note that Lipschitz continuous representatives of all geometric maps under
consideration are used throughout the present section.)

6.1. Geometric version of the front tracking scheme

A parametrized graph is a map (X, U ) : R → R × RN such that X and U are
Lipschitz continuous, and

∂s X ! 0, lim
s→±∞

X (s) = ±∞.

A maximal interval [s−, s+] where X remains constant will be referred to as a
vertical segment of the graph. We say that the parametrized graph (X, U ) contains
a single shock if the associated BV function U ◦ X−1 is a step function with a
single discontinuity point. A (Lipschitz continuous) time-dependent parametrized
graph is a map (X, U ) : R+ × R → R × RN such that X, U ∈ L∞(R+,Li p(R)),
(X, U )(t) is a parametrized graph in the sense above, and for every continuously
differentiable function θ with compact support and uniformly with respect to t ! 0,

∣∣∣
∫

R
U ∂t θ(t, X) ∂s X ds

∣∣∣ # ‖θ(t, ·)‖L∞(R). (6.1)

A DLM family of paths (Dal Maso, LeFloch, and Murat [16]) is a Lipschitz
continuous map > : [0, 1] × RN × RN such that for all ul , ur , u′

l , u′
r ∈ RN

>(0; ul , ur ) = ul , >(1; ul , ur ) = ur ,

‖∂s>(·; ul , ur )‖L∞(0,1) # |ur − ul |,
‖>(·; ul , ur ) − >(·; u′

l , u′
r )‖L∞(0,1) # |ur − u′

r | + |ul − u′
l |.

(6.2)

A family of Riemann graphs is a map (., >) : [0, 1]× RN × RN → R × RN such
that:



472 Olivier Glass & Philippe G. LeFloch

(a) For any ul , ur ∈ RN ,
(
.(·; ul , ur ), >(·; ul , ur )

)
is a parametrized graph, and

> is a DLM family of paths with

‖.(·; ul , ur ) − .(·; u′
l , u′

r )‖L∞(0,1) # |ur − u′
r | + |ul − u′

l |.

(b) The system of conservation laws (5.1) is satisfied: for every smooth function
θ : R → R and all ul , ur ∈ RN

∫ 1

0

(
−.(s; ul , ur ) + D f ◦ >(s; ul , ur )

)

∂s>(s; ul , ur ) θ ◦ .(s; ul , ur ) ds = 0. (6.3)

(c) Along every vertical segment [s−, s+], the Riemann graph (., >)(·; u−, u+)

associated with u± := >(s±; ul , ur ) contains a single shock and

>(·; ul , ur )|[s−,s+] = >(·; u−, u+) ◦ β, (6.4)

where β : [s−, s+] → [0, 1] is the linear map satisfying β(s−) = 0,
β(s+) = 1.

Definition 6.1. A family of Riemann graphs (., >) being fixed, a parameterized
graph (X, U ) : R+ × R → R × RN is called a graph solution of (5.1) subordinate
to (., >) if:

(a) For every test function θ : R+ × R → R,
∫∫

R+×R

(
− U ∂t θ(t, X) + f (U ) ∂x θ(t, X)

)
∂s X dsdt = 0. (6.5)

(b) For almost every time t and on every vertical segment [s−, s+] the graph solu-
tion coincides with a prescribed paths, more precisely

U (t)∣∣[s−,s+] = >(u−, u+) ◦ β, (6.6)

where u± := U (t, s±), and β : [s−, s+] → [0, 1] is the linear map satisfying
β(s−) = 0, β(s+) = 1.

Remark 6.1.

(i) The condition (6.1) is equivalent to saying that the BV function u = U ◦ X−1,
belongs to Lip(R+, L1(R)), that is

‖u(t) − u(t ′)‖L1(R) # |t − t ′|.

(ii) The condition (6.5) is equivalent to saying that u = U ◦ X−1 is a weak solution
of (5.1) in the sense of distributions.

(iii) In Definition 6.1 the same parametrization (up to linear rescaling) is used for
the graph solution and the prescribed paths. This definition will be sufficient
for the purpose of the present paper.
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To implement the front tracking scheme we will need to restrict the class of
Riemann graphs, relying here on the interaction amount Q(ul , um, ur ) associated
with three constant states.

Definition 6.2. Consider the strictly hyperbolic systems of conservation laws (5.1).
A family of Riemann graphs (., >) is said to satisfy the interaction estimates if
for all ul , um, ur ∈ RN , such that ul is connected to um by an i-wave fan and um
is connected to ur by an i-wave fan,

‖(., >)(·; ul , ur ) − (., >)(·; ul , um) ∨ (., >)(·; um, ur )‖L1(0,1)

# Q(ul , um, ur ), (6.7)

where (., >)(·; ul , um) ∨ (., >)(·; um, ur ) : [0, 1] → RN is the arc-length para-
metrization of the concatenation of the two maps.

By the result in the earlier section, there exists a family of Riemann graphs
satisfying the interaction estimates.

The main result in this section is as follows.

Theorem 6.1 (Geometric version of the front tracking scheme). Let (., >) be a
family of Riemann graphs satisfying the interaction estimates. Let uε = uε(t, x) be
a sequence of front tracking approximations for the Cauchy problem (5.1)–(5.2).
Then there exists a parametrized graph (Xε, U ε) such that Xε is Lipschitz con-
tinuous in both (t, s), U ε is continuous in the space variable s, and the following
uniform estimates hold:

‖(∂t Xε, ∂s Xε)‖L∞(R+×R) " 1, ‖∂sU ε‖L∞(R+×R) # T V (u0),

‖U ε(t) − U ε(t ′)‖L1(R) # |aε(t) − aε(t ′)|, t, t ′ ! 0,
(6.8)

where aε : R+ → R+ is a nonincreasing uniformly bounded function measuring
the amount of cancellation and interaction in uε. Moreover, (Xε, U ε) converges
uniformly for all but countably many times t toward the graph solution (X, U ) of
the Cauchy problem (5.1)–(5.2).

Furthermore, the map X is Lipschitz continuous in both variables (t, s) while
U is Lipschitz continuous in s and satisfies

‖U (t) − U (t ′)‖L1(R) # |a(t) − a(t ′)|, t, t ′ ! 0, (6.9)

where a : R+ → R+ is the pointwise limit aε. In particular, U is continuous at all
but countably many times t.

Remark 6.2. It is known that the BV solution u of the problem (5.1)–(5.2) belongs
to the space Lip(R+, L1(R)), which is expressed by the condition (6.3). In con-
trast, the estimate (6.9) provides a control of the component U even in the vertical
segments.
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6.2. Proof of convergence

Step 1. We begin by defining the parametrization. The standard approach consists
of introducing the arc-length parametrization of the graph of uε, which is based
on the total variation map x %→ T V x

−∞(uε(t)). In order to ensure that the graph is
continuous in time and since the total variation of uε may change at times where
two fronts meet, we need to modify the arc-length parametrization as follows. We
will take into account the interaction and cancellation of waves, and take advantage
of the decrease of the generalized Glimm functional. With the sequence uε, let us
associate the non-negative measure µε consisting of Dirac masses concentrated
at the points (t0, x0) where two fronts (ul , um), (um, ur ) meet. The point mass at
(t0, x0) is the scalar µε(t0, x0) given by

µε(t0, x0) := −
(
Qε(t0+) − Qε(t0−)

)
! 0. (6.10)

In view of the results in previous sections the total mass of this measure is uniformly
bounded

|µε|(R+ × R) # 1.

Let λ∞ be a large positive constant, larger than all speeds λ j as well as the speed
λN+1 of artificial waves introduced in the front tracking scheme. Consider the map

σ ε(t, x) := x + V ε(t, x) + µε
(
1t,x

)
, (6.11)

where V ε is the total strength of waves at time t on the left of x , and we have
introduced the triangular region

1t,x :=
{
(s, y)

/
0 " s " t, y " x − λ∞ (t − s)

}
.

Clearly, for every time t , the map σ ε(t) is strictly increasing in x . Moreover, σ ε

is continuous in time except along polygonal lines which are transverse to the line
t = constant.

Let us now define Xε : R+ × R → R by

Xε := (σ ε)−1. (6.12)

By the properties of σ ε just mentioned and the fact that uε is piecewise constant,
it is not difficult to check that Xε is Lipschitz continuous in both t and s.

Finally, for every t that is not an interaction time, following [16] we define
U ε(t) from uε(t) and Xε(t) by completion based on the given family of paths >.
Precisely for each t , with the family of paths > and the BV function uε(t) we can
associate a unique locally Lipschitz continuous parametrized graph (Xε, U ε)(t)
called the >-completion of uε(t), characterized by the conditions that

uε(t) = U ε ◦ (Xε)−1(t), (6.13)

and, on every maximal interval [s−, s+] on which Xε(t) is constant equal to some
value x ,

U ε(t)∣∣[s−,s+] = >(uε(t, x−), uε(t, x+)) ◦ β, (6.14)

where β : [s−, s+] → [0, 1] is the linear map satisfying β(s−) = 0, β(s+) = 1.
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The regularity in space is clear by construction, since uε has uniformly bounded
total variation in space and we are using (a modification of) the arc-length para-
metrization. The function ∂t Xε behaves essentially like ∂s Xε in a neighborhood
of a single wave front. On the other hand, the function Xε remains constant at an
interaction point. This yields easily the uniform bounds for ∂s Xε, ∂t Xε, ∂sU ε.

To control ∂tU ε we observe that

|U ε(t, s) − U ε(t ′, s)| # |t − t ′| sup |∂sU (t, s)|
# |t − t ′| sup T V (uε),

provided there is no interaction point within the time interval [t, t ′]. Thus we only
need to discuss the behavior of ∂tU ε at interaction times.

Consider a point (t0, x0)of interaction of two wave fronts, (ul , um) and (um, ur ),
and denote by Il := [sl , sm], Ir = [sm, sr ] the s-intervals describing the incoming
fronts, with

sm − sl = |ε(ul , um)|, sr − sm = |ε(um, ur )|.

In view of (6.10) and (6.11), the interval I = [sl , sr ] is used to parametrize the
outgoing wave fan. Let us begin with two waves of different families. Comparing
the graphs before and after the interaction we can write

‖U ε(t0+) − U ε(t0−)‖L∞(R) = ‖U ε(t0+) − U ε(t0−)‖L∞(I )

# min(sm − sl , sr − sm),

since whenever the left-hand side is Lipschitz continuous in the data ul , um , ur and
vanishes whenever the right-hand side vanishes. By integration in s this inequality
leads us to the L1 bound

‖U ε(t0+) − U ε(t0−)‖L1(R) = ‖U ε(t0+) − U ε(t0−)‖L1(I )

" (sr − sl) ‖U ε(t0+) − U ε(t0−)‖L∞(I )

# (sr − sl) min(sm − sl , sr − sm)

" 2 (sm − sl) (sr − sm) # |um − ul | |ur − um |.

Since the interaction potential between two waves of different families is quadratic
we have obtained

‖U ε(t0+) − U ε(t0−)‖L1(R) # Qε(t0−) − Qε(t0+). (6.15)

At a point where two fronts of the same family meet, we need a more precise
bound and we rely on the property (6.7) satisfied by the family of Riemann graphs.
We have immediately

‖U ε(t0+) − U ε(t0−)||L1(R) = ‖U ε(t0+) − U ε(t0−)||L1(I )

# Q(t0−) − Q(t0+), (6.16)

which completes the derivation of uniform estimates.
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Step 2. We now justify the passage to the limit ε → 0. On one hand, let us denote
by u the limit of the sequence of front tracking approximations uε. On the other
hand, consider the parametrized graphs (Xε, U ε). In view of the uniform Lipschitz
bound on Xε(t) (see (6.8)) and after extracting a subsequence if necessary we can
assume that there exists a Lipschitz continuous function X such that

Xε(t) → X (t) uniformly on all compact subsets in (t, s),

∂s Xε, ∂t Xε ⇀ ∂s X, ∂t X weak-∗ in L∞
t,s .

(6.17)

On the other hand, since U ε and ∂sU ε are uniformly bounded we can find U (t)
defined for all rational numbers t such that

U ε(t) ⇀ U (t) weak-∗ in W 1,∞
s (6.18)

for all rational t at least. Using the uniform bound on ∂tU ε (see (6.8)) it follows
that U can be actually defined for all times and that the convergence above holds
at all but countably many times t . Let us set w := U ◦ X .

For t fixed the inverse map (Xε)−1(t) is monotone increasing and thus con-
verges pointwise some some limit Y . From the identity Xε ◦ (Xε)−1 = id we
deduce that X ◦ Y = id, so that Y is the (generalized) inverse of X . In turn, passing
to the limit in the relation U ε ◦ (Xε)−1 = uε yields w = U ◦ X−1 = u. In other
words the BV function associated with the limiting graph is exactly the function u.
In particular, the graph satisfies the conservation law in the sense (6.5).

To conclude it remains to determine the vertical parts of (X, U ) and estab-
lish (6.6). We will check that (X, U ) coincides (up to re-parametrization) with the
>-completed graph of u whose arc-length parametrization is denoted by (Y, V>):

(X, U ) = (Y, V>) ◦ β, (6.19)

where β : R → R is an increasing, onto, and Lipschitz continuous map. In partic-
ular, (6.19) implies that the vertical parts in both graph coincide so that (6.6) holds.

The statement (6.19) is a nontrivial property of the front tracking scheme which
we will establish by relying on the well-known property of local uniform conver-
gence: for all but countably many times t and for each η > 0, any point x ∈ R
must be

1. either a point of continuity of u(t) for which there exist a neighborhood Nη(x)

and a real εη > 0 sufficiently small so that for all y ∈ Nη(x) and ε < εη

|uε(t, y) − u(t, x)| + |u(t, y) − u(t, x)| < η, (6.20)

2. or else a point of jump for u(t) for which there exist a neighborhood Nη(x), a
sufficiently small real εη > 0, and a sequence of points xε ∈ Nη(x), so that for
all y ∈ Nη(x) and ε < εη

|uε(t, y) − u(t, x±)| + |u(t, y) − u(t, x±)| < η if y ≶ xε. (6.21)
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Specifically, the argument presented now shows that the local uniform
convergence of functions implies, for the associated >-completed graphs, the
convergence in the uniform sense of graphs.

Fix a time t at which uε(t) → u(t) uniformly locally. Given η > 0 we can
select finitely many points z1, . . . , zm so that

∑

x∈Rx $=z1,...,zm

|u+(t, x) − u−(t, x)| < η. (6.22)

With each z j we associate a neighborhood Nη(z j ) and a point zε
j so that the property

(6.21) holds at z j with η replaced by η/m:

|uε(t, y) − u(t, z j±)| + |u(t, y) − u(t, z j±)| < η/m

if y ≶ zε
j , y ∈ Nη(z j ).

(6.23)

For each R > 0 consider the compact set K R := [−R, R] \ ⋃
j Nη(z j ). By

(6.20), with each point x ∈ K R we can associate an open neighborhood Nη(x) that
should be sufficiently small so it does not contain any of the z j and

|uε(t, y) − u(t, x)| + |u(t, y) − u(t, x)| < η, y ∈ Nη(x) (6.24)

holds. By compactness we can extract finitely many points zm+1, . . . z p so that the
whole family of Nη(z j ) form a covering of [−R, R]:

[−R, R] ⊂
p⋃

j=1

Nη(z j ).

Note that, in view of the Lipschitz continuity property of the map > (see (6.2)),
the graph distance associated with uε and u is clearly controled in the L∞ norm.
Such an estimate is used within each region of small oscillations as follows. Set
u±,h

j := uε(t, zε
j±) and u±

j := u(t, z j±) for j = 1, . . . , m. By distinguishing
between regions of large jump and regions of small oscillations we can estimate
the graph distance between the approximate graphs (Xε, U ε) and the >-completion
(Y, V>) as follows (where the constants C1, C2, . . . depend upon Li p(>) only)

dist
(
(Xε, U ε), (Y, V>)

)
" D1 + D2

with, for the shock regions ( j = 1, . . . m),

D1 = 2 sup
j=1,...,m

sup
x∈Nη(z j ),x≶z j
y∈Nη(zε

j ),y≶zε
j

|uε(t, y) − u(t, x)|

+ 2 Li p(>) sup
j=1,...,m

sup
x,y∈Nη(z j ),x,y≶z j

|u(t, y) − u(t, x)|

+ 2 Li p(>) sup
j=1,...,m

sup
x,y∈Nη(zε

j ),x,y≶zε
j

|uε(t, y) − uε(t, x)|

+ sup
j=1,...,m

sup
s∈[0,1]

|>(s; u−,h
j , u+,h

j ) − >(s; u−
j , u+

j )|
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and, for the regions with small oscillations ( j = m + 1, . . . p),

D2 = sup
j=m+1,...,p

sup
x,y∈Nη(z j )

|uε(t, y) − u(t, x)|

+Li p(>) sup
j=m+1,...,p

sup
x,y∈Nη(z j )

|u(t, y) − u(t, x)| + |uε(t, y) − uε(t, x)|.

Using again the Lipschitz continuity of > we can write

|>(s; u−,h
j , u+,h

j ) − >(s; u−
j , u+

j )| " Li p(>) (|u−,h
j − u−

j | + |u+,h
j − u+

j |).
Therefore in view of (6.23) and (6.24) we find

dist
(
(Xε, U ε), (Y, V>)

)
" C η.

where the constant C only depends upon Li p(>). This completes the proof of
Theorem 6.1.
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