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1 Introduction

In this paper, we study the controllability of the fifth order Korteweg-de Vries equation:

ut + αu5x + µuxxx + βuuxxx + δuxuxx + P ′(u)ux = 0, (1)

where α, µ, β and δ are real constants and P is a cubic polynomial:

P (u) = pu+ qu2 + ru3. (2)

This class of equations was introduced by Kichenassamy and Olver [16]. It contains in particular the
Kawahara equation [14] introduced to model magneto-acoustic waves, the various models derived by Olver
[18] for the unidirectional propagation of waves in shallow water when the third order term appearing in
the Korteweg-de Vries equation is small, and many other models. See [16] for a discussion of them.

In this paper, we are interested in studying this equation in a bounded domain. We will both
consider the Cauchy problem with boundary conditions and the boundary controllability problem. Note
that there is an important literature concerning the Cauchy problem in the real line, see for instance
[6, 9, 16, 15, 17, 20] and references therein. But for what concerns the boundary value problem, the
problem was still completely open as far as we know. Note that the initial boundary value problem for the
(third-order) Korteweg-de Vries equation has drained much attention (see in particular [1, 4, 5, 10, 13]).
The controllability problem was also, up to our knowledge, completely open. The equivalent for the
Korteweg-de Vries equation has also known many developments lately [2, 3, 7, 12, 21, 22, 23, 24, 25].

To be more precise, we will consider in the sequel that α > 0: this is not a restriction since it suffices
to make the change of variable x′ = 1 − x and to invert the role of the left and right boundaries. The
spatial domain will be [0, 1], which is not a restriction either in the present paper, since it will suffice to
rescale in space to obtain a result on an interval of arbitrary length. (Note that this is not necessarily
the case for the Korteweg-de Vries equation with Neumann boundary control, see [21]).

The boundary conditions that we will consider are the following:

u|x=0 = v1, u|x=1 = v2, ux|x=0 = v3, ux|x=1 = v4, uxx|x=0 = v5. (3)

The first and main result of this paper concerns a boundary controllability result for equation (1). To
be more precise, we will control the system from the right endpoint (by using only v2) and v4 while
maintaining v1, v3, v5 to zero), and the type of controllability that we consider is the local controllability
to trajectories. That is to say, we consider T > 0 and a fixed trajectory u of (1), and prove that for any
initial state u0 sufficiently close to u|t=0, there exist controls (v2, v4) which steer the system from u0 to
u|t=T .

The precise result is the following.

Theorem 1. Let T > 0. Let u ∈ L∞(0, T ;W 3,∞(0, 1)) be a trajectory of (1) with boundary conditions
u|x=0 = ux|x=0 = uxx|x=0 = 0. There exists ε > 0 such that for any u0 ∈ L2(0, 1) such that

‖u0 − u(0, ·)‖L2(0,1) ≤ ε, (4)

there exist two controls v2, v4 in L2(0, T ) such that the solution u of (1) with initial condition

u|t=0 = u0, (5)
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and boundary condition (3) with controls (0, v2, 0, v4, 0), belongs to C0([0, T ];L2(0, 1))∩L2(0, T ;H2(0, 1))
and satisfies

u|t=T = u(T, ·). (6)

As we will see, the solution to the controllability problem that we construct is in fact more regular
than C0([0, T ];L2(0, 1)) ∩ L2(0, T ;H2(0, 1)). Indeed, in order to prove Theorem 1, we will first take the
controls (v2, v4) as zero and we will prove, thanks to Theorem 2 below, that the state becomes H2

0 . Then
we will work with more regular solutions (belonging to L2(ε, T ;H4(0, 1)) ∩ C0([ε, T ];H2(0, 1))).

Remark 1. Using the reversible character of this system stated on the whole real line, it is not difficult to
deduce that equation (1) is locally exactly controllable near 0 when using the five controls (for sufficiently
regular states).

The second result of this paper concerns the Cauchy problem, where we can prove that the problem
is well posed locally in time, and regularizes the state of the system.

Theorem 2. Given u0 ∈ L2(0, 1), there exists T > 0 such that the nonlinear problem (1) with ho-
mogenous boundary conditions (3) (v1 = v2 = v3 = v4 = v5 = 0) admits a unique solution u ∈
L2(0, T ;H2(0, 1)) ∩ C0([0, T ];L2(0, 1)) satisfying

‖u‖L2(0,T ;H2(0,1))∩C0([0,T ];L2(0,1)) ≤ C‖u0‖L2(0,1).

Moreover, this solution regularizes in the sense that for any τ ∈ (0, T ], u ∈ C∞([τ, T ]× [0, 1]), with

‖u‖Hk(τ,T ;Hk(0,1)) ≤ C(τ, k)‖u0‖L2(0,1). (7)

We conclude this introduction by a remark concerning the choice of the controls among v1, . . . , v5.
The controllability to the trajectories described in Theorem 1 may not take place if one chooses another
set of controls, for instance when acting through v5 only and keeping v1 = v2 = v3 = v4 = 0. This is
given in the next example.

Proposition 1. Let L > 0 be a solution of tan(L) = L. The system −ϕt − ϕ5x − ϕxxx = 0 in (0, T )× (−L,L),
ϕ|x=−L = ϕ|x=L = ϕx|x=−L = ϕx|x=L = ϕxx|x=L = 0 in (0, T ),
ϕ|t=T = ϕT on (−L,L),

(8)

has solutions satisfying
ϕ(0, ·) 6≡ 0 and ϕxx(t,−L) = 0 in (0, T ), (9)

for all T > 0. As a consequence the system ut + u5x + uxxx = 0 in (0, T )× (−L,L),
u|x=−L = u|x=L = ux|x=−L = ux|x=L = 0 in (0, T ),
uxx|x=−L = v5(t) in (0, T ),

(10)

is not null approximately controllable by the control v5.

Proof of Proposition 1. We introduce the following (time-independent) function

g(x) = cos(x) + µx2 − (cos(L) + µL2),

where

µ :=
sin(L)

2L
=

cos(L)
2

.

It is elementary to check that{
g5x + gxxx = 0 in (0, T )× (−L,L),
g|x=−L = g|x=L = gx|x=−L = gx|x=L = gxx|x=−L = gxx|x=L = 0 in (0, T ),
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hence g satisfies (8) and (9). Now the equivalence between the unique continuation of (8) and the
approximate controllability of (10) is an application of the standard duality in PDE control theory, see
for instance [8].

Let us note that this phenomenon of critical values of the length of the domain was raised by Rosier
[21] for the linearized KdV equation (see [2, 3, 7] for further developments on this subject). Hence,
according to the values of the length of the domain and of the coefficients, a similar behaviour can take
place here. We believe that this leads to many open and challenging problems.

The structure of the paper is the following. In Section 2, we study the initial boundary value problem
for a linearized equation. This requires proving a regularizing effect on the equation ζt + ζ5x = g. In
Section 3, we study the controllability of a linearized equation. In Section 4, we use a fixed point argument
to establish Theorem 2 and an inverse mapping theorem to establish Theorem 1. Finally Sections 5 and
6 are devoted to the most technical parts of the paper, namely, the proof of a Carleman estimate and a
proof of the regularizing effect to the left.

2 Cauchy problem for the linearized equation

In this section, we study the well posedness of the following linearized equation:

yt + αy5x =
3∑
k=0

ak(t, x)∂kxy + h. (11)

Recall that we consider α > 0. We will state the corresponding result in Paragraph 2.3.
For this, we will first study the adjoint system of (11):

ψt + αψ5x =
∑3
k=0(−1)k+1∂kx(ak(t, x)ψ) + f, in (0, T )× (0, 1),

ψ|x=0 = ψx|x=0 = 0 in (0, T ),
ψ|x=1 = ψx|x=1 = ψxx|x=1 = 0 in (0, T ),
ψ|t=T = 0 in (0, 1).

(12)

2.1 The equation ζt + αζ5x = g

We begin with the following proposition.

Proposition 2. Consider α > 0. Given ζT ∈ (H5 ∩ H2
0 )(0, 1) satisfying ζT,xx(1) = 0 and g ∈

C1([0, T ];L2(0, 1)) there exists a unique solution ζ ∈ C0([0, T ];H5(0, 1)) ∩ C1([0, T ];L2(0, 1)) of
ζt + αζ5x = g in (0, T )× (0, 1),
ζ|x=0 = ζx|x=0 = 0 in (0, T ),
ζ|x=1 = ζx|x=1 = ζxx|x=1 = 0 in (0, T ),
ζ|t=T = ζT in (0, 1).

(13)

Proof of Proposition 2.

This follows from the standard Lumer-Phillips theory. We can introduce the operator A : D(A) →
L2(0, 1):

D(A) = {ϑ ∈ (H5 ∩H2
0 )(0, 1)/ϑxx(1) = 0} and Aϑ = αϑ5x.

Then one can see that its adjoint is defined via

D(A∗) = {h ∈ (H5 ∩H2
0 )(0, 1)/hxx(0) = 0} and A∗h = −αh5x.

Then it is elementary to check that 〈Aϑ, ϑ〉L2 ≤ 0 and 〈A∗h, h〉L2 ≤ 0 so that Proposition 2 follows from
standard operator theory [19].
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Now we prove some estimates for the solutions of (13). We define the spaces, for k ∈ N,

Xk := {y ∈ L2(0, T ;Hk+2(0, 1)) ∩ C0([0, T ];Hk(0, 1)), yxx|x=0 ∈ Hk/5(0, T )},

endowed with their natural norm.

Proposition 3. One has the following estimates on the solutions of (13):

‖ζ‖Xs ≤ C‖g‖L2(0,T ;Hs−2
0 (0,1)), for s ∈ [0, 10], (14)

‖ζ‖Xs ≤ C‖g‖L1(0,T ;Hs0 (0,1)), for s ∈ [0, 10], (15)

‖ζxxx|x=0‖H1/5(0,T ) + ‖ζxxx|x=1‖H1/5(0,T ) ≤ C‖g‖L2((0,T )×(0,1)), (16)

and
‖ζ4x|x=0‖L2(0,T ) + ‖ζ4x|x=1‖L2(0,T ) ≤ C‖g‖L2((0,T )×(0,1)). (17)

Remark 2. If we interpolate (14) and (15), we also deduce

‖ζ‖Xs ≤ C‖g‖L4/3(0,T ;H̃s−1(0,1)), for s ∈ [0, 10]. (18)

Proof of Proposition 3.

We consider a smooth solution of (13) and establish several estimates on it.

1. Proof of (14)-(15).

• Estimate in X0. We multiply (13) by (1 + x)ζ:

−1
2
d

dt

∫ 1

0

(1 + x)ζ2 dx+ αζ2
xx|x=0 +

5
2
α

∫ 1

0

ζ2
xx dx = −

∫ 1

0

(1 + x)gζ dx. (19)

It follows that
‖ζ‖X0 ≤ C‖g‖L2(0,T ;H−2

0 (0,1)). (20)

It is also clear that from (19) it follows

‖ζ‖X0 ≤ C‖g‖L1(0,T ;L2(0,1)). (21)

• Estimate in X5. Now we consider g ∈ L2(0, T ;H3
0 (0, 1)). Observe that due to (13), for such a g, the

traces of ζ5x and ζ6x on both sides, and the trace of ζ7x on the right, vanish.
We apply the operator ∂5x to the equation and we apply (20):

‖ζ5x‖X0 ≤ C‖g5x‖L2(0,T ;H−2
0 (0,1)).

Using the equation, this gives

‖ζxx|x=0‖H1(0,T ) ≤ C‖g‖L2(0,T ;H3
0 (0,1)).

This yields also
‖ζ‖X5 ≤ C‖g‖L2(0,T ;H3

0 (0,1)). (22)

In the same way, we have
‖ζ‖X5 ≤ C‖g‖L1(0,T ;H5

0 (0,1)). (23)

• Estimate in X10. Here we consider g ∈ L2(0, T ;H8
0 (0, 1)). We apply the operator ∂5x to the equation

and we apply (22) (since g5x ∈ L2(0, T ;H3
0 (0, 1))):

‖ζ5x‖X5 ≤ C‖g5x‖L2(0,T ;H3
0 (0,1)).
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This yields as previously
‖ζ‖X10 ≤ C‖g‖L2(0,T ;H8

0 (0,1)). (24)

Also we have
‖ζ‖X10 ≤ C‖g‖L1(0,T ;H10

0 (0,1)). (25)

• Interpolation argument. By an interpolation argument, we deduce (14) and (15) for every s ∈ [0, 10].

2. Proof of (16).

Let ρ ∈ C4([0, 1]; R) satisfying ρ(x) = 0 for x ∈ [0, 1/2] and ρ(x) = 1 for x ∈ [3/4, 1].

• We use estimate (14) for s = 1:

‖ζ‖X1 ≤ C‖g‖L2(0,T ;H−1
0 (0,1)). (26)

Multiplying (13) with ρζxx, integrating in space and integrating by parts, we get, for almost any t ∈ [0, T ],

α

2
|ζxxx|x=1|2 =

3α
2

∫ 1

0

ρx|ζxxx|2dx−
α

2

∫ 1

0

ρxxx|ζxx|2dx−
1
2
d

dt

∫ 1

0

ρ|ζx|2dx

− 〈ρxζx, ζt〉H2
0 (0,1)×H−2(0,1) − 〈g, ρζxx〉H−1(0,1)×H1

0 (0,1). (27)

Integrating in time and thanks to (13)-(26), we get

‖ζ‖X1 + ‖ζxxx|x=1‖L2(0,T ) + ‖ζxxx|x=0‖L2(0,T ) ≤ C‖g‖L2(0,T ;H−1
0 (0,1)). (28)

An estimate for ζxxx|x=0 can be done in the same way, by employing the weight 1− ρ.

• Now, we use estimate (14) for s = 6:

‖ζ‖X6 ≤ C‖g‖L2(0,T ;H4
0 (0,1)). (29)

In order to prove that ζtxxx|x=1 ∈ L2(0, T ), we multiply (13) by ρ∂t∂
7
xζ, we integrate in space and we

integrate by parts (using again what we know on the traces of ζ5x, ζ6x and ζ7x):

1
2
|ζtxxx|x=1|2 =

7
2

∫ 1

0

ρx|ζtxxx|2 dx+
∫ 1

0

ζtxxx(6ρxxζtxx + 4ρxxxζtx + ρ4xζt) dx

− α

2
d

dt

∫ 1

0

(ρ|ζ6x|2 − ρxx|ζ5x|2) dx+ α〈ρxζ6x, ζt5x〉H2
0×H−2 + ζtxxx|x=1gxxx|x=1

−
∫ 1

0

ζtxxx

4∑
j=0

((4
j

)
∂jxg ∂

4−j
x ρ

)
dx. (30)

As previously, the same can be done for ζtxxx|x=0.
Integrating in time, using Cauchy-Schwarz inequality to estimate the last term in the second line and

using (13)-(29), we get

‖ζ‖X6 + ‖ζtxxx|x=1‖L2(0,T ) + ‖ζtxxx|x=0‖L2(0,T ) ≤ C‖g‖L2(0,T ;H4
0 (0,1)). (31)

• An interpolation argument applied to (28) and (31) provides (16).

3. Proof of inequality (17).

We multiply the equation of ζ by ρζ4x and we integrate in space. After some integration by parts, we
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obtain:

α

2
|ζ4x|x=1|2 =

α

2

∫ 1

0

ρx|ζ4x|2 dx−
1
2
d

dt

∫ 1

0

ρ|ζxx|2 dx− 〈ρxxζxx, ζt〉H1
0×H−1

− 2〈ρxζxx, ζtx〉H2
0×H−2 +

∫ 1

0

ρζ4xg dx. (32)

Integrating in time this identity, we have

‖ζ4x|x=1‖L2(0,T ) ≤ C(‖ζ‖L∞(0,T ;H2(0,1)) + ‖ζt‖L2(0,T ;H−1(0,1)) + ‖ζ‖L2(0,T ;H4(0,1)) + ‖g‖L2((0,T )×(0,1))).

Using (14), we have estimated ζ4x|x=1 as in (17). The estimate ζ4x|x=0 is similar by multiplying by
(1− ρ)ζ4x.

2.2 Well posedness for the adjoint equation

Now we can state the following existence and regularity result for (12).

Proposition 4. Given ak ∈ L∞(0, T ;W k,∞(0, 1)) (for k = 0 . . . 3), f ∈ L2(0, T ;L2(0, 1)), there exists a
unique solution ψ ∈ L2(0, T ;H4(0, 1)) ∩ C0([0, T ];H2(0, 1)) of (12).

Proof of Proposition 4.
We use a fixed point scheme. Given ψ̂ ∈ L2(0, T ;H4(0, 1))∩C0([0, T ];H2(0, 1)), we consider the solution
ψ := T ψ̂ of 

ψt + αψ5x =
∑3
k=0(−1)k+1∂kx(ak(t, x)ψ̂) + f in (T̂ , T )× (0, 1),

ψ|x=0 = ψx|x=0 = 0 in (T̂ , T ),
ψ|x=1 = ψx|x=1 = ψxx|x=1 = 0 in (T̂ , T ),
ψ|t=T = 0 in (0, 1),

(33)

where T̂ ∈ (0, T ) is to be fixed later.
Using Proposition 3 (precisely (14) for s = 2), we infer that

‖T ψ̂1 − T ψ̂2‖X2 ≤ C(‖ak‖L∞(0,T ;Wk,∞))‖ψ̂1 − ψ̂2‖L2(0,T ;H3)

≤ C(‖ak‖L∞(0,T ;Wk,∞))T̂
1/4‖ψ̂1 − ψ̂2‖L4(0,T ;H3). (34)

Note that the constant in (14) is independent of T̂ ∈ (0, T ).
Then by interpolation we deduce that

‖T ψ̂1 − T ψ̂2‖X2 ≤ C(‖ak‖L∞(0,T ;Wk,∞))T̂
1/4‖ψ̂1 − ψ̂2‖1/2L∞(0,T ;H2)‖ψ̂1 − ψ̂2‖1/2L2(0,T ;H4)

≤ C(‖ak‖L∞(0,T ;Wk,∞))T̂
1/4‖ψ̂1 − ψ̂2‖X2 . (35)

It follows that T is contracting for sufficiently small time T̂ . Then extending the solution obtained in
(T̂ , T ) to a solution in (0, T ) is standard using the linear character of the equation.

Furthermore, the solutions described in Proposition 4 possess the following regularity property.

Proposition 5. Under the assumptions of Proposition 4, the solution ψ has the following hidden regu-
larity:

‖ψ‖X2 + ‖ψxx|x=0,1‖H2/5(0,T ) + ‖ψxxx|x=0,1‖H1/5(0,T ) + ‖ψ4x|x=0,1‖L2(0,T ) ≤ C‖f‖L2((0,T )×(0,1)). (36)

Proof of Proposition 5.
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This is a consequence of Propositions 3 and 4. Note that due to the contracting character of T and
using Proposition 3, we have

‖ψ‖X2 . ‖T (0)‖X2 . ‖f‖L2((0,T )×(0,1)).

Now we can use

g :=
3∑
k=0

(−1)k+1∂kx(ak(t, x)ψ) + f,

as a right hand side in (13) to deduce (36) from Proposition 3.

2.3 Well posedness for the initial boundary value problem

In this paragraph we give the notion of solution of

yt + αy5x =
∑3
k=0 ak(t, x)∂kxy + h in (0, T )× (0, 1),

y|x=0 = v1, y|x=1 = v2, yx|x=0 = v3 in (0, T ),

yx|x=1 = v4, yxx|x=0 = v5 in (0, T ),

y|t=0 = y0 in (0, 1),

(37)

where y0 , h, v1, . . . , v5 are given function. The solution of (37) for homogeneous boundary conditions
and h ∈ L2(0, T ;L2(0, 1)) is granted by Proposition 4 (replace t by T − t and x by 1− x). Hence we can
suppose without loss of generality that h = 0.

Definition 1. Let y0 ∈ H−2(0, 1), v1, v2 ∈ L2(0, T ), v3, v4 ∈ H−1/5(0, T ) and v5 ∈ H−2/5(0, T ). We
call y a solution by transposition of (37) with h = 0, a function y ∈ L2((0, T )× (0, 1)) such that∫ T

0

∫ 1

0

y f dx dt = 〈u0, ψ|t=0〉H−2(0,1)×H2
0 (0,1) + α

∫ T

0

v1 ψ4x|x=0 dt− α
∫ T

0

v2 ψ4x|x=1 dt

−α〈v3, ψxxx|x=0〉H−1/5(0,T )×H1/5(0,T ) + α〈v4, ψxxx|x=1〉H−1/5(0,T )×H1/5(0,T )

+α〈v5, ψxx|x=0〉H−2/5(0,T )×H2/5(0,T ) +
∫ T

0

a3|x=0 v1 ψxx|x=0 dt, ∀f ∈ L2((0, T )× (0, 1)),

(38)

where ψ is the solution of (12) associated to f .

Proposition 6. There exists a unique solution by transposition of system (37) with h = 0. Moreover,
there exists C > 0 such that

‖y‖L2((0,T )×(0,1)) ≤ C(‖y0‖H−2(Ω)+‖v1‖L2(0,T )+‖v2‖L2(0,T )+‖v3‖H−1/5(0,T )+‖v4‖H−1/5(0,T )+‖v5‖H−2/5(0,T )).

Proof: All comes to prove

ψ ∈ C0([0, T ];H2
0 (0, 1)), ψ4x|x=0,1 ∈ L2(0, T ), ψxxx|x=0,1 ∈ H1/5(0, T ), ψxx|x=0 ∈ H2/5(0, T )

and the following inequality:

‖ψ‖L∞(0,T ;H2(0,1)) + ‖ψ4x|x=0,1‖L2(0,T ) + ‖ψxxx|x=0,1‖H1/5(0,T )

+ ‖ψxx|x=0‖H2/5(0,T ) ≤ C‖h‖L2((0,T )×(0,T )). (39)

This was established in Proposition (5).
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3 Controllability of the linearized equation

3.1 Carleman estimate

We consider the following dual system ϕt + αϕ5x =
∑3
k=0(−1)k+1∂kx(ak(t, x)ϕ) + f in (0, T )× (0, 1),

ϕ|x=0 = ϕ|x=1 = ϕx|x=0 = ϕx|x=1 = ϕxx|x=1 = 0 in (0, T ),
ϕ|t=T = ϕT on (0, 1),

(40)

where
ak ∈ L∞(0, T ;W k,∞(0, 1)) for k = 0 . . . 3. (41)

A central argument in this paper consists in establishing a Carleman inequality for (40). For this let us
set

α(t, x) =
β(x)

t1/4(T − t)1/4
, (42)

for (t, x) ∈ Q. Weight functions of this kind were first introduced by A. V. Fursikov and O. Yu. Imanuvilov;
see [11]. In the above equation β is a positive, strictly decreasing and concave polynomial of degree 2 in
[0, 1]. Observe that the function α satisfies

C ≤ T 1/2α, C0α ≤ −αx ≤ C1α, C0α ≤ −αxx ≤ C1α in (0, T )× [0, 1], (43)

|αt|+ |αxt|+ |αxxt| ≤ CTα5, |αtt| ≤ C(T 2α9 + α5) ≤ CT 2α9 in (0, T )× [0, 1], (44)

where C, C0 and C1 are positive constants independent of T .
We have:

Proposition 7. Suppose that (41) applies. There exists a positive constant C independent of T such
that, for any ϕT ∈ L2(0, 1) and f ∈ L2(0, T ;L2(0, 1)), we have∫∫

Q

e−2sαα(|ϕ4x|2 + s2α2|ϕxxx|2 + s4α4|ϕxx|2 + s6α6|ϕx|2 + s8α8|ϕ|2) dt dx

≤ C
(∫ T

0

α|x=1e
−2sα|x=1(|ϕ4x|x=1|2 + s2α2

|x=1|ϕxxx|x=1|2) dt+ s−1

∫∫
Q

e−2sα|f |2dt dx
)
, (45)

for any s ≥ C(T 1/4 + T 1/2), where ϕ is the solution of (40).

The proof of this inequality is postponed to Section 5.

Remark 3. We will also require β to satisfy

max
x∈[0,1]

β(x) <
√

2 min
x∈[0,1]

β(x). (46)

This is not needed for Proposition 7 (nor to Proposition 8 below), but will be useful later.

3.2 Weighted observability estimate

Now let us deduce from Proposition 7 a slightly modified inequality, with a weight function not vanishing
at t = 0.

We begin by introducing a new weight. Set ` on [0, T ] by

`(t) :=


T 2

4
if t ≤ T

2
,

t(T − t) otherwise.
(47)

Now introduce

γ(t, x) =
β(x)
`(t)1/4

. (48)
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Proposition 8. Suppose that (41) applies. There exist two positive constants s0 and C > 0 depending
on T such that, for any ϕT ∈ L2(0, 1) and any f ∈ L2(0, T ;L2(0, 1)), we have∫∫

Q

e−2s0γγ9|ϕ|2 dx dt+
∫ 1

0

|ϕ(0, x)|2 dx ≤ C
(∫∫

Q

e−2s0γ |f |2dt dx

+
∫ T

0

γ|x=1e
−2s0γ|x=1(|ϕ4x|x=1|2 + γ2

|x=1|ϕxxx|x=1|2) dt
)
, (49)

where ϕ is the solution of (40).

Proof of Proposition 8.
We use the following energy estimate:

‖ϕ‖L∞(0,T/2;L2(0,1)) ≤ C exp{C‖ak‖L∞(0,T ;Wk,∞(0,1))}(‖f‖L2(0,3T/4;L2(0,1)) + ‖ϕ‖L2(T/2,3T/4;L2(0,1))).
(50)

To get (50), introduce η ∈ C∞([0, T ]; R) such that η = 1 in [0, T/2] and η = 0 in [3T/4, T ], multiply
equation (40) by η(t)(1 + x)ϕ, and perform several integration by parts as in (20).

Let us notice that the weight functions γ and e−2sγ are positive for t ∈ [0, T/2]. Hence there is a
constant C such that

‖e−sγγ9/2ϕ‖L∞(0,T/2;L2(0,1)) ≤ C exp{C‖ak‖L∞(0,T ;Wk,∞(0,1))}

× (‖e−sγf‖L2(0,3T/4;L2(0,1)) + ‖e−sγγ9/2ϕ‖L2(T/2,3T/4;L2(0,1))). (51)

Next, we use (45) and the choice of γ to deduce

∫ T

T
2

∫
(0,1)

e−2sγγ9|ϕ|2 dx dt ≤ C
(∫∫

Q

e−2sγ |f |2dt dx

+
∫ T

0

γ|x=1e
−2sγ|x=1(|ϕ4x|x=1|2 + γ2

|x=1|ϕxxx|x=1|2) dt
)
, (52)

for s large enough. Combining (51) and (52) we obtain (49).

Let us consider s0 as in Proposition 8. We introduce

κ0 :=
s0

√
2

T 1/4
max
x∈[0,1]

β(x) and κ1 :=
s0

T 1/4
min
x∈[0,1]

β(x). (53)

Corollary 1. Under the assumptions of Proposition 8, one has∫∫
Q

e
− 2κ0

(T−t)1/4 (T − t)−9/4|ϕ|2 dx dt+
∫ 1

0

|ϕ(0, x)|2 dx ≤ C
(∫∫

Q

e
− 2κ1

(T−t)1/4 |f |2dt dx

+
∫ T

0

(T − t)−1/4e
− 2κ1

(T−t)1/4 (|ϕ4x|x=1|2 + (T − t)−1/2|ϕxxx|x=1|2) dt
)
. (54)

3.3 Controllability

We introduce the following space:

E0 = {y ∈ L2(0, T ;L2(0, 1)) / e
κ1

(T−t)1/4 y ∈ L2(0, T ;L2(0, 1))}. (55)

We have the following controllability result.
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Proposition 9. Given h such that (T − t)9/8e
κ0

(T−t)1/4 h ∈ L2((0, T ) × (0, 1)) and y0 ∈ L2(0, 1), there
exist controls v2, v4 ∈ L2(0, T ) satisfying

(T − t)1/8e
κ1

(T−t)1/4 v2 ∈ L2(0, T ) and (T − t)3/8e
κ1

(T−t)1/4 v4 ∈ L2(0, T ), (56)

such that if we call y the solution of (37) starting from y0 with v1 = v3 = v5 = 0, then y belongs to E0.
In particular y, which belongs to C0([0, T ];H−5(0, 1)), satisfies

y|t=T = 0 on (0, 1). (57)

Besides, there exists a constant C > 0 such that

‖e
κ1

(T−t)1/4 y‖L2(0,T ;L2(0,1)) + ‖(T − t)1/8e
κ1

(T−t)1/4 (v2, (T − t)1/4v4)‖L2(0,T )

≤ C
(
‖y0‖L2(0,1) + ‖(T − t)9/8e

κ0
(T−t)1/4 h‖L2((0,T )×(0,1))

)
. (58)

Proof of Proposition 9.
The proof is inspired by Fursikov and Imanuvilov’s approach [11]. Define L

Ly := yt + αy5x −
3∑
k=0

ak(t, x)∂kxy, (59)

and L∗ its dual operator:

L∗φ := −φt − αφ5x −
3∑
k=0

(−1)k∂kx(ak(t, x)φ). (60)

Let us set

F0 = {φ ∈ C∞([0, T ]× [0, 1]; R) / φ|x=0 = φ|x=1 = φx|x=0 = φx|x=1 = φxx|x=1 = 0}.

Consider the bilinear form

a(φ̂, φ) =
∫∫

Q

e
− 2κ1

(T−t)1/4 L∗φ̂ L∗φdx dt

+
∫ T

0

e
− 2κ1

(T−t)1/4 (T − t)−1/4
[
φ̂4x|x=1φ4x|x=1 + (T − t)−1/2φ̂xxx|x=1φxxx|x=1

]
dt ∀φ̂, φ ∈ F0.

We also introduce the linear form

〈`, φ〉 =
∫∫
Q

hφ dt dx+
∫ 1

0

u0 φ|t=0 dx. (61)

Introduce F 0 the completion of F0 for the norm φ 7→ a(φ, φ)1/2 (it is a norm from Corollary 1).
The next step in this proof is to demonstrate that there exists exactly one φ̂ in the class F 0 satisfying

a(φ̂, φ) = l(φ), ∀φ ∈ F 0. (62)

Now F 0 is a Hilbert space for the scalar product a(· , ·), hence in order to get (62) it is sufficient to prove
that ` is a continuous linear form on F 0. From Cauchy-Schwarz inequality, we see that∣∣∣ ∫∫

Q

hφ dt dx
∣∣∣ ≤ ‖(T − t)9/8e

κ0
(T−t)1/4 h‖L2(0,T ;L2(0,1))‖(T − t)−9/8e

− κ0
(T−t)1/4 φ‖L2(0,T ;L2(0,1)). (63)

Using the assumption on h and Corollary 1, one sees that ` is indeed a continuous linear form on F 0.
Hence there exists a unique φ̂ ∈ F 0 satisfying (62).
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Let us set

y = e
− 2κ1

(T−t)1/4 L∗φ̂ v2 = (T − t)−1/4e
− 2κ1

(T−t)1/4 φ̂4x|x=1 and v4 = (T − t)−3/4e
− 2κ1

(T−t)1/4 φ̂xxx|x=1. (64)

Finally it is not difficult to see that y ∈ E0, that (v2, v4) satisfies (56) and that y is a solution of (37)
with v1 = v3 = v5 = 0. This concludes the proof of Proposition 9.

Now we define the space

E1 = {y ∈ E0 / (T − t)5/4e
κ1

(T−t)1/4 y ∈ L2(0, T ;H4(0, 1)) ∩ C0([0, T ];H2
0 (0, 1)),

y|x=0 = yx|x=0 = yxx|x=0 = 0, (T − t)9/8e
κ0

(T−t)1/4 Ly ∈ L2(0, T ;L2(0, 1))}. (65)

Proposition 10. Given h such that (T − t)9/8e
κ0

(T−t)1/4 h ∈ L2((0, T ) × (0, 1)) and y0 ∈ H2
0 (0, 1), there

exist controls (v2, v4) ∈ L2(0, T )2 such that the associated solution y of (37) with v1 = v3 = v5 = 0
belongs to E1 and moreover satisfies

‖(T−t)5/4e
κ1

(T−t)1/4 y‖L2(0,T ;H4(0,1))∩C0([0,T ];H2(0,1)) ≤ C
(
‖y0‖H2

0 (0,1)+‖(T−t)9/8e
κ0

(T−t)1/4 h‖L2((0,T )×(0,1))

)
,

(66)
for some C > 0.

Proof of Proposition 10.
We extend the problem to the interval [0, 2]. We extend y0 (resp. h) by 0 in [1, 2] (resp. [0, T ]× [1, 2]),

we call ỹ0 (resp. h̃) the resulting function. We also extend ak in [0, T ] × [1, 2] in a way that keeps the
L∞(0, T ;W k,∞) regularity (in a continuous way), and in such a way that

ak(t, x) = 0 in [0, T ]× [
3
2
, 2].

We now consider the following control problem

ỹt + αỹ5x =
∑3
k=0 ãk(t, x)∂kx ỹ + h̃ in (0, T )× (0, 2),

ỹ|x=0 = ỹx|x=0 = ỹxx|x=0 = 0 in (0, T ),

ỹ|x=2 = ṽ2, ỹx|x=2 = ṽ4, in (0, T ),

ỹ|t=0 = ỹ0 in (0, 2).

(67)

According to Proposition 9, there exist ṽ2, ṽ4 fulfilling (56) such that the corresponding solution ỹ belongs
to E0 (adapted to the interval [0, 2] of course). Now we claim that the restriction of ỹ to [0, T ] × [0, 1]
satisfies the required properties. We have to establish that

(T − t)5/4e
κ1

(T−t)1/4 y ∈ L2(0, T ;H4(0, 1)) ∩ C0([0, T ];H2(0, 1)).

For that, we introduce

y∗(t, x) := (T − t)5/4e
κ1

(T−t)1/4 ỹ(t, x). (68)

This function satisfies

y∗t + αy∗5x =
∑3
k=0 ãk(t, x)∂kxy

∗ + h∗ in (0, T )× (0, 2),

y∗|x=0 = y∗x|x=0 = y∗xx|x=0 = 0 in (0, T ),

y∗|x=2 = v∗2 , y
∗
x|x=2 = v∗4 in (0, T ),

y∗|t=0 = y∗0 in (0, 2),

(69)
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where

y∗0 = T 5/4e
κ1
T1/4 ỹ0, (v∗2 , v

∗
4) = (T − t)5/4e

κ1
(T−t)1/4 (ṽ2, ṽ4)

and h∗ = (T − t)5/4e
κ1

(T−t)1/4 h̃+
d

dt
[(T − t)5/4e

κ1
(T−t)1/4 ]ỹ.

These data are in H2
0 (0, 2), in L2(0, T )2 and in L2(0, T ;L2(0, 2)) respectively, thanks to Proposition 9.

We will use the following lemma, whose proof is postponed to the Appendix.

Lemma 1. For k large enough, one has (2 − x)ky∗ ∈ L2(0, T ;H4(0, 2)) ∩ C0([0, T ];H2(0, 2)) with the
estimate

‖(2− x)k+ 1
2 y∗‖L∞(0,T ;H2(0,2)) +

4∑
j=0

‖(2− x)k+j−4∂jxy
∗‖L2(0,T ;L2(0,2))

≤ C
(
‖h∗‖L2(0,T ;L2(0,2)) + ‖y∗0‖H2(0,2) + ‖v∗2‖L2(0,T ) + ‖v∗4‖L2(0,T )

)
, (70)

for some positive constant C.

Now we use (70) and the continuity of the previous extensions from (0, 1) to (0, 2) to deduce

‖(T − t)5/4e
κ1

(T−t)1/4 y‖L2(0,T ;H4(0,1))∩C0([0,T ];H2(0,1))

≤ C
(
‖y0‖H2

0 (0,1) + ‖(T − t)5/4e
κ1

(T−t)1/4 h‖L2((0,T )×(0,1)) + ‖ d
dt

[(T − t)5/4e
κ1

(T−t)1/4 ]y‖L2((0,T )×(0,1))

+ ‖(T − t)1/8e
κ1

(T−t)1/4 (v2, (T − t)1/4v4)‖L2(0,T )

)
,

for some C > 0. Finally, we use κ1 < κ0 to estimate the second term in the right hand side, and (58) to
estimate the last two terms. We deduce (66).

4 Nonlinear problem

4.1 Proof of Theorem 2

We use a fixed point scheme to prove local existence and uniqueness in X := L2(0, T ;H2
0 (0, 1)) ∩

C0([0, T ];L2(0, 1)). Given z ∈ X, we introduce the solution of
ut + αu5x + µuxxx + βzuxxx + δzxuxx + P ′(z)ux = 0 in (0, T )× (0, 1),

u|x=0 = u|x=1 = ux|x=0 = ux|x=1 = uxx|x=0 = 0 in (0, T ),

u|t=0 = u0 in (0, 1).
(71)

Call T the corresponding operator. The existence and uniqueness of u is obtained as in Proposition 4:
one associates to ψ̂ ∈ X the solution of

ut + αu5x = −µψ̂xxx − βzψ̂xxx − δzxψ̂xx − P ′(z)ψ̂x in (0, T )× (0, 1),

u|x=0 = u|x=1 = ux|x=0 = ux|x=1 = uxx|x=0 = 0 in (0, T ),

u|t=0 = u0 in (0, 1).

(72)

Let us notice that ψ̂xxx ∈ L2(0, T ;H−1(0, 1)) while (by interpolation) z ∈ L4(0, T ;H1(0, 1)), and hence
zψ̂xxx ∈ L4/3(0, T ;H−1(0, 1)); on the other hand, one also sees that zxψ̂xx ∈ L4/3(0, T ;H−1(0, 1)). It
follows then from Remark (2) that (72) defines a solution in L2(0, T ;H2(0, 1)) ∩ C0([0, T ];L2(0, 1)).

Now consider ψ̂1 and ψ̂2 in X, and their images u1 and u2 by the above mapping. Making the
difference of the two equations, multiplying by (2− x)(u1 − u2) and performing the same operations as
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in Proposition 3, we infer

‖u1 − u2‖2X ≤ C
[ ∫∫

Q

∣∣∣(u1 − u2)x(ψ̂1 − ψ̂2)xx
∣∣∣ dt dx+

∫∫
Q

∣∣∣(u1 − u2)zx(ψ̂1 − ψ̂2)xx
∣∣∣ dt dx

+
∫∫
Q

∣∣∣z(u1 − u2)x(ψ̂1 − ψ̂2)xx
∣∣∣ dt dx+

∫∫
Q

∣∣∣(u1 − u2)(1 + z2)(ψ̂1 − ψ̂2)x
∣∣∣ dt dx]. (73)

We deduce

‖u1 − u2‖2X ≤ C‖ψ̂1 − ψ̂2‖L2(0,T ;H2(0,1))

[
‖u1 − u2‖L2(0,T ;H1(0,1))

+ ‖zx‖L8/3(0,T ;L∞(0,1))‖u1 − u2‖L8(0,T ;L2(0,1)) + ‖z‖L8(0,T ;L2(0,1))‖u1 − u2‖L8/3(0,T ;W 1,∞(0,1))

]
+ C‖ψ̂1 − ψ̂2‖L4(0,T ;H1(0,1))

[
‖u1 − u2‖L4/3(0,T ;L2(0,1)) + ‖u1 − u2‖L4(0,T ;L6(0,1))‖z‖2L4(0,T ;L6(0,1))

]
. (74)

Note that by interpolation and Sobolev imbedding we have

L2(0, T ;H2
0 (0, 1)) ∩ L∞(0, T ;L2(0, 1)) ↪→ L12(0, T ;L6(0, 1)) ∩ L8/3(0, T ;W 1,∞(0, 1)).

We infer that (at least if T ≤ 1)

‖u1 − u2‖2X ≤ CT 1/8(1 + ‖z‖2X)‖ψ̂1 − ψ̂2‖X‖u1 − u2‖X .

Hence the operator is contractive for sufficiently small time T , which proves the local well posedness of
(71).

Now let us prove that T has a fixed point. First, let us prove that for some constant C > 0, the
solution u of (71) satisfies

‖u‖X ≤ exp(CT 1/8(1 + ‖z‖2X))‖u0‖L2(0,1). (75)

For that, we multiply again (71) by (2− x)u; after some integration by parts, we can deduce

d

dt
‖u‖2L2(0,1) +

5α
2

∫ 1

0

|uxx|2 dx ≤ C(1 + ‖zx(t, ·)‖2∞ + ‖z(t, ·)‖2∞)‖u‖2L2 + ε

∫ 1

0

|uxx|2 dx,

for arbitrarily small ε. Then choosing ε small enough and applying Gronwall’s lemma yields (75).
Now let us show that T is contractive on

B := {u ∈ X / ‖u‖X ≤ 2‖u0‖L2(0,1)},

for sufficiently small T .
From (75), we see that, provided that T is suitably small, B is stable by T . We now consider that

this is the case. Now consider z1, z2 ∈ B and denote u1 := T z1, u2 := T z2, z := z1 − z2, u := u1 − u2.
We have

ut + αu5x + µuxxx + βz1uxxx + βzu2,xxx + δz1,xuxx + δzxu2,xx

+ P ′(z1)ux + [P ′(z1)− P ′(z2)]u2,x = 0 in (0, T )× (0, 1), (76)

We multiply (76) by (2 − x)u, integrate in both time and space and perform the same reasoning as in
(73)-(74). After lengthy but straightforward computations, we deduce (if T ≤ 1)

‖u‖2X ≤ CT 1/8[‖u2‖X‖u‖X‖z‖X + (1 + ‖z1‖2X)‖u‖2X ]. (77)

Using that both u2 and z1 belong to B, this establishes that T is contractive on B for sufficiently small
time T .

Now that we have shown the existence of the solution of the nonlinear equation, we can prove its
regularizing effect through a bootstrap argument.
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First, since u is in L2(0, T ;H2(0, 1)) and using (75), one can find T ′ ∈ (T/4, T/2) such that u(T ′, ·) ∈
H2(0, 1) with

‖u(T ′, ·)‖H2(0,1) ≤
C

T 1/2
‖u0‖L2 . (78)

From now on, we consider T ′ as the initial time and look at the Cauchy problem starting from time T ′.
We introduce X̃ := L2(T ′, T ;H3(0, 1)) ∩ C0([T ′, T ];H1(0, 1)) ∩H1(T ′, T ;H−2(0, 1)) and

B̃ := {u ∈ X̃ / ‖u‖X̃ ≤ 2‖u(T ′, ·)‖H1(0,1)}.

Observe that B̃ is a compact convex subset of XT ′ := L2(T ′, T ;H2
0 (0, 1)) ∩ C0([T ′, T ];L2(0, 1)).

Now we see that X̃ is an invariant space for T : the right hand side µuxxx+βzuxxx+δzxuxx+P ′(z)ux
belongs to L2(0, T ;H−1(0, 1)) when u ∈ X and z ∈ X̃; then the statement follows from Proposition 3.
Moreover, we have

‖u‖X̃ ≤ C
(
‖µuxxx + βzuxxx + δzxuxx + P ′(z)ux‖L2(0,T ;H−1(0,1)) + ‖u(T ′, ·)‖H1(0,1)

)
≤ C

(
(1 + ‖z‖2

X̃
)‖u‖X + ‖u(T ′, ·)‖H1(0,1)

)
. (79)

We use (75) and (78) to finally get

‖u‖X̃ ≤ C(1 + ‖z‖2
X̃

)‖u0‖L2(0,1). (80)

This proves that for small u0, T sends B̃ into itself. Then by Schauder’s fixed point theorem, there
exists a solution of the nonlinear problem in B̃. Due to the uniqueness of the solution constructed by
contraction in XT ′ , this solution coincides with the solution which we constructed in X.

We introduce η ∈ C∞([0, T ]; R) such that η = 0 in [0, T/4] and η = 1 in [T/2, T ]. We consider the
equation satisfied by ηu and use Proposition 3. It is not difficult to see that, since u ∈ X̃, the right hand
side in

(ηu)t + α(ηu)5x = −µηuxxx − βηuuxxx − δηuxuxx − ηP ′(u)ux + η′u in (0, T )× (0, 1),

can be estimated in L2(0, T ;L2(0, 1)). Hence we deduce that ηu ∈ L2(0, T ;H4(0, 1))∩C0([0, T ];H2(0, 1))∩
H1(0, T ;H−1(0, 1)). Then repeating the above steps we can show that the solution u becomes C∞ in
time and space in arbitrary small time.

4.2 Proof of Theorem 1

We consider a trajectory u as indicated in the statement; then u = u + y satisfies (1) if and only if y
satisfies

yt + y5x + µy3x + β((u+ y)y3x + u3xy) + δ((u+ y)xyxx + uxxyx)

+ pyx + 2q((u+ y)yx + uxy) + 3r(y(2u+ y)(u+ y)x + u2yx) = 0. (81)

Conspicuously, the controllability of (1) to the trajectory u is equivalent to the null controllability of
(81).

Now we have the following result for (81).

Proposition 11. Given y0 ∈ L2(0, 1) and u ∈ L∞(0, T ;W 3,∞(0, 1)), there exists T > 0 such that the
nonlinear problem (81) with homogenous boundary conditions (3) (v1 = v2 = v3 = v4 = v5 = 0) admits
a unique solution y ∈ L2(0, T ;H2(0, 1))∩C0([0, T ];L2(0, 1)), which regularizes in the sense that for any
τ ∈ (0, T ], u ∈ L2([τ, T ];H4(0, 1)) ∩ C0([τ, T ];H2(0, 1)), with moreover

‖y‖C0([τ,T ];H2(0,1)) ≤ C(τ, u)‖u0‖L2(0,1). (82)

The proof of Proposition 11 follows the steps of the proof of Theorem 2; all the computations are
justified thanks to u ∈ L∞(0, T ;W 3,∞(0, 1)). We omit the details.
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We now turn to the proof of Theorem 1. The solution of the controllability problem is obtained
in two successive steps. In a first step, we set the controls (v2, v4) to (0, 0). According to Proposition
11, this regularizes the state of the system, so that we may consider that the initial state y0 belongs to
H2

0 (0, 1) and is small (see (82)). From now, we consider that this is the case, and proceed to the proof of
the null-controllability of system (81) with such an initial state, by using the inverse mapping theorem.

We introduce the coefficients ak as follows

a0 = βu3x + 2qux + 6ru ux,
a1 = δuxx + p+ 2qu+ 3ru2,

a2 = δux,

a3 = µ+ βu.

Recall that L is expressed by (59). Define

Y1 := {f ∈ L2(0, T ;L2(0, 1)) / (T − t)9/8e
κ0

(T−t)1/4 f ∈ L2(0, T ;L2(0, 1))}, (83)

equipped with the clear corresponding norm. We consider the following map

Λ :
{
E1 −→ H2

0 (0, 1)× Y1

y 7→ (y(0), Ly + βyyxxx + δyxyxx + (2q + 6ru)yyx + 3ruy2 + 3ry2yx). (84)

Recall that the definition of E1 was given in (65). Note that the mapping Λ is well defined and C1.
Indeed, from y ∈ E1, we find out that

β(T − t)5/2e
2κ1

(T−t)1/4 yyxxx ∈ L2(0, T ;L2(0, 1)).

Then, thanks to (46) and (53), we have that

β(T − t)9/8e
κ0

(T−t)1/4 yyxxx ∈ L2(0, T ;L2(0, 1)).

The same can be done for all the other terms (since they are bilinear or trilinear). Now using Proposition
10, we see that Λ′(0) is a surjective map. Hence there exists a neighborhood of (0, 0) in H2

0 (0, 1)×Y1 on
which Λ is onto. This gives the desired result.

5 Proof of Proposition 7

Let ψ := e−sαϕ, where α is given by (42) and ϕ fulfills system (40). We deduce that

L1ψ + L2ψ = L3ψ,

with
L1ψ = ψt + ψ5x + 10s2α2

xψxxx + 5s4α4
xψx, (85)

L2ψ = 5sαxψ4x + 10s3α3
xψxx + s5α5

xψ + sαtψ + 10sαxxψxxx + 30s3α2
xαxxψx, (86)

and

L3ψ = −e−sα
{[
esα(3sαxxψx + 3s2αxαxxψ)

]
xx

+
[
esα(3sαxxψxx + 6s2αxαxxψx)

]
x

}
−
{
− 6sαxxψxxx + 12s2αxαxxψxx − 15s3α2

xαxxψx + 7s4α3
xαxxψ + 6s3αxα

2
xxψ

}
+e−sα

{
f +

∑3
k=0(−1)k+1∂kx(ak(t, x)esαψ)

}
.

(87)

(We recall that αxxx = 0.) Then, we have

‖L1ψ‖2L2(Q) + ‖L2ψ‖2L2(Q) + 2
∫∫
Q

L1ψ L2ψ dx dt = ‖L3ψ‖2L2(Q). (88)
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The main part of what follows consists in evaluating the double product term. We will denote by
(Liψ)j (1 ≤ i ≤ 4, 1 ≤ j ≤ 6) the j-th term in the expression of Liψ. We recall that α > 0, αx < 0,
αxx < 0 and αxxx = 0. In the sequel we will repeatedly use that ψ|x=0,1 = ψx|x=0,1 = 0.

• First, integrating by parts with respect to x and t, we have

((L1ψ)1, (L2ψ)1)L2(Q) = −5s
∫∫
Q

αxψtxψxxx dt dx− 5s
∫∫
Q

αxxψtψxxx dt dx

=
5
2
s

∫∫
Q

αx(|ψxx|2)t dt dx+ 10s
∫∫
Q

αxxψtxψxx dt dx+ 5s
∫∫
Q

αxxxψtψxx dt dx

≥ −CsT
∫∫
Q

α5|ψxx|2 dt dx+ 10s
∫∫
Q

αxxψtxψxx dt dx.

(89)

For the second term, we get

((L1ψ)1, (L2ψ)2)L2(Q) = = −5s3

∫∫
Q

α3
x(|ψx|2)t dt dx− 30s3

∫∫
Q

α2
xαxxψtψx dt dx

≥ −Cs3T

∫∫
Q

α7|ψx|2 dt dx− 30s3

∫∫
Q

α2
xαxxψtψx dt dx.

(90)

For the third term, we obtain

((L1ψ)1, (L2ψ)3)L2(Q) =
1
2
s5

∫∫
Q

α5
x(ψ2)t dt dx

≥ −Cs5T

∫∫
Q

α9ψ2 dt dx.
(91)

We consider now the fourth term of L2ψ and using (44) we readily get

((L1ψ)1, (L2ψ)4)L2(Q) =
s

2

∫∫
Q

αt(ψ2)t dt dx

≥ −CsT 2

∫∫
Q

α9ψ2 dt dx.
(92)

The next term gives

((L1ψ)1, (L2ψ)5)L2(Q) = −10s
∫∫
Q

αxxψtxψxx dt dx. (93)

The last term gives

((L1ψ)1, (L2ψ)6)L2(Q) = 30s3

∫∫
Q

α2
xαxxψxψt dt dx. (94)

All these computations ((89)-(94)) show that

((L1ψ)1, (L2ψ))L2(Q) ≥ −CsT
∫∫
Q

α5|ψxx|2 dt dx− Cs3T

∫∫
Q

α7|ψx|2 dt dx

−C(s5T + sT 2)
∫∫
Q

α9ψ2 dt dx

≥ −εs5

∫∫
Q

α5|ψxx|2 dt dx− εs7

∫∫
Q

α7|ψx|2 dt dx

−εs9

∫∫
Q

α9ψ2 dt dx,

(95)

for any ε > 0, provided that s ≥ CT 1/4, where C depends on ε.
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• Now we consider the second term of L1. The product with the first term of L2 gives

((L1ψ)2, (L2ψ)1)L2(Q) = −5
2
s

∫∫
Q

αxx|ψ4x|2 dt dx+
5
2
s

∫ T

0

αx|x=1|ψ4x|x=1|2 dt

−5
2
s

∫ T

0

αx|x=0|ψ4x|x=0|2 dt.
(96)

Similar computations give the following for the second term:

((L1ψ)2, (L2ψ)2)L2(Q) = −5s3

∫∫
Q

α3
x(|ψxxx|2)x dt dx− 10s3

∫ T

0

α3
x|x=0ψ4x|x=0ψxx|x=0 dt

−30s3

∫∫
Q

α2
xαxxψ4xψxx dt dx

≥ 45s3

∫∫
Q

α2
xαxx|ψxxx|2 dt dx− 5s3

∫ T

0

α3
x|x=1|ψxxx|x=1|2 dt

+5s3

∫ T

0

α3
x|x=0|ψxxx|x=0|2 dt− 10s3

∫ T

0

α3
x|x=0ψ4x|x=0ψxx|x=0 dt

+30s3

∫ T

0

α2
x|x=0αxx|x=0ψxxx|x=0ψxx|x=0 dt− Cs3

∫∫
Q

α3|ψxxx||ψxx| dt dx.

(97)

For the third one we have

((L1ψ)2, (L2ψ)3)L2(Q) = −s5

∫∫
Q

α5
xψ4xψx dt dx− 5s5

∫∫
Q

α4
xαxxψ4xψ dt dx

=
s5

2

∫∫
Q

α5
x(|ψxx|2)x dt dx+ 10s5

∫∫
Q

α4
xαxxψxxxψx dt dx

+5s5

∫∫
Q

(α4
xαxx)xψxxxψ dt dx

≥ −s
5

2

∫ T

0

α5
x|x=0|ψxx|x=0|2 dt−

25
2
s5

∫∫
Q

α4
xαxx|ψxx|2 dt dx

−Cs5

∫∫
Q

α5(|ψxxx||ψ|+ |ψxx||ψx|) dt dx.

(98)

Then, we see that

((L1ψ)2, (L2ψ)4)L2(Q) = −s
∫∫
Q

αtψ4xψx dt dx− s
∫∫
Q

αtxψ4xψ dt dx

=
s

2

∫∫
Q

αt(|ψxx|2)x dt dx+ 2s
∫∫
Q

αtxψ3xψx dt dx

+s
∫∫
Q

αtxxψxxxψ dt dx

≥ −CsT
∫∫
Q

α5(|ψxx|2 + |ψxxx|(|ψ|+ |ψx|)) dt dx

−CsT
∫ T

0

α5
|x=0|ψxx|x=0|2 dt.

(99)

Next,

((L1ψ)2, (L2ψ)5)L2(Q) = −10s
∫∫
Q

αxx|ψ4x|2 dt dx+ 10s
∫ T

0

αxx|x=1ψ4x|x=1ψxxx|x=1 dt

−10s
∫ T

0

αxx|x=0ψ4x|x=0ψxxx|x=0 dt.

(100)

We used that αxxx = 0.
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Finally,

((L1ψ)2, (L2ψ)6)L2(Q) = −30s3

∫∫
Q

α2
xαxxψ4xψxx dt dx− 30s3

∫∫
Q

(α2
xαxx)xψ4xψx dt dx

= 30s3

∫∫
Q

α2
xαxx|ψxxx|2 dt dx+ 30s3

∫ T

0

(α2
xαxx)|x=0ψxxx|x=0ψxx|x=0 dt

−Cs3

∫∫
Q

α3(|ψ4x||ψx|+ |ψxxx||ψxx|) dt dx.

(101)
Putting together all the computations concerning the second term of L1ψ ((96)-(101)), we obtain

((L1ψ)2, L2ψ)L2(Q) ≥ −25
2
s

∫∫
Q

αxx|ψ4x|2 dt dx+ 75s3

∫∫
Q

α2
xαxx|ψxxx|2 dt dx

−25
2
s5

∫∫
Q

α4
xαxx|ψxx|2 dt dx−

5
2
s

∫ T

0

αx|x=0|ψ4x|x=0|2 dt

−s
5

2

∫ T

0

α5
x|x=0|ψxx|x=0|2 dt− 10s3

∫ T

0

α3
x|x=0ψ4x|x=0ψxx|x=0 dt

+5s3

∫ T

0

α3
x|x=0|ψxxx|x=0|2 dt− εs9

∫∫
Q

α9ψ2 dt dx

−εs7

∫∫
Q

α7|ψx|2 dt dx− εs5

∫∫
Q

α5|ψxx|2 dt dx

−εs3

∫∫
Q

α3|ψxxx|2 dt dx− εs
∫∫
Q

α|ψ4x|2 dt dx

−εs5

∫ T

0

α5
|x=0|ψxx|x=0|2 dt− εs3

∫ T

0

α3
|x=0|ψxxx|x=0|2 dt

−εs
∫ T

0

α|x=0|ψ4x|x=0|2 dt− Cs
∫ T

0

α|x=1|ψ4x|x=1|2 dt

−Cs3

∫ T

0

α3
|x=1|ψxxx|x=1|2 dt,

(102)

for any ε > 0, provided that s ≥ C(T 1/4 + T 1/2), where C depends on ε. (We used that s ≥ C(ε)T 1/2

for appropriate C(ε) and α ≤ CTα3.)

• We consider now the products concerning the third term of L1ψ. First, we have

((L1ψ)3, (L2ψ)1)L2(Q) = −75s3

∫∫
Q

α2
xαxx|ψxxx|2 dt dx+ 25s3

∫ T

0

α3
x|x=1|ψxxx|x=1|2 dt

−25s3

∫ T

0

α3
x|x=0|ψxxx|x=0|2 dt.

(103)

Secondly

((L1ψ)3, (L2ψ)2)L2(Q) = −250s5

∫∫
Q

α4
xαxx|ψxx|2 dt dx− 50s5

∫ T

0

α5
x|x=0|ψxx|x=0|2 dt. (104)

Third,

((L1ψ)3, (L2ψ)3)L2(Q) = −5s7

∫∫
Q

α7
x(|ψx|2)x dt dx− 70s7

∫∫
Q

α6
xαxxψxxψ dt dx

≥ 105s7

∫∫
Q

α6
xαxx|ψx|2 dt dx− Cs7

∫∫
Q

α7|ψx||ψ| dt dx.
(105)

For the fourth term, we have

((L1ψ)3, (L2ψ)4)L2(Q) = −10s3

∫∫
Q

α2
xαtψxxψx dt dx− 10s3

∫∫
Q

(α2
xαt)xψxxψ dt dx

≥ −Cs3T

∫∫
Q

α7(|ψx|2 + |ψ||ψxx|) dt dx.
(106)
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We obtain the following for the fifth term:

((L1ψ)3, (L2ψ)5)L2(Q) = 100s3

∫∫
Q

α2
xαxx|ψxxx|2 dt dx. (107)

Finally,

((L1ψ)3, (L2ψ)6)L2(Q) = −300s5

∫∫
Q

α4
xαxx|ψxx|2 dx dt− Cs5

∫∫
Q

α5|ψxx||ψx| dt dx. (108)

Consequently, we get the following for the third term of L1ψ ((103)-(108)):

((L1ψ)3, L2ψ)L2(Q) ≥ 25s3

∫∫
Q

α2
xαxx|ψxxx|2 dt dx− 550s5

∫∫
Q

α4
xαxx|ψxx|2 dt dx

+105s7

∫∫
Q

α6
xαxx|ψx|2 dt dx− 25s3

∫ T

0

α3
x|x=0|ψxxx|x=0|2 dt

−50s5

∫ T

0

α5
x|x=0|ψxx|x=0|2 dt− εs9

∫∫
Q

α9ψ2 dt dx

−εs7

∫∫
Q

α7|ψx|2 dt dx− εs5

∫∫
Q

α5|ψxx|2 dt dx

−Cs3

∫ T

0

α3
|x=1|ψxxx|x=1|2 dt,

(109)

for any ε > 0, where again s ≥ C(T 1/4 + T 1/2) and C depends on ε.

• Now, we compute the fourth term. First, we have:

((L1ψ)4, (L2ψ)1)L2(Q) = −25
2
s5

∫∫
Q

α5
x(|ψxx|2)x dx dt− 125s5

∫∫
Q

α4
xαxxψxxxψx dx dt

≥ 375
2
s5

∫∫
Q

α4
xαxx|ψxx|2 dt dx+

25
2
s5

∫ T

0

α5
x|x=0|ψxx|x=0|2 dt

−Cs5

∫∫
Q

α5|ψx||ψxx| dx dt.

(110)

Next, we obtain

((L1ψ)4, (L2ψ)2)L2(Q) = −175s7

∫∫
Q

α6
xαxx|ψx|2 dt dx. (111)

For the third term, we get

((L1ψ)4, (L2ψ)3)L2(Q) = −45
2
s9

∫∫
Q

α8
xαxx|ψ|2 dt dx. (112)

Then,

((L1ψ)4, (L2ψ)4)L2(Q) ≥ −Cs5T

∫∫
Q

α9|ψ|2 dt dx. (113)

The fifth term gives

((L1ψ)4, (L2ψ)5)L2(Q) = −50s5

∫∫
Q

α4
xαxx|ψxx|2 dt dx− Cs5

∫∫
Q

α5|ψxx||ψx| dt dx. (114)

Direct computations for the last term provides

((L1ψ)4, (L2ψ)6)L2(Q) = 150s7

∫∫
Q

α6
xαxx|ψx|2 dt dx. (115)
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All these computations ((110)-(115)) gives

((L1ψ)4, L2ψ)L2(Q) ≥ 275
2
s5

∫∫
Q

α4
xαxx|ψxx|2 dt dx− 25s7

∫∫
Q

α6
xαxx|ψx|2 dt dx

−45
2
s9

∫∫
Q

α8
xαxx|ψ|2 dt dx+

25
2
s5

∫ T

0

α5
x|x=0|ψxx|x=0|2 dt

−εs9

∫∫
Q

α9ψ2 dt dx− εs7

∫∫
Q

α7|ψx|2 dt dx

−εs5

∫∫
Q

α5|ψxx|2 dt dx,

(116)

for any ε > 0, where again s ≥ C(T 1/4 + T 1/2) and C depends on ε.

Let us now gather all the product (L1ψ,L2ψ)L2(Q) coming from (95), (102), (109) and (116):

(L1ψ,L2ψ)L2(Q) ≥ −25
2
s

∫∫
Q

αxx|ψ4x|2 dt dx+ 100s3

∫∫
Q

α2
xαxx|ψxxx|2 dt dx

−425s5

∫∫
Q

α4
xαxx|ψxx|2 dt dx+ 80s7

∫∫
Q

α6
xαxx|ψx|2 dt dx

−45
2
s9

∫∫
Q

α8
xαxx|ψ|2 dt dx−

5
2
s

∫ T

0

αx|x=0|ψ4x|x=0|2 dt

−20s3

∫ T

0

α3
x|x=0|ψxxx|x=0|2 dt− 38s5

∫ T

0

α5
x|x=0|ψxx|x=0|2 dt

−10s3

∫ T

0

α3
x|x=0ψ4x|x=0ψxx|x=0 dt

−εs9

∫∫
Q

α9ψ2 dt dx− εs7

∫∫
Q

α7|ψx|2 dt dx

−εs5

∫∫
Q

α5|ψxx|2 dt dx− εs3

∫∫
Q

α3|ψxxx|2 dt dx

−εs
∫∫
Q

α|ψ4x|2 dt dx− εs5

∫ T

0

α5
|x=0|ψxx|x=0|2 dt

−εs3

∫ T

0

α3
|x=0|ψxxx|x=0|2 dt− εs

∫ T

0

α|x=0|ψ4x|x=0|2 dt

−Cs
∫ T

0

α|x=1|ψ4x|x=1|2 dt− Cs3

∫ T

0

α3
|x=1|ψxxx|x=1|2 dt,

(117)

for s ≥ C(T 1/4 + T 1/2).
Let us explain how we handle the wrongly signed terms in |ψxxx|2 and |ψx|2. After integration by

parts, we get

100s3

∫∫
Q

α2
xαxx|ψxxx|2 dt dx ≥ −100s3

∫∫
Q

α2
xαxxψxxψ4x dt dx− εs5

∫∫
Q

α5|ψxx|2 dt dx

−εs3

∫ T

0

α3
|x=0|ψxxx|x=0|2 − εs5

∫ T

0

α5
|x=0|ψxx|x=0|2 dt,

(118)

by taking s ≥ CT 1/2. The last two terms in the right hand side are already in (117), while the first one
is estimated as follows, by using Cauchy-Schwarz’s inequality:

100s3
∣∣∣ ∫∫

Q

α2
x|αxx|ψxxψ4x dt dx

∣∣∣ ≤ 12s
∫∫
Q

αxx|ψ4x|2 dt dx+
625
3
s5

∫∫
Q

α4
x|αxx||ψxx|2 dt dx. (119)

On the other hand, by integration by parts and Cauchy-Schwarz’s inequality, we have for s ≥ CT 1/2:

80s7
∣∣∣ ∫∫

Q

α6
xαxx|ψx|2 dt dx

∣∣∣ ≤ (22 + ε)s9

∫∫
Q

α8
x|αxx||ψ|2 dt dx+

800
11

s5

∫∫
Q

α4
x|αxx||ψxx|2 dt dx. (120)

Observe that
625
3

+
800
11

< 425. (121)
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Finally, we have

10s3
∣∣∣ ∫ T

0

α3
x|x=0ψ4x|x=0ψxx|x=0 dt

∣∣∣ ≤ 2s
∫ T

0

|αx|x=0||ψ4x|x=0|2 dt+
25
2
s5

∫ T

0

|αx|x=0|5|ψxx|x=0|2 dt.

(122)
Now we observe that thanks to (43) we can absorb all the “ε terms” in (117) provided that s ≥ CT 1/2.
Finally, using again (43) we deduce from (88) the following inequality for ψ:

s

∫∫
Q

α|ψ4x|2 dt dx+ s3

∫∫
Q

α3|ψxxx|2 dt dx+ s5

∫∫
Q

α5|ψxx|2 dt dx

+ s7

∫∫
Q

α7|ψx|2 dt dx+ s9

∫∫
Q

α9|ψ|2 dt dx

≤ C
(
‖L3ψ‖2L2(Q) + s

∫ T

0

α|x=1|ψ4x|x=1|2 dt+ s3

∫ T

0

α3
|x=1|ψxxx|x=1|2 dt

)
. (123)

Now it is not difficult to see that all the terms in L3ψ yield a L2-norm estimated by

‖L3ψ‖2L2(Q) ≤ C
(
s2

∫∫
Q

α2|ψxxx|2 dt dx+ s4

∫∫
Q

α4|ψxx|2 dt dx+ s6

∫∫
Q

α6|ψx|2 dt dx

+ s8

∫∫
Q

α8|ψ|2 dt dx+
∫∫
Q

e−2sα|f |2 dt dx
)
, (124)

for s ≥ CT 1/2. Here we have used that ak ∈ L∞(0, T ;W k,∞(0, 1)). Hence they can be absorbed by the
left hand side of (123) provided that s ≥ CT 1/2. We deduce the Carleman inequality for ψ

s

∫∫
Q

α|ψ4x|2 dt dx+ s3

∫∫
Q

α3|ψxxx|2 dt dx+ s5

∫∫
Q

α5|ψxx|2 dt dx

+ s7

∫∫
Q

α7|ψx|2 dt dx+ s9

∫∫
Q

α9|ψ|2 dt dx

≤ C
(
s

∫ T

0

α|x=1|ψ4x|x=1|2 dt+ s3

∫ T

0

α3
|x=1|ψxxx|x=1|2 dt+

∫∫
Q

e−2sα|f |2 dt dx
)
. (125)

It remains to replace ψ by ϕ, to use (43) and s ≥ CT 1/2 in order to deduce (45).

6 Proof of Lemma 1

We first establish two lemmas before turning to the core of the proof.

Lemma 2. Let p satisfy
pt + αp5x = g in (0, T )× (0, 2),
p|x=0 = px|x=0 = pxx|x=0 = 0 in (0, T ),
p|x=1 = v̂2, px|x=1 = v̂4 in (0, T ),
p|t=0 = p0 in (0, 2).

(126)

Then for k ≥ 2, one has

‖(2− x)k+ 1
2 p‖L∞(0,T ;L2(0,2)) + ‖(2− x)kpxx‖L2(0,T ;L2(0,2)) + ‖(2− x)k−1px‖L2(0,T ;L2(0,2))

. ‖(2− x)k+1g‖L2(0,T ;H−2(0,2)) + ‖(2− x)k−2p‖L2(0,T ;L2(0,2)) + ‖(2− x)k+ 1
2 p0‖L2(0,2). (127)

Proof of Lemma 2. As previously, we multiply by (2− x)2k+1p; we get

1
2
d

dt

∫ 2

0

(2− x)2k+1|p|2 dx+ 5
2k + 1

2
α

∫ 2

0

(2− x)2k|pxx|2 dx

=
∫ 2

0

(2−x)2k+1pg dx+6k(2k+1)α
∫ 2

0

(2−x)2k−1pxpxx dx−2k(2k+1)(2k−1)α
∫ 2

0

(2−x)2k−2ppxx dx.
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We utilize Young’s inequality:∣∣∣ ∫ 2

0

(2− x)2k−2ppxx

∣∣∣ ≤ ε ∫ 2

0

(2− x)2k|pxx|2 dx+
1
ε

∫ 2

0

(2− x)2k−4|p|2 dx,∣∣∣ ∫ 2

0

(2− x)2k−1pxpxx

∣∣∣ ≤ ε∫ 2

0

(2− x)2k|pxx|2 dx+
1
ε

∫ 2

0

(2− x)2k−2|px|2 dx.

Integrate by parts in the last term, we deduce (127).

Lemma 3. Let p satisfy (126). Then for k ≥ 7, one has

‖(2− x)k+ 1
2 p‖L∞(0,T ;H2(0,2))

4∑
j=0

‖(2− x)k+j−4∂jxy
∗‖L2(0,T ;L2(0,2))

. ‖g‖L2(0,T ;L2(0,2)) + ‖p0‖H2(0,2) + ‖v̂2‖L2(0,T ) + ‖v̂4‖L2(0,T ). (128)

Proof of Lemma 3.

First step. Higher order estimates. Let g ∈ L2(0, T ;H3
0 (0, 2)). We apply Lemma 2 to p5x (which

satisfies the boundary conditions), and get

‖(2− x)k+ 1
2 p5x‖L∞(0,T ;L2(0,2)) + ‖(2− x)kp5x‖L2(0,T ;H2(0,2)) . ‖(2− x)k+1g5x‖L2(0,T ;H−2(0,2))

+ ‖(2− x)k−2p5x‖L2(0,T ;L2(0,2)) + ‖(2− x)k+ 1
2 p0,5x‖L2(0,2). (129)

By an integration by parts, this inequality yields

‖(2− x)k+ 1
2 p5x‖L∞(0,T ;L2(0,2)) + ‖(2− x)kp7x‖L2(0,T ;L2(0,2)) + ‖(2− x)k−1p6x‖L2(0,T ;L2(0,2))

. ‖(2− x)k+1g5x‖L2(0,T ;H−2(0,2)) + ‖(2− x)k−2p5x‖L2(0,T ;L2(0,2)) + ‖(2− x)k+ 1
2 p0,5x‖L2(0,2). (130)

Now in order to estimate the term concerning p5x in the right hand side, we observe that∫ T

0

∫ 2

0

(2−x)2k−4p5xp5x dx dt = −
∫ T

0

∫ 2

0

(2−x)2k−4p6xp4x dx dt+(k−2)(2k−5)
∫ T

0

∫ 2

0

(2−x)2k−6|p4x|2 dx dt,

(131)∫ T

0

∫ 2

0

(2−x)2k−2p6xp6x dx dt = −
∫ T

0

∫ 2

0

(2−x)2k−2p5xp7x dx dt+(k−1)(2k−3)
∫ T

0

∫ 2

0

(2−x)2k−4p2
5x dx dt.

(132)
The identity (132) may be used to estimate the first integral in the right hand side of (131) (with
ab ≤ εa2 + b2/ε). Now injecting in (130), we obtain

‖(2− x)k+ 1
2 p5x‖L∞(0,T ;L2(0,2)) +

2∑
j=0

‖(2− x)k−j∂7−j
x p‖L2(0,T ;L2(0,2)) . ‖(2− x)k+1g5x‖L2(0,T ;H−2(0,2))

+ ‖(2− x)k−3p4x‖L2(0,T ;L2(0,2)) + ‖(2− x)k+ 1
2 p0,5x‖L2(0,2). (133)

Now to absorb the term concerning p4x in the right hand side, we operate in the same way, but here a
boundary term appears:∫ T

0

∫ 2

0

(2− x)2k−6p4xp4x dx dt = −
∫ T

0

∫ 2

0

(2− x)2k−6p5xp3x dx dt

+ (k − 3)(2k − 7)
∫ T

0

∫ 2

0

(2− x)2k−8|p3x|2 dx dt+ 22k−6

∫ T

0

p3x|x=0p4x|x=0 dt. (134)
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This latter term is treated as follows:∣∣∣ ∫ T

0

p3x|x=0p4x|x=0 dt
∣∣∣ ≤ ε∫ T

0

|p4x|x=0|2 dt+
1
ε

∫ T

0

|p3x|x=0|2 dt.

Now∫ T

0

|p4x|x=0|2 dt = − 1
22k−6

∫ T

0

∫ 2

0

(2− x)2k−5p4xp5x dt dx−
(2k − 5)

22k−5

∫ T

0

∫ 2

0

(2− x)2k−6|p4x|2 dt dx,

which can be treated as above, while∫ T

0

|p3x|x=0|2 dt = − 1
22k−8

∫ T

0

∫ 2

0

(2− x)2k−7p3xp4x dt dx−
(2k − 7)

22k−7

∫ T

0

∫ 2

0

(2− x)2k−8|p3x|2 dt dx,

which leads us to

‖(2− x)k+ 1
2 p5x‖L∞(0,T ;L2(0,2)) +

3∑
j=0

‖(2− x)k−j∂7−j
x p‖L2(0,T ;L2(0,2))

. ‖(2− x)k+1g5x‖L2(0,T ;H−2(0,2)) + ‖(2− x)k−4p3x‖L2(0,T ;L2(0,2)) + ‖(2− x)k+ 1
2 p0,5x‖L2(0,2). (135)

Then one follows the same steps as previously (note that p|x=0 = px|x=0 = pxx|x=0 = 0) and finally get

‖(2− x)k+ 1
2 p5x‖L∞(0,T ;L2(0,2)) +

6∑
j=0

‖(2− x)k−7+j∂jxp‖L2(0,T ;L2(0,2))

. ‖(2− x)k+1g5x‖L2(0,T ;H−2(0,2)) + ‖(2− x)k−7p‖L2(0,T ;L2(0,2)) + ‖(2− x)k+ 1
2 p0,5x‖L2(0,2), (136)

and consequently, using Proposition 6,

‖(2− x)k+ 1
2 p5x‖L∞(0,T ;L2(0,2)) +

6∑
j=0

‖(2− x)k−7+j∂jxp‖L2(0,T ;L2(0,2))

. ‖(2− x)k+1g‖L2(0,T ;H3(0,2)) + ‖(2− x)k+ 1
2 p0,5x‖L2(0,2) + ‖v̂2‖L2(0,T ) + ‖v̂4‖L2(0,T ). (137)

Second step. Interpolation. Now we consider the operator which maps (p0, g, v̂2, v̂4) to (2− x)k+1p: it
is continuous from

L2(0, 2)× L2(0, T ;H−2(0, 2))× L2(0, T )2 to L2(0, T ;H2(0, 2)) ∩ C0([0, T ];L2(0, 2)),

respectively

H5
0 (0, 2)× L2(0, T ;H3

0 (0, 2))× L2(0, T )2 to L2(0, T ;H7(0, 2)) ∩ C0([0, T ];H5(0, 2)).

By interpolation, it is hence continuous from

H2
0 (0, 2)× L2(0, T ;L2(0, 2))× L2(0, T )2 to L2(0, T ;H4(0, 2)) ∩ C0([0, T ];H2(0, 2)).

This concludes the proof of Lemma 3.

Proof of Lemma 1.

We apply Lemma 3 with p = y∗ and g =
∑3
j=0 ãj(t, x)∂jxy

∗ + h∗. We infer

‖(2− x)k+ 1
2 y∗‖L∞(0,T ;H2(0,2)) +

4∑
j=0

‖(2− x)k+j−4∂jxy
∗‖L2(0,T ;L2(0,2)) . ‖h∗‖L2(0,T ;L2(0,2))

+
3∑
j=0

‖ãj∂jxy∗‖L2(0,T ;L2(0,2)) + ‖y∗0‖H2(0,2) + ‖v∗2‖L2(0,T ) + ‖v∗4‖L2(0,T ). (138)
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Now, using that the supports of ãj are away from 2, we can estimate the terms
∑3
j=0 ‖ãj∂jxy∗‖L2(0,T ;L2(0,2))

as follows

3∑
j=0

‖ãj∂jxy∗‖L2(0,T ;L2(0,2)) ≤ ε
4∑
j=0

‖(2− x)k+j−4∂jxy
∗‖L2(0,T ;L2(0,2)) + C‖y∗‖L2(0,T ;L2(0,2)),

exactly as in Lemma 3. We get

‖(2− x)k+ 1
2 y∗‖L∞(0,T ;H2(0,2)) +

4∑
j=0

‖(2− x)k+j−4∂jxy
∗‖L2(0,T ;L2(0,2))

. ‖h∗‖L2(0,T ;L2(0,2)) + ‖y∗‖L2(0,T ;L2(0,2)) + ‖y∗0‖H2(0,2) + ‖v∗2‖L2(0,T ) + ‖v∗4‖L2(0,T ).

Using again Proposition 6, and thanks to (58), this gives (70), hence completing the argument.
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