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1 Introduction

We investigate the steady Navier-Stokes equations in a two dimensional
bounded simply connected domain Ω with a smooth boundary ∂Ω, with an
external force term F . The system reads

(1.1)
v · ∇v − ν∆v +∇p = F in Ω,

div v = 0 in Ω,

where v = (v1, v2) represents the velocity of the fluid, p – its pressure and
ν is the constant positive viscous coefficient.

∗Corresponding author

1



More precisely, we will be interested in the inviscid limit towards the
Euler equation. Let us recall that for what concerns the stationary Eu-
ler system with homogeneous boundary conditions (~n – the unit outward
normal vector to ∂Ω) and a force term:

(1.2)
v · ∇v +∇p = F in Ω,
div v = 0 in Ω,
v · ~n = 0 on ∂Ω,

there is no solution in general. Typically, integrating (1.2) on ∂Ω in the
direction of the tangent (~τ – the tangent vector to ∂Ω), we would get

(1.3)

∫
∂Ω

F · ~τ dσ = 0,

which is not satisfied by any F (this is Kelvin’s law for the stationary Euler
equation). Moreover, even if we restrict ourselves to F satisfying (1.3), there
might be no solution to (1.2). For instance, consider F satisfying (1.3) and
rotF > 0 on ∂Ω. Writing (1.2) in the vorticity form:

v · ∇α = rotF in Ω,

where the vorticity is denoted

α = rot v = ∂x1v
2 − ∂x2v

1.

We see by using characteristics that one cannot define α completely on
the boundary. On the other hand it was shown by Coron [3] that if one
authorizes the fluid to pass through ∂Ω on an arbitrarily small part Γ of
the boundary, then the Euler system has a solution for any F (in the case
of a simply connected domain; see [5] in the general case).

Hence we investigate the Navier-Stokes equation with boundary condi-
tions that will be authorized to be non-homogeneous on an arbitrary part of
the boundary. Let Γ be an arbitrary nonempty open part of ∂Ω, which will
represent the zone where we are authorized to put non-homogeneous condi-
tions. We will consider equation (1.1) supplied with the following boundary
condition on ∂Ω \ Γ:

(1.4)
v · ~n = 0 on ∂Ω \ Γ,

∂α

∂~n
= 0 on ∂Ω \ Γ.

Hence the question we raise is the following: given Ω and Γ, for any F , can
we find a solution of (1.1)-(1.4) for all suitably small ν?

Let us mention that this problem is connected to control theory. It is
indeed known that for finite-dimensional control systems, the stabilizability
property involves the existence of stationary solutions for small right hand
side (see Brockett [1]). A similar phenomenon is observed for the boundary
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stabilizability of the incompressible Euler equation and raises the question
for the Navier-Stokes equation. See [3, 4, 6] for more details.

The solutions to (1.1),(1.4) will be found as solving the following system:

(1.5)

v · ∇α− ν∆α = rotF in Ω,
rot v = α in Ω,
div v = 0 in Ω,
v · ~n = d on ∂Ω,
α = αin on Γin,
∂α
∂~n

= 0 on ∂Ω \ Γin.

Let us emphasize that thanks to the simple connectedness of the domain Ω
the system (1.5)1,2,3 is completely equivalent to the original equation (1.1).
A comment which is required here concerns the choice of the boundary
condition (1.5)6. Since we are required to examine the inviscid limit of
solutions to (1.5) this relation should disappear at the limit. Additionally,
inhomogeneous data (1.5)4,5 are required to be preserved, to control the
well posedness of the limit Euler system. Somehow we may look at (1.5)
as a regularization of the system (1.2), thus we can find an analogy to
considerations for the continuity equation in the theory of weak solutions
to the compressible Navier-Stokes equations [9].

In the above equation, one will choose d suitably; in particular one
requires

(1.6) supp d ⊂ Γ and

∫
∂Ω

d dσ = 0.

in order that (1.4)4 is satisfied. Also we introduce

(1.7) Γin =
{
x ∈ Γ

∣∣∣ d(x) < 0
}

and Γout =
{
x ∈ Γ

∣∣∣ d(x) > 0
}
.

Our first aim is the following result.

Theorem 1 For any (Ω,Γ), there exists d ∈ C∞(Γ) such that the following
holds. Let F ∈ H1(Ω; R2), and αin ∈ H3/2(Γin; R), where Γin is defined in
(1.7) with d = d. Then there exists l such that for 0 < ν ≤ 1, for any l > l
there exists at least one weak solution to the system (1.5) with

(1.8) d(x) = ld(x),

such that v ∈ Ca(Ω) with a < 1
2

and

(1.9) ‖rot v‖L2(Ω) + ‖v‖Ca(Ω) ≤ C(DATA, l),

where the r.h.s. of (1.9) is independent from ν.
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The main difficulty is to obtain the estimate (1.9), giving relatively high
regularity of solutions with no dependence from the viscosity coefficient
ν. The solutions will be constructed as perturbations of a given potential
flow, which is related to the function d defined on Γ. Such flow will be
constructed in the next section. Our technique is based on the energy
approach, however, used in a non-standard way. For chosen d in (1.8) the
solution to (1.5) is unique, which is a consequence of the application of the
Banach fixed point theorem. However d is constructed in the proof, so this
feature is not emphasized in the statement of the theorem. The obtained
bound (1.9) is a motivation for the next result.

Our second aim is to analyze the inviscid limit of solutions given by
Theorem 1.

Theorem 2 Let the assumptions of Theorem 1 be fulfilled and let vν denote
the solution to (1.5) with the viscosity ν. Then there exists a function
vE ∈ C1/2−δ(Ω) with δ > 0 such that for a subsequence νk → 0+ as k →∞

(1.10) vνk → vE in C1/2−δ(Ω) and vνk ⇀ vE in H1(Ω)

for k →∞ and vE fulfills the Euler system

(1.11)

vE · ∇vE +∇pE = F in Ω,
div vE = 0 in Ω,
vE · ~n = d on ∂Ω,
rot vE = αin on Γin,

where pE is a constructible pressure.

The main element in the proof of Theorem 2 is the a priori estimate (1.9).
In the evolutionary case the basic bound follows from the energy estimate,
however in the stationary case we lose this possibility. The information given
by Theorem 1 is not sufficient. We are required to find more sophisticated
estimates for higher derivatives of solutions in terms of dependence of ν. It
will allow us to control the dependence from the boundary condition αin,
which could be omitted in straightforward considerations. The meaning of
the solution to (1.11) will be defined later by (4.10). The obtained regularity
and weak formulation will allow us to control the dependence from the
boundary datum αin.

There are no general results concerning the inviscid limit of the sta-
tionary Navier-Stokes system towards the stationary Euler system, the only
known results have been proved in [7], [8], but for the unforced system in a
special type of domains.

The same as for Theorem 1 fixing d we are able to obtain the unique-
ness of the limit, so (1.10) holds for arbitrary sequence, not only for a
subsequence. Additionally in that case (1.11) admits unique solutions and
it is again the consequence of the chosen fixed point approach in the proof of
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estimate (1.9). We omit these considerations in proofs, since this property
holds for our particular d and is not proven for general datum.

The structure of the paper is the following. In Section 2, we introduce
the function d announced in Theorem 1; in Section 3, we establish Theorem
1; in Section 4, we establish Theorem 2; finally, Section 5 is an Appendix
where we have put technical yet central results.

Throughout the paper we use the standard notation. Letter C denotes
a generic constant independent from ν and λ, DATA depends on norms of
data and known quantities and it is independent from ν and λ, too.

2 A proposition

In this section we introduce a function θ on which the construction
depends. This is given in the next proposition;

Proposition 2.1 Let Ω be a bounded smooth simply connected domain in
R2, and let Γ a nonempty open part of ∂Ω. Then there exists θ ∈ C∞(Ω; R)
such that

∆θ = 0 in Ω, |∇θ| ≥ k > 0 in Ω,(2.1)

∇θ · ~n = 0 on ∂Ω \ Γ,(2.2)

∀t,
{
x ∈ Ω

∣∣∣ θ(x) ≤ t
}

is a piecewise smooth domain.(2.3)

Remark 2.1 For the rest of the paper, we will fix

d := ∇θ · ~n on ∂Ω,

and as we will consider boundary conditions (1.5)4 of the type d = ld, we
will systematically have according to the definition (1.7):

(2.4)
Γin =

{
x ∈ ∂Ω : ∇θ(x) · ~n(x) < 0

}
=
{
x ∈ ∂Ω : d(x) < 0

}
,

Γout =
{
x ∈ ∂Ω : ∇θ(x) · ~n(x) > 0

}
=
{
x ∈ ∂Ω : d(x) > 0

}
.

Shrinking Γ if necessary, we will suppose from now on that Γ = Γin ∪ Γout.

Proof. Such a proposition without condition (2.3) was established in [2].
Here we proceed as follows. Consider in R2 the square [0, 1]2. Extend it
inside the strip R× [0, 1] into a smooth bounded contractile domain U . Now
it follows from Riemann’s mapping theorem that U and Ω are conformally
equivalent. Moreover it is a standard result that the corresponding mapping
is C∞ up to the boundary, as follows from the smoothness of Ω and U (see
for instance [10]).

Now a conformal map of a simply connected domain is defined up to the
conformal group of the disc, which is the following 3-parameter group:

G =
{
g(z) = eiφ

a+ z

1 + az
, a ∈ C, |a| < 1, φ ∈ R

}
.
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Hence one can extract a unique conformal mapping ϕ between U and Ω by
fixing the image of three points of the boundary of U in the boundary of Ω.
We do as described in Figure 1. Precisely, shrinking Γ if necessary, we can
suppose that it is connected. Call {Ã, B̃} its boundary inside ∂Ω. Denote
A := (1, 0), B = (1, 1) and C = (0, 1/2). We choose the conformal map ϕ
from U to Ω so that it sends A to Ã, B to B̃, and C inside Γ.

Ω
U

C

BA

ϕ(B) = B̃

ϕ(A) = Ã

ϕ(C)

Figure 1: Conformal map

We recall that on simply connected domains, there is an equivalence
between holomorphic functions and gradients of harmonic functions via the
following rule:

(2.5) ψ = ψ1 + iψ2 is holomorphic in Ω⇐⇒ (ψ1,−ψ2) is the gradient

of a harmonic function.

Now we consider the application θ obtained by transporting on Ω the har-
monic map (x1, x2) 7→ x1 defined on U through ϕ, θ(ϕ(x)) = x on U . Now
for this θ, properties (2.1) and (2.2) come from the conformality and the
fact that (1, 0) is tangent to the part of the boundary ∂U given by [A,B].
Finally, (2.3) directly comes from the fact that{

x = (x1, x2) ∈ U
∣∣∣ x1 ≤ t

}
is a piecewise smooth domain.

Proposition 2.1 is proved.

3 Proof of Theorem 1

In this section we prove Theorem 1. The proof is divided in two parts.
First, we restrict our attention to sufficiently small data, but the viscosity
coefficient is not restricted, i.e. it can be arbitrarily small. Next, we consider
the general case by using a homogeneity argument.

Let us consider the case of small data. We look for solutions in a vicinity
of the potential flow ∇θ constructed by Proposition 2.1.

Let the solution to (1.5) be considered in the following form

(3.1) v = ∇θ + u and we put v · ~n = ∇θ · ~n =: d on ∂Ω.
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Then the system (1.5) in terms of u takes the form

(3.2)

∇θ · ∇α− ν∆α = rotF − u · ∇α in Ω,
rotu = α in Ω,
divu = 0 in Ω,
u · ~n = 0 on ∂Ω,
α = αin on Γin,
∂α
∂~n

= 0 on ∂Ω \ Γin.

Our technique requires a special parameterization of the domain Ω.
Thanks to Proposition 2.1 we are allowed to use the properties of the func-
tion θ. The set Ω is parameterized by a set D ⊂ R2 in that way

Yt = {x ∈ Ω : θ(x) = t}

and Yt is parameterized by a coordinate s ∈ R. Thus, we find a diffeomor-
phism

D 3 (s, t)↔ x ∈ Ω.

Precisely, one chooses D to be U such as described in the proof of Proposi-
tion 2.1. Additionally, we introduce

Xt =
⋃
t′<t

Yt′ = {x ∈ Ω : θ(x) < t}

for t ∈ (tmin, tmax) and Xtmax = Ω and Xtmin = ∅.
Let us remark that ∂Xt can be divided in several parts: the part Yt, and

the part ∂Xt∩∂Ω, which can itself be divided into ∂Xt∩Γin, ∂Xt∩ (∂Ω\Γ)
and ∂Xt∩Γout (which is not empty for large t). Clearly, this decomposition
is trivial when transported in U .

The proof of existence of solutions to (3.2) will rely on the Banach fixed
point theorem. First, we show the a priori estimate, describing the function
spaces for the solutions.

A priori estimate. To start our estimation we are required to find an
extension of the boundary vorticity. We easily find α̃ ∈ H2(Ω) such that

(3.3) ‖α̃‖H2(Ω) ≤ C‖αin‖H3/2(Γin), α̃|Γin = αin and α̃|Γout = 0.

Additionally, we choose α̃ as a harmonic function

(3.4) ∆α̃ = 0 in Ω.

Multiplying (3.2)1 by (α− α̃) and integrating over Xt we get
(3.5)∫
Xt

[∇θ ·∇α(α− α̃)− ν∆α(α− α̃)]dx =

∫
Xt

[rotF (α− α̃) +u∇α(α− α̃)]dx.
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Let us consider the first term in the l.h.s. of (3.5). It reads

1

2

∫
Xt

∇θ · ∇α2dx−
∫
Xt

∇θ · ∇αα̃dx =
1

2

∫
Yt

|∇θ|α2dσ

+

∫
Xt

∇θ · ∇α̃αdx−
∫
Yt

|∇θ|αα̃dσ

− 1

2

∫
∂Xt∩Γin

∇θ · ~nα2
indσ +

1

2

∫
∂Xt∩Γout

∇θ · ~nα2dσ,

where we used the fact ∇θ · ~n = |∇θ| at Yt and that u · ~n = 0 on ∂Ω \ Γ.
Now we remark that by (2.4) the integral over ∂Xt ∩ Γout is non-negative;
hence we can forget this term and obtain a lower bound for the first term
in the l.h.s. of (3.5).

The second term takes the form

− ν
∫
Xt

∆α(α− α̃)dx = ν

∫
Xt

|∇α|2dx− ν
∫
Xt

∇α · ∇α̃dx

− ν
∫
Yt

∂α

∂n
αdσ + ν

∫
Yt

∂α

∂n
α̃dσ.

The remaining boundary terms vanish by (3.2)5,6 and (3.3).
The last term of the r.h.s. of (3.5) is considered in the form∫
Xt

u · ∇αα dx−
∫
Xt

u · ∇αα̃ dx

=
1

2

∫
Yt

~n · uα2 dσ +

∫
Xt

u · ∇α̃α dx−
∫
Yt

~n · uαα̃ dσ.

Here the remaining boundary terms vanish thanks to (3.3) and (3.2)4.
Applying the standard Schwarz inequality we infer that for some con-

stant C independent of ν,∣∣∣ν ∫
Yt

∂α

∂n
αdσ

∣∣∣ ≤ k

4
sup
t

∫
Yt

α2 dσ + C sup
t
ν2

∫
Yt

|∇α|2 dσ.

In the above estimate, the constant k is given by (2.1).
We conclude

(3.6)
k

4
sup
t

∫
Yt

α2dσ + ν

∫
Ω

|∇α|2dx

≤ ‖u‖L∞(Ω) sup
t

∫
Yt

α2dσ + C sup
t
ν2

∫
Yt

|∇α|2dσ

+ C sup
t

∫
Yt

α̃2dσ +

∫
Ω

|∇α̃|2dx+

∫
Ω

(rotF )2dx+ C

∫
Γin

α2
indσ.

The main difficulty is the term containing the trace of the gradient of
α at Yt – the second term in the r.h.s. of (3.6). To estimate it we have to
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apply the trace theorem for the Besov space B
1/2
2,1 (Ω). This critical case still

controls the trace since Yt is a smooth submanifold, i.e. in our case for a
sufficiently regular function f there holds

(3.7) ‖f |Yt‖L2(Yt) ≤ C‖f‖
B

1/2
2,1 (Ω)

for all t ∈ (tmin, tmax).

The definition of this space is quite complex, however it can be represented
as an interpolation space

B
1/2
2,1 (Ω) = (H1(Ω), L2(Ω))1/2,1

– see [11]; this guarantees the estimate

(3.8) ‖f‖
B

1/2
2,1 (Ω)

≤ C‖f‖1/2

H1(Ω)‖f‖
1/2
L2(Ω).

Thus for, (3.7) and (3.8) we easily conclude that the boundary term can be
estimated as follows

(3.9) ν2

∫
Yt

|∇α|2dσ ≤ Cν2‖∇α‖L2(Ω)(‖∇2α‖L2(Ω) + ‖∇α‖L2(Ω)).

To make use of the above inequality there is a need to control the second
gradient of α in terms of ν. We will need the following result, which we
prove in the Appendix.

Theorem 3 Let G ∈ L2(Ω), θ ∈ W 1
∞(Ω), and consider λ – a parameter of

the localization defined by (5.2) – be sufficiently small, then solutions to

(3.10)
∇θ · ∇β − ν∆β = G in Ω,
β = βin on Γin,
∂β
∂~n

= 0 on ∂Ω \ Γin

fulfill the following bound (for 0 < λ < λ0(∂Ω)):

(3.11) ν‖∇2β‖L2(Ω) ≤ C
[
(νλ−1 + λ)‖∇β‖L2(Ω) + (νλ−2 + 1)‖β‖L2(Ω)

+‖G‖L2(Ω) + ‖βin‖H3/2(Γin)

]
.

Applying Theorem 3 to estimate ν‖∇2α‖L2(Ω) (and using (3.2)1) we con-
clude

(3.12)

ν2

∫
Yt

|∇α|2dσ ≤ Cν‖∇α‖L2(Ω)

(
‖∇α‖L2(Ω)(νλ

−1 + λ+ ν + ‖u‖L∞(Ω))

+ ‖α‖L2(Ω)(νλ
−2 + 1) + ‖rotF‖L2(Ω) + ‖αin‖H3/2(Γin)

)
.
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Now, we restrict ourselves to the case

(3.13) ν ≤ λ2 ≤ 1, and, hence, νλ−1 + λ+ ν ≤ 3λ and νλ−2 + 1 ≤ 2.

This can be obtained for any λ > 0 by choosing ν sufficiently small.
Using ν‖∇α‖L2(Ω)‖α‖L2(Ω) ≤ ν2λ−1‖∇α‖2

L2(Ω) + λ‖α‖2
L2(Ω) and taking

(3.13) into account we deduce
(3.14)

ν2

∫
Yt

|∇α|2dσ ≤ Cν(3λ+ ‖u‖L∞(Ω))‖∇α‖2
L2(Ω) + Cλ‖α‖2

L2(Ω) +DATA.

Provided sufficiently smallness of λ and ‖u‖L∞(Ω) ≤ ε0 in terms of the
domain only (and in particular independently of ν which has to be less
than a constant, say ν0(Ω,Γ), which also depends on the domain only), we
obtain
(3.15)
k

4
sup
t

∫
Yt

α2dσ + ν

∫
Ω

|∇α|2dx ≤ k

8
sup
t

∫
Yt

α2dσ +
1

2
ν

∫
Ω

|∇α|2dx+DATA.

So we get the main a priori bound

(3.16) sup
t

∫
Yt

α2dσ + ν

∫
Ω

|∇α|2dx ≤ DATA.

The quantities in DATA are independent from ν and are sufficiently small.
To close the estimation we are required to show that inequality (3.16) implies
‖u‖L∞(Ω) ≤ ε0, but

(3.17)
rotu = α in Ω,
divu = 0 in Ω,
~n · u = 0 on ∂Ω.

We want to show that solutions to (3.17) belong to Ca(Ω) for a < 1
2
. By

(3.17)2 we can introduce a stream function φ such that u = ∇⊥φ and

(3.18)
∆φ = α in Ω,
φ = 0 in ∂Ω.

The estimate (3.16) guarantees that for any 2 ≤ p <∞ we have

α ∈ Lp(tmin, tmax;L2(Yt)).

Trivially we have u = ∇⊥φ ∈ H1(Ω). To obtain the Hölder continuity of u
we examine a model problem in the plane

(3.19) ∆ψ = β in R2, where β ∈ Lp(R;L2(R)),

then using the Fourier transform

∇2ψ = F−1
x

[
ξ ⊗ ξ
|ξ|2

]
β, hence ∇2ψ ∈ Lp(R;L2(R)), too.
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Then the embedding theorem implies

(3.20) ‖∇ψ‖Ca(R2) ≤ C(‖β‖Lp(R;L2(R)) + ‖∇ψ‖H1(R2)) for a <
1

2
− 1

p
.

To apply the above result to (3.18) we just solve the equation (3.19)
with α extended by zero, using the localization techniques. Then by (3.20),
we can remove inhomogeneity from the r.h.s. of (3.18), getting a standard
problem in the Hölder spaces for which we are able to show

u ∈ Ca(Ω) with a <
1

2
− 1

p
.

Finally we get

(3.21) ‖u‖L∞(Ω)+ < u >Ca(Ω)≤ CpDATA ≤ ε0

as DATA are sufficiently small and < · >Ca(Ω) denotes the main seminorm

in the Hölder space Ca(Ω). The estimate (3.21) enables us to proceed the
next step in our proof.

Existence. Let us define the set

Ξ =
{
u ∈ C(Ω; R2) : ~n · u = 0 and ‖u‖L∞(Ω) ≤ ε0

}
.

Next, we define a map K : Ξ→ C(Ω; R2) such that

K(ū) = u,

where u is the solution to the following problem

(3.22)
rotu = α in Ω,
divu = 0 in Ω,
~n · u = 0 on ∂Ω

and α is given as the solution to the problem below

(3.23)
∇θ · ∇α− ν∆α = rotF − ū · ∇α in Ω,
α = αin on Γin,
∂α
∂~n

= 0 on ∂Ω \ Γin.

We see that a fixed point of the map K defines a solution to system (3.2).

Lemma 3.1 Let ū ∈ Ξ and

(3.24) ‖rotF‖L2(Ω) + ‖αin‖H3/2(Γin) ≤ ε1,

then u ∈ Ξ, i.e. K : Ξ → Ξ. Moreover the map K is a contraction on the
set Ξ. Subsequently, there exists unique fixed point of K belonging to Ξ.
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Proof. To obtain u ∈ Ξ it is enough to follow the steps of the a priori
bound. To prove that K is the contraction we note that

(3.25) ‖K(ū1)−K(ū2)‖L∞(Ω) ≤
1

2
‖ū1 − ū2‖L∞(Ω),

and

(3.26)
rot (u1 − u2) = α1 − α2 in Ω,
div (u1 − u2) = 0 in Ω,
~n · (u1 − u2) = 0 on ∂Ω,

where u1 = K(ū1), u2 = K(ū2) and α1, α2 are the vorticities satisfying
(3.23) for u = ū1 and u = ū2, respectively. The difference (α1 − α2) fulfills
the equations

(3.27)

∇θ · ∇(α1 − α2)− ν∆(α1 − α2)
= ū1 · ∇(α1 − α2) + (ū1 − ū2)∇α2 in Ω,

α1 − α2 = 0 on Γin,
∂
∂~n

(α1 − α2) = 0 on ∂Ω \ Γin.

Again we repeat the steps (3.3)-(3.21) and get (3.25), provided that the
data and ε0 are sufficiently small. Inequality (3.25) implies the existence of
unique fixed point K(u) = u, which yields a solution of the system (1.5).

However the above considerations concerned only the small data prob-
lem: at this step we have proven the following.

Proposition 3.1 There exist ε0 = ε0(Ω,Γ) and ν0 = ν0(Ω,Γ) such that for
any αin ∈ H3/2(Γin), for any F ∈ H1(Ω) satisfying

‖αin‖H3/2(Γin) + ‖F‖H1(Ω) ≤ ε0,

for any ν ∈ (0, ν0), there exists a solution to the system (1.5) with d = d =
∇θ · ~n on ∂Ω, and with the estimate (1.9) satisfied independently from ν.

Now let us justify the passage from Proposition 3.1 to Theorem 1. This is
a homogeneity argument: if (u, p) satisfies

(u · ∇)u− ν∆u+∇p = F,

then uρ := ρu and pρ := ρ2p satisfy

(uρ · ∇)uρ − νρ∆uρ +∇pρ = ρ2F,

Now given αin ∈ H3/2(Γin) and F ∈ H1(Ω) which do not necessarily satisfy
a smallness assumption, we choose ρ ≤ 1 small enough in order that

(3.28) ‖ραin‖H3/2(Γin) + ‖ρ2F‖H1(Ω) ≤ ε0.
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For this data (ραin, ρ
2F ) one can employ Proposition 3.1, and deduce a

solution for any ν ≤ ν0. Let us call ũ this solution. It satisfies in particular
ũ · ~n = d on ∂Ω.

Now we go back to the original data (αin, F ), that is, we use the above
homogeneity argument with coefficient 1/ρ. We find a solution u of

(u · ∇)u− ν

ρ
∆u+∇p = F in Ω,

u · ~n =
1

ρ
d on ∂Ω,

rotu = αin on Γin,

for any ν ∈ (0, ν0]. Hence, a solution of (1.1) for a wider range of ν, which
can include (0, 1], reducing ρ if necessary.

Now, since ρ is chosen as to satisfy (3.28) and can consequently be
chosen arbitrarily small, the boundary condition d = 1

ρ
d becomes (1.8) for

large enough l. That u satisfies (1.9) is a straightforward consequence of
the fact that ũ satisfies (1.9) (of course, the constant depends on l). This
ends the proof of Theorem 1.

4 Proof of Theorem 2

A key problem in the passage to the limit is the control of dependence of
the obtained inviscid solutions from the boundary data. The main difficulty
is related to αin on Γin, since the vorticity is uniformly bounded in a space
which does not control the trace (we may take the L2-space). That is the
reason we shall choose a special class of the test functions.

For fixed ν > 0 the solution to the Navier-Stokes equations are regular.
In particular there holds

(4.1)

∫
Ω

vν · ∇ανφdx− ν
∫

Ω

∆ανφdx =

∫
Ω

rotF φdx

for each φ ∈ C∞(Ω; R) such that φ|Γout = 0.
The choice of φ makes us possible to take into account the influence of

the boundary vorticity αin at Γin as well as to neglect information at Γout.
Then (4.1) reads

(4.2) −
∫

Ω

vναν∇φ dx+

∫
Γin

~n · vναinφ dσ − ν
∫

Γin

∂αν

∂~n
φ dσ

+ ν

∫
Ω

∇αν∇φ dx =

∫
Ω

rotF φdx.

The above equality follows from integration by parts and the form of the
boundary terms is a consequence of the boundary conditions:

(4.3)
~n · vν = 0 on ∂Ω \ (Γin ∪ Γout),
φ = 0 on Γout,
∂αν

∂~n
= 0 on ∂Ω \ Γin.
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The estimates proved in Theorem 1 guarantee for a < 1
2

the following bound
uniformly in ν:

(4.4) ‖vν‖Ca(Ω) + ‖vν‖H1(Ω) + ν1/2‖∇αν‖L2(Ω) ≤ C.

So for any δ > 0 we find a subsequence νk → 0+ such that
(4.5)

vνk → vE in C1/2−δ(Ω) and vνk ⇀ vE in H1(Ω),

for k →∞ for some divergence-free function vE.
To examine the limit in (4.2) for this subsequence we analyze the be-

havior of the third and fourth terms of the l.h.s. of (4.2). By (4.4) the last
term vanishes as ν → 0, since

(4.6) ν|
∫

Ω

∇αν∇φdx| ≤ ν1/2
[
ν1/2‖∇αν‖L2(Ω)

]
‖∇φ‖L2(Ω) ≤ Cν1/2 → 0.

However the main difficulty is located in the third term. To find a good
estimate we are required to control the normal derivative of αν . As in the
proof of Theorem 1 – see considerations for (3.7)-(3.14) – we follow (φ is
given and fixed)

(4.7)

ν
∣∣∣ ∫

Γin

∂αν

∂~n
φdσ

∣∣∣ ≤ Cν
∥∥∥∂αν
∂~n

∥∥∥
L2(Γin)

≤ Cν‖∇αν‖1/2
L2(Ω)(‖∇2αν‖1/2

L2(Ω) + ‖∇αν‖1/2
L2(Ω))

≤ Cν‖∇αν‖L2(Ω)

+Cν1/4
[
ν1/4‖∇αν‖1/2

L2(Ω)

][
ν1/2‖∇2αν‖1/2

L2(Ω)

]
≤ C(ν1/2Iν + I

1/2
ν Jν),

with Iν := ν1/2‖∇αν‖L2(Ω) and Jν := ν1/4[ν1/2‖∇2αν‖1/2
L2(Ω)]. Note that the

first term in the r.h.s. of (4.7) satisfies ν1/2Iν → 0 by the same arguments
as for (4.6). To control the second derivatives, a modification of Theorem
3 is required.

We have

Theorem 4 Let G ∈ L2(Ω), βin ∈ H3/2(Γin) and V ∈ Ca(Ω) with a < 1
2
;

then for 0 < ν ≤ 1 there exists a unique solution to

(4.8)
V · ∇β − ν∆β = G in Ω,
β = βin on Γin,
∂β
∂n

= 0 on ∂Ω \ Γin

such that β ∈ H2(Ω). Additionally the following estimate is valid

(4.9) ν‖∇2β‖L2(Ω) ≤ C
[
‖G‖L2(Ω) + ‖βin‖H3/2(Γin)

+(νλ−1 + λa)‖∇β‖L2(Ω) + λa−1‖β‖L2(Ω)

]
.

where λ : 0 < λ ≤ λ0 is a localization parameter and the constant C is
independent from λ and ν and depends only on the shape of ∂Ω.
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Applying (4.9) to Jν from (4.7) we conclude

Jν ≤ Cν1/4
[
‖rotF‖L2(Ω) + ‖αin‖H3/2(Γin)

+(νλ−1 + λa)‖∇αν‖L2(Ω) + λa−1‖αν‖L2(Ω)

]1/2

≤ κ(ν) + C[(νλ−1 + λa)ν1/2‖∇αν‖L2(Ω) + ν1/2λa−1‖αν‖L2(Ω)]
1/2,

where κ(ν)→ 0 as ν → 0.
Keeping in mind (4.4) we describe relations between ν and λ. It is

allowed since the constant in (4.9) is independent of ν and λ. Taking

ν ≤ λ2 ≤ 2ν ≤ 2,

we obtain
Jν ≤ κ(ν) + C[ν1/2 + νa/2 + νa/2]1/2 → 0.

So the limit of (4.2) reads

(4.10) −
∫

Ω

vEαE · ∇φdx+

∫
Γin

~n · vEαinφdσ =

∫
Ω

rotFφdx

for φ ∈ C∞(Ω) with φ|Γout = 0.
Thanks to the choice of the test functions we obtain a dependence from

the boundary vorticity αin. Additionally the above integral identity is a
weak formulations of the Euler system (1.11). Theorem 2 is proved.

5 Appendix

Here we prove Theorems 3 and 4.

Proof of Theorem 3. By taken assumptions we are able to find an ex-
tension of βin such that

β̃ ∈ H2(Ω),
∂β̃

∂n
|∂Ω = 0 and β̃|Γin = βin.

Then we are allowed to consider βnew = βold − β̃, getting (3.10) with the
homogeneous condition: β|Γin = 0 and

Gnew = Gold + ν∆β̃ +∇θ · ∇β̃

with suitable estimate in the L2-space.
Now we start with local estimates. Let us consider a partition of unity

over Ω. We find smooth functions {πk}k∈I such that

πk : Ω→ [0, 1] and
∑
k∈I

πk ≡ 1 on Ω.
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Additionally, we divide the set of indexes I into two parts I = N ∪ I, the
sets are finite, in that way

(5.1) for k ∈ N , suppπk ∩ ∂Ω 6= ∅ and for k ∈ I, suppπk ∩ ∂Ω = ∅;

moreover

(5.2) sup
k

diam (suppπk) ≤ λ and |∇πk| ≤ C/λ, |∇2πk| ≤ C/λ2

and the Lebesgue cover number is denoted by N0, which does not increase
for all 0 < λ ≤ λ0. It depends only on the regularity of the boundary ∂Ω. In
our considerations we are required to choose {πk}k∈I with sufficiently small
λ.

The interior estimate. Applying πk with k ∈ I to system we obtain

(5.3) ∇θ · ∇(πkβ)− ν∆(πkβ) = πG+R1 in R2,

where

(5.4) R1 = 2ν∇πk · ∇β + ν(∆πk)β + (∇θ −∇θ)πk∇β + (∇θ −∇θ)β∇πk

with ∇θ = ∇θ(xk) and xk ∈ int supp πk.
The symbol of the operator in the l.h.s. of (5.3) has the following form

i∇θ · ξ + ν|ξ|2,

and in particular satisfies

(5.5) |i∇θ · ξ + ν|ξ|2| ≥ ν|ξ|2.

A direct application of Parseval’s identity and the definition of Hm together
with (5.5) lead straightforwardly to the estimate

(5.6) ν‖∇2(πkβ)‖L2(Ok) ≤ C(‖πkG‖L2(Ok) + ‖R1‖L2(Ok)),

where Ok = supp πk and by (5.2) and (5.4) we find
(5.7)
‖R1‖L2(Ok) ≤ C[νλ−1‖∇β‖L2(Ok)+νλ

−2‖β‖L2(Ok)+λ‖∇β‖L2(Ok)+‖β‖L2(Ok)].

where the constant in (5.7) is independent from ν and λ.

The boundary estimate. Taking πk, but with k ∈ N and applying it to the
system (3.10) we obtain

(5.8)
∇θ · ∇(πkβ)− ν∆(πkβ) = πG+R1 in Ω,

∂(πkβ)
∂~n

= 0 and / or (πkβ) = 0 on ∂Ω ∩Ok,
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where R1 is given by (5.4) and∇θ = ∇θ(xk), but with xk ∈ int suppπk∩∂Ω.
The boundary conditions depend on the localization of the support of taken
πk with respect to the localization of Γin.

The smoothness of the boundary allows us to transport this system onto
the halfspace R2

+ with a local coordinate system (z1, z2). For each function
πk we consider a map Zk : Ω ∩Ok → R2

+, then equations (5.8) reads
(5.9)
∇θ · ∇zZ

−1∗
k (πβ)− ν∆zZ

−1∗
k (πβ) = Z−1∗

k (πG) + Z−1∗
k (R1) +R2 in R2

+,

∂Z−1∗
k (πkβ)

∂z2

= 0 and / or Z−1∗
k (πkβ) = 0 on R× {0},

where

(5.10) R2 = ∇θ(∇x −∇z)Z
−1∗
k (πkβ) + ν(∆x −∆z)Z

−1∗
k (πkβ),

and ∇z denotes the gradient in R2 in the z-coordinates and ∇x denotes the
gradient in the x-coordinates transformed by Zk.

The above problem reduces to a model problem with three possibilities.
We have to consider the equation

(5.11) ∇θ · ∇γ − ν∆γ = H in R2
+,

with three types of boundary relations

(5.12)

(i) ∂γ
∂~n

= 0 on R× {0};
(ii) γ = 0 on R× {0};
(iii) ∂γ

∂~n
= 0 for z1 < 0 and γ = 0 for z1 ≥ 0 on R× {0}.

We are required to obtain the following bound on the solutions to (3.10)

(5.13) ν‖∇2γ‖L2(R2
+) ≤ C‖H‖L2(R2

+).

The first two cases follow from the standard approach. The case (i) used the
method of symmetry to transform the system into the whole space, only.
The case (ii) requires the standard energy estimate. The case (iii) is not
straightforward, because of the structure of the boundary conditions. Here
we have to specify the choice of the point xk. If ∂Γin ∈ int suppπk then we
choose xk as the end of Γin – see (5.4). This choice implies that ∇θ ⊥ ~n at
∂Γin and this form of (5.11) allow us to apply the standard energy method
to get the estimate (5.13). It is enough to test the equation by γz1 , γz2z2 .

Thus the bound used for (5.11) delivered the following estimate for (5.9)

(5.14) ν‖∇2Z−1∗
k (πkβ)‖L2(R2

+) ≤ C
[
‖Z−1∗

k (πkG)‖L2(R2
+)

+‖Z−1∗
k (R1)‖L2(R2

+) + ‖R2‖L2(R2
+)

]
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with (where we use regularity of the boundary, i.e. regularity of maps Zk)

(5.15) ‖R2‖ ≤ C
(
λ‖∇zZ

−1∗
k (πkβ)‖L2(R2

+)

+νλ‖∇2
zZ
−1∗
k (πkβ)‖L2(R2

+) + ν‖∇zZ
−1∗
k (πkβ)‖L2(R2

+)

)
and the constants in (5.14) and (5.15) are independent from ν and λ. Now
we first apply Poincaré’s inequality to the last term in the r.h.s.: this allows
to include it in the second one. And at this point we require to the parameter
λ be so small that two last terms can be put on the l.h.s. of (5.14).

So for k ∈ N we have
(5.16)
ν‖∇2(πkβ)‖L2(Ok) ≤ C(λ‖∇β‖L2(Ok)+‖β‖L2(Ok)+‖πkG‖L2(Ok)+‖R1‖L2(Ok)),

but now C in (5.16) depends on maps Zk, so depends on the regularity of
∂Ω.

Summing up (5.6) and (5.16), noting that

ν2‖∇2β‖2
L2(Ω) ≤ ν2N0

∑
k

‖∇k(πkβ)‖2
L2(Ω).

Since the cover number N0 is independent from the smallness of the localiza-
tion parameter λ, we get (3.11). In particular we can use it in considerations
for the limit λ→ 0.

Theorem 3 has been proved.

Proof of Theorem 4. We present here only main difference between proofs
of Theorems 3 and 4. Since for (4.8) the vector field V ∈ Ca(Ω), only, we
look closer on the estimate of R1 – see (5.4). Pointing out the difference we
have

(5.17) ‖(V̄ − V )πk∇β‖L2(Ok) + ‖(V̄ − V )β∇πk‖L2(Ok)

≤ Cλa‖∇β‖L2(Ok) + Cλa−1‖β‖L2(Ok).

The rest of the estimation is the same since the other assumptions are
identical. This way we prove (4.9) and Theorem 4.
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