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1 Introduction

In this paper, we study the controllability of the fifth order Korteweg-de Vries equation:
Ut + QUsy + fllgrs + BUllgrr + OUzUzy + P (w)u, =0, (1)
where «, p, 0 and § are real constants and P is a cubic polynomial:
P(u) = pu + qu® + rud. (2)

This class of equations was introduced by Kichenassamy and Olver [16]. It contains in particular the
Kawahara equation [14] introduced to model magneto-acoustic waves, the various models derived by Olver
[18] for the unidirectional propagation of waves in shallow water when the third order term appearing in
the Korteweg-de Vries equation is small, and many other models. See [16] for a discussion of them.

In this paper, we are interested in studying this equation in a bounded domain. We will both
consider the Cauchy problem with boundary conditions and the boundary controllability problem. Note
that there is an important literature concerning the Cauchy problem in the real line, see for instance
[6, 9, 16, 15, 17, 20] and references therein. But for what concerns the boundary value problem, the
problem was still completely open as far as we know. Note that the initial boundary value problem for the
(third-order) Korteweg-de Vries equation has drained much attention (see in particular [1, 4, 5, 10, 13]).
The controllability problem was also, up to our knowledge, completely open. The equivalent for the
Korteweg-de Vries equation has also known many developments lately [2, 3, 7, 12, 21, 22, 23, 24, 25].

To be more precise, we will consider in the sequel that > 0: this is not a restriction since it suffices
to make the change of variable 2’ = 1 — z and to invert the role of the left and right boundaries. The
spatial domain will be [0, 1], which is not a restriction either in the present paper, since it will suffice to
rescale in space to obtain a result on an interval of arbitrary length. (Note that this is not necessarily
the case for the Korteweg-de Vries equation with Neumann boundary control, see [21]).

The boundary conditions that we will consider are the following:

Ulzg=0 = V1, Ujg=1 = V2, Uglz=0 = V3, Ug|lz=1 = V4, Ugg|z=0 = Us5- (3)

The first and main result of this paper concerns a boundary controllability result for equation (1). To
be more precise, we will control the system from the right endpoint (by using only vy) and vy while
maintaining vy, vs, vs to zero), and the type of controllability that we consider is the local controllability
to trajectories. That is to say, we consider T' > 0 and a fixed trajectory @ of (1), and prove that for any
initial state ug sufficiently close to U)4—g, there exist controls (vg,v4) which steer the system from ug to
Uj=T-

The precise result is the following.

Theorem 1. Let T > 0. Let u € L>=(0,T; W3°(0,1)) be a trajectory of (1) with boundary conditions
Ujy0 = Ug|p=0 = Ugg|z=o = 0. There exists € > 0 such that for any ug € L*(0,1) such that

luo — (0, )| z2(0,1) < &5 (4)
there exist two controls ve, vy in L2(0,T) such that the solution u of (1) with initial condition

Ujt=0 = U0, (5)



and boundary condition (3) with controls (0, vg,0,v4,0), belongs to CO([0, T); L?(0,1))NL2(0,T; H?(0,1))
and satisfies
up=r = (T ). (6)

As we will see, the solution to the controllability problem that we construct is in fact more regular
than C°([0,T]; L?(0,1)) N L2(0,T; H?(0,1)). Indeed, in order to prove Theorem 1, we will first take the
controls (vg,v4) as zero and we will prove, thanks to Theorem 2 below, that the state becomes HZ. Then
we will work with more regular solutions (belonging to L?(e, T; H*(0,1)) N C%([e, T); H%(0,1))).

Remark 1. Using the reversible character of this system stated on the whole real line, it is not difficult to
deduce that equation (1) is locally exactly controllable near 0 when using the five controls (for sufficiently
reqular states).

The second result of this paper concerns the Cauchy problem, where we can prove that the problem
is well posed locally in time, and regularizes the state of the system.

Theorem 2. Given ug € L?(0,1), there exists T > 0 such that the nonlinear problem (1) with ho-
mogenous boundary conditions (3) (v = vo = vg = v4 = vs = 0) admits a unique solution u €
L2(0,T; H%(0,1)) N C°([0,T); L?(0,1)) satisfying

lull 20,752 0,1))nco(0,77:220,1)) < ClluolL2(0,1)-

Moreover, this solution regularizes in the sense that for any T € (0,T], u € C([r,T] x [0,1]), with

Nl g% (v, 1510 0,1)) < C(7, k) |[uoll£2(0,1)- (7)

We conclude this introduction by a remark concerning the choice of the controls among vy, ..., vs.
The controllability to the trajectories described in Theorem 1 may not take place if one chooses another
set of controls, for instance when acting through vs only and keeping vy = vo = v3 = v4 = 0. This is
given in the next example.

Proposition 1. Let L > 0 be a solution of tan(L) = L. The system

—$@t — P55z — Praax = 0 m (0,T) X (*L, L),
Pla=—L = Pla=L = Pzla=—L = Pz|z=L = Pra|z=L = 0 in (OuT)v (8)
Plt=T = LT on (=L, L),
has solutions satisfying
©(0,-) £ 0 and @ (t,—L) =0 in (0,T), (9)
for all T > 0. As a consequence the system
Uy + Usa + Upgx = 0 n (07 T) X (—L7 L),
Ulg=—L = U|g=L = Ug|e=—L = Ug|z=L = 0 in (OvT)a (10)
Upg|lz=—L = U5(t) in (07 T)a

is not null approzimately controllable by the control vs.

Proof of Proposition 1. We introduce the following (time-independent) function

g(x) = cos(z) + px? — (cos(L) + uL?),

where
__sin(L)  cos(L)
P — 72
It is elementary to check that
{ 95z + Graw = 0 in (0,7) x (—L, L),
Jlo=—L = Glo=L = ale=—L = Gz|o=L = Gzzlo=—L = Jazla=r =0 in (0,T),



hence ¢ satisfies (8) and (9). Now the equivalence between the unique continuation of (8) and the
approximate controllability of (10) is an application of the standard duality in PDE control theory, see
for instance [8].

Let us note that this phenomenon of critical values of the length of the domain was raised by Rosier
[21] for the linearized KAV equation (see [2, 3, 7] for further developments on this subject). Hence,
according to the values of the length of the domain and of the coefficients, a similar behaviour can take
place here. We believe that this leads to many open and challenging problems.

The structure of the paper is the following. In Section 2, we study the initial boundary value problem
for a linearized equation. This requires proving a regularizing effect on the equation (; + (5, = ¢g. In
Section 3, we study the controllability of a linearized equation. In Section 4, we use a fixed point argument
to establish Theorem 2 and an inverse mapping theorem to establish Theorem 1. Finally Sections 5 and
6 are devoted to the most technical parts of the paper, namely, the proof of a Carleman estimate and a
proof of the regularizing effect to the left.

2 Cauchy problem for the linearized equation

In this section, we study the well posedness of the following linearized equation:

3
Y + QYse = Z ar(t, ©)0%y + h. (11)
k=0

Recall that we consider o > 0. We will state the corresponding result in Paragraph 2.3.
For this, we will first study the adjoint system of (11):

Pr 4 athsp = S _o(=1)FT10F (ag(t, 2)) + f,  in (0,T) x (0,1),

1/%:0 = wm\z:O =0 in (07 T)» (12>
w\wZI = '(/J:L’\xZI = 1/&’30\1:1 =0 in (OvT)7

Plp=r = 0 in (0,1).

2.1 The equation (; + a5, =g
We begin with the following proposition.

Proposition 2. Consider a > 0. Given (r € (H® N HE)(0,1) satisfying (r.(1) = 0 and g €
CL([0,T]; L*(0,1)) there exists a unique solution ¢ € C°([0,T]; H5(0,1)) N C*([0,T); L(0,1)) of

G+ a: =g in (O’T) X (Oa 1)7

C\z:O = C:v\ac:O =0 in (O’T)7 (13)
C\:c:l = Cx\x:l = Ca:x\:c:l =0 in (OaT)a

Ci=r =Cr in (0,1).

Proof of Proposition 2.

This follows from the standard Lumer-Phillips theory. We can introduce the operator A : D(A) —
L2(0,1):
D(A) = {9 € (H> N H2)(0,1)/V42(1) = 0} and A9 = avs,.

Then one can see that its adjoint is defined via
D(A*) ={h € (H° N H)(0,1)/h4z(0) = 0} and A*h = —ahs,.

Then it is elementary to check that (A9,9)r2 < 0 and (A*h,h)r2 < 0 so that Proposition 2 follows from
standard operator theory [19].



Now we prove some estimates for the solutions of (13). We define the spaces, for k € N,
Xi = {y € L*(0, T H*2(0,1)) N C°([0, T} H*(0, 1)), Yaaje=o € H(0,T)},
endowed with their natural norm.

Proposition 3. One has the following estimates on the solutions of (13):

IClx. < Cllgll20,7m5-2(0,1)) for s € 10,10], (14)
I<llx. < Cliglzio.1:m50,1)), for s €[0,10], (15)
| Cazalz=0ll 175 0,1y + 1Cazzie=1la1/5 0,1 < CllgllL2((0,7)x(0,1)) (16)
and
[ Cazja=0ll 2(0,7) + 1Cazjz=1llz2(0,7) < Cllgllz2((0,7)x (0,1))- (17)

Remark 2. If we interpolate (14) and (15), we also deduce

I<llx, < C”Q”L4/3(0,T;1§rs—1(0,1))’ for s € [0,10]. (18)

Proof of Proposition 3.
We consider a smooth solution of (13) and establish several estimates on it.
1. Proof of (14)-(15).

e Estimate in Xo. We multiply (13) by (1 + x)¢:

1d [t

5 1 1
57 (1+ )¢ da + aCZ -0 + §Of/ (opda = —/ (1+z)g¢ dz. (19)
0 0 0

It follows that
I<¢llx, < CHgHLQ(O,T;HO_Q(O,l))‘ (20)

It is also clear that from (19) it follows

1<l xo < Cllgllzr(o,7:22(0,1))- (21)

e Estimate in X5. Now we consider g € L?(0,T; H3(0,1)). Observe that due to (13), for such a g, the
traces of (5, and (g; on both sides, and the trace of (7, on the right, vanish.
We apply the operator 95, to the equation and we apply (20):

16l x0 < Cllgsall p2(0,7;1:2(0,1))-
Using the equation, this gives

[Ceaz=ollmr 0,7y < CllgllL2(0,1:13(0,1))-

This yields also

1¢lxs < Cllgllzz 0,753 0,1))- (22)
In the same way, we have

<115 < C||9||L1(0,T;Hg(0,1))~ (23)

e Estimate in X19. Here we consider g € L?(0,T; H§(0,1)). We apply the operator Js, to the equation
and we apply (22) (since g5, € L*(0,T; H3(0,1))):

¢G5 llxs < C||95w||L2(o,T;Hg(o,1))~



This yields as previously
HCHXw < C||9||L2(0,T;Hg(o,1))~ (24)

Also we have
I<llx10 < Cllgll 10,1520 (0,1))- (25)

o Interpolation argument. By an interpolation argument, we deduce (14) and (15) for every s € [0, 10].
2. Proof of (16).
Let p € C*([0, 1]; R) satisfying p(z) = 0 for z € [0,1/2] and p(x) =1 for x € [3/4,1].
o We use estimate (14) for s = 1:
I¢llx, < CHQHL?(O,T;Hgl(O,l))' (26)

Multiplying (13) with p(,., integrating in space and integrating by parts, we get, for almost any ¢ € [0, T,

o 3a [* a ! 1d [!
§|Cll.L|‘L:1|2 - 7/0 pz|§rxm|2d‘r - */0 me:|<m|2dl’ T ,0|<z|2dx

2 2 24t J,
= {P2Ces Ct) H2(0,1)x H-2(0,1) — (95 PCaz) -1 (0,1)x 3 0,1)  (27)
Integrating in time and thanks to (13)-(26), we get
1¢lx, + Iarapomtllzzom) + Wsastemollzzo.m < Clallaoren 0.0y (28)
An estimate for (;;,|2—0 can be done in the same way, by employing the weight 1 — p.
e Now, we use estimate (14) for s = 6:
HCHXS < C||g||L2(O,T;H3(O,1))' (29)

In order to prove that Cipeqjz=1 € L?(0,T), we multiply (13) by pd;07¢, we integrate in space and we
integrate by parts (using again what we know on the traces of (5., (s and (7z):

§|tha:a:|:v:1‘2 = 5 / px|Ct;cxa:|2 dx + / Ctawe (6022 Ctax + 4PreaCia + P12Ct) dv
0 0

d 1
5 7 (p|<61|2 - p$$|<5$|2) dx + a<pm<6:c7 thmt>H02><H_2 + Ctzzr|x:lgzzm|x:1

2 dt
0 1 4 A\ 4
7=0

Q

As previously, the same can be done for Ciyqq(z—0-
Integrating in time, using Cauchy-Schwarz inequality to estimate the last term in the second line and
using (13)-(29), we get

<11 xs + ICtzaaz=1llL20,7) + [Ctzazle=0llL20.7) < CllgllL2(0,75m3(0,1))- (31)

e An interpolation argument applied to (28) and (31) provides (16).
3. Proof of inequality (17).

We multiply the equation of ¢ by p(4, and we integrate in space. After some integration by parts, we



obtain:

1 1
Q@ Q 1d
§|<4:E|m:1|2 = 5/0 pz|C4m\2dac - 5&,/0 p|sz|2 dr — <pszzzvct>Hé><H*1

1
= 2pslor Gl + [ Cang e (32)
0

Integrating in time this identity, we have

Caze=1llr20,1) < CUIClIL=(0,7;m2(0,1)) + el L20,7:-10,1)) + €] 220,719 (0,1)) + 19l 220,17 % (0,1)))-

Using (14), we have estimated (4,),—1 as in (17). The estimate (4,),—o is similar by multiplying by
(1 - P)C4x~

2.2  Well posedness for the adjoint equation

Now we can state the following existence and regularity result for (12).

Proposition 4. Given aj, € L°(0,T; W*>(0,1)) (for k=0...3), f € L?(0,T; L*(0,1)), there exists a
unique solution ¢ € L*(0,T; H*(0,1)) N C°([0,T]; H(0,1)) of (12).

Proof of Proposition 4. .
We use a fixed point scheme. Given v € L?(0,T; H*(0,1))NC°([0,T]; H2(0,1)), we consider the solution

P = T’(/AJ of

'(/)t + aw5$ = 22:0(_1)k+lalz€(ak(ta I)@) + f in (7?7 T) X (07 1)7
1/41:0 = ¢I\$:O = 0 in (Ijv T)» (33)
w\wzl = wx\wzl = d&cw\m:l =0 in (Tv T)7
Yp=7 =0 in (0,1),
where T' € (0,T) is to be fixed later.
Using Proposition 3 (precisely (14) for s = 2), we infer that
1Td1 = Tiollx, < Clllarll oo, rawe) 191 = Goll 20,719
< Cllarllz(o.r:we) T |1 = tall L0, 1:3) (34)
Note that the constant in (14) is independent of 7' € (0,T).
Then by interpolation we deduce that
; ; - 7 512 7 512
||T'(/}1 - Tw2HX2 S C(”ak;||L0¢(0’T;Wk,oo))Tl/4H’l/)1 - ¢2|\L/oo(0,T;Hz) ||w1 - ¢2HL/2(O,T;H4)
< Ollarll L= o rawr) Tl = ol x, - (35)

It follows that 7 is contracting for sufficiently small time T. Then extending the solution obtained in
(T',T) to a solution in (0,T") is standard using the linear character of the equation.

Furthermore, the solutions described in Proposition 4 possess the following regularity property.

Proposition 5. Under the assumptions of Proposition 4, the solution ¢ has the following hidden regu-
larity:

191 x5 + [[Yeele=0.1llm2/50,1) + 1V2zele=0,1m1/50, 1) + [Pazje=01ll20,7) < CllfllL2(0,7)x(0,1))-  (36)

Proof of Proposition 5.



This is a consequence of Propositions 3 and 4. Note that due to the contracting character of 7 and
using Proposition 3, we have

[Pl S IT(O)llx, S Nl z2(0.1)x(0,1))-

Now we can use
3

g:=3"(~1)10k (ax(t,x)0) + f,

k=0

as a right hand side in (13) to deduce (36) from Proposition 3.

2.3 Well posedness for the initial boundary value problem

In this paragraph we give the notion of solution of

i+ ayse = Soo_gar(t, )%y +h  in (0,7) x (0,1),
Ylo=0 = V1, Yjo=1 = V2, Ya|o—o = v3  in (0,T), (37)
Yzjz=1 = V1) Yza|z=0 = Us in (0,7),
Y|t=0 = Yo in (0,1),
where yo , h, v1, ..., vs are given function. The solution of (37) for homogeneous boundary conditions

and h € L2(0,T; L*(0,1)) is granted by Proposition 4 (replace t by T'—t and x by 1 — x). Hence we can
suppose without loss of generality that h = 0.

Definition 1. Let yo € H2(0,1), vy, vo € L*(0,T), v3, v4 € H-/>(0,T) and vs € H=2/5(0,T). We
call y a solution by transposition of (37) with h =0, a function y € L*((0,T) x (0,1)) such that

T

T 1 T
/ / y fdrdt = (uo, Ylt=0) r—2(0,1)x H2(0,1) + 0!/ V1 Yag|p—g dt — 04/ V2 Yz gy dt
0 Jo 0 0

— (U3, Yaaz|w=0) H-1/5(0,1) x 11/5(0,7) T V4, Yz |wm1) H-1/5(0,1)x H1/3(0,T) (38)
T
+0(Vs, Yaw j5=0) H-2/5(0,T) x H2/5(0,T) +/ a30=0 V1 Vgala=0 dt, Vf € L*((0,T) x (0,1)),
0

where 1 is the solution of (12) associated to f.

Proposition 6. There exists a unique solution by transposition of system (37) with h = 0. Moreover,
there exists C > 0 such that

Yl L2 0.1y % 0,1)) < Cllyollzr-2()+Hvill20,0) Fllv2llzz 0.0y + sl -5 0,0y Fllvall =175 0,7y V5 rr-2/50,1))-
Proof: All comes to prove
¢ € CO([O,T],HS(O, 1))a ¢4x|x:0,1 S LQ(OaT)a wxmm\z:O,l € H1/5(O7T)a wxm|a3:0 € H2/5(OaT)

and the following inequality:

||¢||L°°(O,T;H2(O,1)) + ”w4m|z:0,1HL2(O,T) + wazz\m:OJ”Hl/E’(O,T)

+ 1¥zzjz=0lla2/5 0,1y < CllRllL2(0.1)%0.1))-  (39)

This was established in Proposition (5).



3 Controllability of the linearized equation

3.1 Carleman estimate

We consider the following dual system

P+ apss = Yo (—DFH O an(t2)e) + f i (0,7) x (0,1),
Pla=0 = Plz=1 = Pzla=0 = Pzlr=1 = Paz|e=1 = 0 in (O’T)a (40)
Plt=T = $T on (0,1),
where
ap € L*°(0,T; W">(0,1)) for k=0...3. (41)

A central argument in this paper consists in establishing a Carleman inequality for (40). For this let us
set

B(x)
/AT — ¢)1/4° (42)
for (t,z) € Q. Weight functions of this kind were first introduced by A. V. Fursikov and O. Yu. Imanuvilov;
see [11]. In the above equation § is a positive, strictly decreasing and concave polynomial of degree 2 in
[0,1]. Observe that the function « satisfies

at,z) =

C<TY?a, Coa<—a,<Cia, Coa < —age <Cia in (0,T) x [0,1], (43)

‘at| + ‘O‘xt| + |a:cxt| S CTQSa ‘att| S C(T20é9 + aS) S CT2Q9 in (OaT) X [07 1]5 (44)

where C, Cy and C are positive constants independent of 7.
We have:

Proposition 7. Suppose that (41) applies. There exists a positive constant C independent of T such
that, for any o1 € L?(0,1) and f € L*(0,T; L*(0,1)), we have
J[ e atonl + 2a¥lpunl? + statlonl + allionf? + a¥lol) deda
Q

T
SC(/O a|x:16_2sa‘1:l(|<P4a:\x:1|2+8204|2I:1\g01m|z:1\2)dt-i—s_l /Ae‘25a|f2dtdx), (45)

for any s > C(TY* 4 T?), where ¢ is the solution of (40).
The proof of this inequality is postponed to Section 5.

Remark 3. We will also require B to satisfy

max ((z) < V2 min]ﬂ(x). (46)

z€[0,1] z€[0,1

This is not needed for Proposition 7 (nor to Proposition 8 below), but will be useful later.

3.2 Weighted observability estimate

Now let us deduce from Proposition 7 a slightly modified inequality, with a weight function not vanishing
at t=0.
We begin by introducing a new weight. Set £ on [0, 7] by

£ < L
()= 1 trea (47)
t(T'—t) otherwise.
Now introduce B(w)
x



Proposition 8. Suppose that (41) applies. There exist two positive constants so and C' > 0 depending
on T such that, for any pr € L?(0,1) and any f € L?(0,T;L?(0,1)), we have

1
//Q e 25079 0|2 da dt +/0 (0, )| do < C’(//Q e 25| f|2dt dx
T
+ /0 ’Y|w:1€7280’y|1:1 (|S04x|z:1 ‘2 + ’7|23:=1 |90wwa:|z:1 |2> dt)v (49)

where @ is the solution of (40).

Proof of Proposition 8.
We use the following energy estimate:

[llL0,7/2;22(0,1)) < Cexp{Cllak||Lo(0.7;wr . 0,0) I fllL2(0,37/4;22(0,1)) + ||<P||L2(T/2,3T/4;L2(0,1))()- |
50
To get (50), introduce n € C*°([0,T];R) such that n = 1 in [0,7/2] and n = 0 in [37/4,T], multiply
equation (40) by n(t)(1 4+ x)p, and perform several integration by parts as in (20).
Let us notice that the weight functions v and e~2%7 are positive for ¢ € [0,7/2]. Hence there is a
constant C such that

e 79" 20|| Lo (0.7/2:22(0,1)) < C exp{Cllak | poo (0.7 (0,1))

x (e fllzear/ar20.1)) + e 20l 2 (r /237402 0.1))-  (51)

Next, we use (45) and the choice of v to deduce

T
/ / e 2730 p)? da dt < C(// e 2| f12dt dx
3 /0.1 Q

T
[ et (ta a4 Pl aretoms P ), (52
0

for s large enough. Combining (51) and (52) we obtain (49).

Let us consider sg as in Proposition 8. We introduce

80\/5

Ko = max ((z) and k1 :=

50 .
= = — . 53
07 T4 sefon T1/4 xrgl[%ﬁ]ﬂ(x) (53)

Corollary 1. Under the assumptions of Proposition 8, one has

__2mg 1 o2
// e @0V (T — )4 p|? da dt —|—/ (0, 2)|? do < C(// e @0V f2dt dx
Q 0 Q

T o 2m
+ / (T = )76 T 07 (paapos 2 4 (T = )7 oo ) dt ). (54)
0

3.3 Controllability

We introduce the following space:
Eo = {y € L*(0,T;L*(0,1)) / ey € L*(0,T; L*(0,1))}. (55)

We have the following controllability result.



1a10]
Proposition 9. Given h such that (T — t)%/3e™-07*h ¢ L2((0,T) x (0,1)) and yo € L*(0,1), there
exist controls va,vy € L?(0,T) satisfying

. .
(T —t)Y/8e @07 yy € L2(0,T) and (T —t)3/Se @07y, e L2(0,T), (56)

such that if we call y the solution of (37) starting from yo with vi = vz = vs = 0, then y belongs to Ey.
In particular y, which belongs to C°([0,T); H=>(0,1)), satisfies

Yj=r =0 on (0,1). (57)

Besides, there exists a constant C' > 0 such that

k1 k1
le ="yl L2 (0.1:L2 (0,1)) + (T = )2 @07 (vy, (T — 1) *04)|| 20,7

k0
< C(H?JO||L2(O,1) + (T — )%/ Be =017 h||L2((o,T)x(0,1)))' (58)

Proof of Proposition 9.
The proof is inspired by Fursikov and Imanuvilov’s approach [11]. Define L

3
Ly ==y + ayss — Z ar(t,z)0ky, (59)
k=0
and L* its dual operator:
3
L*¢ = —¢r — adse — »_(—1)" 0% (ax(t, )9). (60)
k=0

Let us set

Fy = {¢ € COO([O,T] X [Oa 1]7R) / ¢\z:0 = ¢\$:1 = ¢z|:r:0 = (Z):r\z:l = ¢wz|a::1 = O}

Consider the bilinear form

a(037¢)=// ¢ T o L*¢ L* ¢ dx dt
Q
T

2k

+/ e (ol (T - t)71/4 [Qg4z|w:1¢4z\w:1 + (T - t)71/2&)wzw\w:1¢wzw\w:1} dt véa ¢ € Fo.
0

We also introduce the linear form
1
£, @)y = // ho dt dx + / ug Plp—o do. (61)
Q 0

Introduce F the completion of Fyy for the norm ¢ — a(¢, ¢)'/? (it is a norm from Corollary 1).
The next step in this proof is to demonstrate that there exists exactly one ¢ in the class Fy satisfying

a(¢, ) = 1(¢), Vo € Fo. (62)

Now Fy is a Hilbert space for the scalar product a(-, -), hence in order to get (62) it is sufficient to prove
that ¢ is a continuous linear form on Fy. From Cauchy-Schwarz inequality, we see that

ko ___ k0o
’// hqﬁdtdw’ < (T = 1)@= h| 20 rir2 ) (T = )" F e T=07% | 20 1r200)) (63)
Q

Using the assumption on h and Corollary 1, one sees that £ is indeed a continuous linear form on Fy.
Hence there exists a unique ¢ € F satisfying (62).

10



Let us set

2K

_ 2k ~ 2k 28
y=e TG vy = (T—t) Ve T07 ¢, and vy = (T—t)"3 e @07 G, 0y (64)

Finally it is not difficult to see that y € Ey, that (va,vs4) satisfies (56) and that y is a solution of (37)
with v; = v3 = v5 = 0. This concludes the proof of Proposition 9.

Now we define the space

K1
Ey={ye By /(T —t)"*e@0""y e L*(0,T; H(0,1)) N C°([0,T}; Hg (0, 1)),
kQ
Ye=0 = Yelo—=0 = Yazlomo = 0, (T — )28 @7 Ly e L2(0,T; L*(0,1))}.  (65)

0]
Proposition 10. Given h such that (T —t)%/%e ™07 h € L2((0,T) x (0,1)) and yo € HZ(0,1), there
exist controls (va,vs) € L?(0,T)? such that the associated solution y of (37) with vy = v3 = v5 = 0
belongs to By and moreover satisfies

K1 R0
I(T=t)> e T=0T2y || 20,740,100 (0,712 (0,1)) < C(IlyoHHg(o,nHI(T—t)g/ge<T*““4 hllL?((&T)x(o,l)))v
(66)
for some C > 0.

Proof of Proposition 10.

We extend the problem to the interval [0,2]. We extend yo (resp. k) by 0in [1,2] (resp. [0,T]x[1,2]),
we call gy (resp. iz) the resulting function. We also extend ay in [0,7] x [1,2] in a way that keeps the
L>(0, T; Wk>) regularity (in a continuous way), and in such a way that

an(t,z) = 0'in [0, 7] x [%,2].

We now consider the following control problem

G + afse = Yoo an(t,x)0%G +h  in (0,T) x (0,2),

Yje=0 = Yz|z=0 = Yzaz|z=0 = 0 in (0,7),

Yje=2 = U2, Yz|a=2 = U4, in (0,7), (67)
Y=o = Yo in (0,2).

According to Proposition 9, there exist 02, 04 fulfilling (56) such that the corresponding solution § belongs
to Ey (adapted to the interval [0,2] of course). Now we claim that the restriction of § to [0,7] x [0, 1]
satisfies the required properties. We have to establish that

K1

(T —t)**e =0Ty € L2(0,T; H*(0,1)) N C°([0, T; H(0, 1)).
For that, we introduce
K1
y*(t,x) = (T — t)* e 07 (¢, x). (68)

This function satisfies

yi + oyd, = Yiop ak(t,2)0y" + bt in (0,T) x (0,2),

y\*;czo = y;|w:0 = y;x|x=0 =0 in (0,7),

Ylpmo = V3 Ypjpea = Vi in (0,7), (69)
Vo= in (0,2),

11



where

K K1
Yo = T5/4e 71 gy, (v3,05) = (T — t)*/ e @07/ (B, Ty)
and h* = (T — )%/ *e@ 07y 4 %[(T )Tt ),
These data are in HZ(0,2), in L?(0,7)? and in L2(0,7T; L?(0,2)) respectively, thanks to Proposition 9.
We will use the following lemma, whose proof is postponed to the Appendix.

Lemma 1. For k large enough, one has (2 — x)ky* € L2(0,T; H*(0,2)) N C°([0,T); H?(0,2)) with the
estimate

4

(2 - f)k+§y*||Loo(o,T;H2(0,2)) + Z (2 - $)k+j_4a£’y*||L2(0,T;L2(0,2))
j=0

< C(Ih*lz20.mz20.2)) + W6 L2 (0,.2) + W3 Ml 220,7) + 01l z20,7))  (70)
for some positive constant C.

Now we use (70) and the continuity of the previous extensions from (0,1) to (0,2) to deduce

K1
(T — t)>/*eT—ot7 Yl 220,754 (0,1))nC0 (0,7]: 2 (0,1))
K1 d
t

K1
< C(Hyo||Hg(o,1) + (T — )/ te =017 hllL2(0,1)x(0,1)) + Hd*[(T — t)P/ e o1/t 1yllz2 0,7y % (0,1))
K1
T = )27 (v, (T = ) 00) | 20,1 )

for some C' > 0. Finally, we use k1 < k¢ to estimate the second term in the right hand side, and (58) to
estimate the last two terms. We deduce (66).

4 Nonlinear problem

4.1 Proof of Theorem 2

We use a fixed point scheme to prove local existence and uniqueness in X := L2(0,7; HZ(0,1)) N
C°([0,T]; L?(0,1)). Given z € X, we introduce the solution of

Ut + QUsy + Uzgr + B2Ugry + 022Uge + P/ (2)u, =0  in (0,7T) x (0,1),

Ulz=0 = U|z=1 = Ug|z=0 = Uz|z=1 = Uzz|z=0 = 0 in (O7T)a (71)

Ujp—=0 = Uo in (0,1).

Call T the corresponding operator. The existence and uniqueness of u is obtained as in Proposition 4:
one associates to 1) € X the solution of

Ut + U5y = _/f“[)www - 62’([)wwm - 6zw¢wx - Pl(z)l&w in (05 T) X (07 1)a
Ulz=0 = U|g=1 = Uz|z=0 = Uz|z=1 = Uzz|z=0 = 0 in (Oa T)a (72)

Ujt=0 = Uo in (0,1).

Let us notice that 1., € L2(0,T; H1(0,1)) while (by interpolation) z € L*(0,T; H(0,1)), and hence
2gae € LY3(0,T; H1(0,1)); on the other hand, one also sees that zythy, € L¥3(0,T; H-1(0,1)). It
follows then from Remark (2) that (72) defines a solution in L2(0,7T; H?(0,1)) N C°([0, T]; L?(0,1)).
Now consider ¥, and 1/;2 in X, and their images u; and ug by the above mapping. Making the
difference of the two equations, multiplying by (2 — x)(u1 — ug) and performing the same operations as

12



in Proposition 3, we infer

dtdz

o walfe < [ ] [ = va)etih — )

+ //Q ‘z(ul — uz)z(l/AJl - 752)41?90

dt dx + //Q ‘(m — ) 25 (U1 — V) e

dtdx—&—//Q ‘(m —up)(1 + 22 (1 — Va)a

dt dx} . (73)
We deduce

lur — ual) < Cllvbr — Yol L20,m;m200.1)) |:||U1 — ual|L2(0,7:H1 (0,1))
+ ||Zz||L8/3(o,T;L°°(o,1))||U1 - U2HL8(0,T;L2(0,1)) + ||ZHL8(O,T;L2(O,1))||U1 - u2||L8/3(O,T;le°°(O,1))}
+ Ol — Yoll Laqo,rmr 0.1y | 1us — w2l Lasso.ren20.0y) + llut — U2||L4(0,T;L6(o,1))||Z||%4(0,T;L6(o,1))}- (74)
Note that by interpolation and Sobolev imbedding we have
L2(0,T; H2(0,1)) N L*°(0,T; L*(0,1)) < L*2(0,T; L°(0,1)) N L¥3(0,T; WH>(0, 1)).
We infer that (at least if T < 1)
lur = w25 < CTYE(1+ [|2]3) 1 — dholx lur — uax-

Hence the operator is contractive for sufficiently small time T, which proves the local well posedness of

(71).

Now let us prove that 7 has a fixed point. First, let us prove that for some constant C' > 0, the
solution u of (71) satisfies
lullx < exp(CTY®(1 + ||2[3)) w0l L2(0.1)- (75)

For that, we multiply again (71) by (2 — x)u; after some integration by parts, we can deduce

d S5a 1 !
G0+ 5 [ uesP e < OO+ o)+ o)l + [ s o

for arbitrarily small e. Then choosing € small enough and applying Gronwall’s lemma yields (75).
Now let us show that 7 is contractive on

Bi={ue X / |ullx <2|uollzz(0,1)}

for sufficiently small T'.

From (75), we see that, provided that T is suitably small, B is stable by 7. We now consider that
this is the case. Now consider z1, zo € B and denote uy := T 21, ug := 7T 29, 2 := 21 — 22, U := U] — Us.
We have

Uug + QUsg + HUzza + /leuxzz + ﬂZUQ,a:m:v + 5Z1,93u:vz + 521“2,11
+ P'(z1)uy + [P'(21) — P'(22)Juz. = 0 in (0,7) x (0,1), (76)

We multiply (76) by (2 — z)u, integrate in both time and space and perform the same reasoning as in
(73)-(74). After lengthy but straightforward computations, we deduce (if T < 1)

lullk < CTY*[|luz )l x ullx |12l x + (L + 215 ull3]- (77)

Using that both us and z; belong to B, this establishes that 7 is contractive on B for sufficiently small
time T'.

Now that we have shown the existence of the solution of the nonlinear equation, we can prove its
regularizing effect through a bootstrap argument.
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First, since u is in L2(0,7; H%(0,1)) and using (75), one can find 7" € (T/4,T/2) such that u(T",-) €
H?2(0,1) with

c
(T, Ml 20,1y < g lluoll e (78)

From now on, we consider T’ as the initial time and look at the Cauchy problem starting from time 7".
We introduce X := L?(T',T; H3(0,1)) N CO([T", T); H*(0,1)) N HY(T",T; H=2(0,1)) and

Bi={ueX [ |ulg < 20T o}

Observe that B is a compact convex subset of Xpv := L*(T",T; H3(0,1)) N CO([T", T}; L*(0, 1)).

Now we see that X is an invariant space for T: the right hand side ptyrs + B2Uzer +022Uzs + P (2) Uy
belongs to L?(0,T; H1(0,1)) when u € X and z € X then the statement follows from Proposition 3.
Moreover, we have

lull ¢ < C(H/sz + B2Uggr + 025Uz + P/(Z)uw||L2(0,T;H*1(0,1)) + |lu(T", ')||H1(0,1))
< (@ + 2P lullx + T, ) ao)- (79)

We use (75) and (78) to finally get
lullx < CQ+[l2l%) luoll z2(0,1)- (80)

This proves that for small ug, 7 sends B into itself. Then by Schauder’s fixed point theorem, there
exists a solution of the nonlinear problem in B. Due to the uniqueness of the solution constructed by
contraction in X7/, this solution coincides with the solution which we constructed in X.

We introduce nn € C*°([0,T];R) such that n = 0 in [0,7/4] and n = 1 in [T/2,T]. We consider the
equation satisfied by nu and use Proposition 3. It is not difficult to see that, since u € X, the right hand
side in

(nu)t + a(nu)5w = —HUNUgzyr — ﬁnuuacxm - 677uzuww - UP/(U)U:E + 77/U in (07 T) X (Oa 1)7

can be estimated in L?(0,T; L?(0, 1)). Hence we deduce that nu € L*(0,T; H*(0,1))nC°([0, T]; H%(0,1))N
H'Y(0,T; H=1(0,1)). Then repeating the above steps we can show that the solution u becomes C* in
time and space in arbitrary small time.

4.2 Proof of Theorem 1

We consider a trajectory u as indicated in the statement; then uw = @ + y satisfies (1) if and only if y
satisfies

+ pYe + 2q((T+ y)ye + Tpy) +3r(y(2u +y) (@ +y)e +7y:) = 0. (81)
Conspicuously, the controllability of (1) to the trajectory @ is equivalent to the null controllability of

(81).
Now we have the following result for (81).

Proposition 11. Given yo € L*(0,1) and u € L>(0,T; W3°(0,1)), there exists T > 0 such that the
nonlinear problem (81) with homogenous boundary conditions (3) (v1 = ve = vz = v4 = vs = 0) admits
a unique solution y € L*(0,T; H*(0,1)) N C°([0,T]; L?(0,1)), which regularizes in the sense that for any
7€ (0,T), uw € L3([r,T]; H*(0,1)) N C°([r, T]; H*(0, 1)), with moreover

lyllco (7 12(0,1)) < C(7,8) |[uoll £2(0,1)- (82)

The proof of Proposition 11 follows the steps of the proof of Theorem 2; all the computations are
justified thanks to w € L>(0,T; W3°(0,1)). We omit the details.
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We now turn to the proof of Theorem 1. The solution of the controllability problem is obtained
in two successive steps. In a first step, we set the controls (va,v4) to (0,0). According to Proposition
11, this regularizes the state of the system, so that we may consider that the initial state yg belongs to
HZ(0,1) and is small (see (82)). From now, we consider that this is the case, and proceed to the proof of
the null-controllability of system (81) with such an initial state, by using the inverse mapping theorem.

We introduce the coefficients aj, as follows

ap = ﬂﬂ3m + 2qty + 67U U,
a1 = 0lyy + p + 2qT + 312,

az = 5ﬂm7
az = p+ fu.
Recall that L is expressed by (59). Define
0]
Yy = {f € L*(0,T; L*(0,1)) / (T —t)*/8e ™" f € L2(0,T; L*(0,1))}, (83)

equipped with the clear corresponding norm. We consider the following map

(84)

. E1 —>H3(0,1)XY1
y— (Y(0), Ly + BYYzzs + YuYuw + (2¢ + 610)yy, + 3r0y* + 3ryy.).

Recall that the definition of E; was given in (65). Note that the mapping A is well defined and C*.
Indeed, from y € F;, we find out that

2k

BT — 1) 2T =07y, € L(0,T; L7(0,1)).

Then, thanks to (46) and (53), we have that
"o

B(T — ) 8e =0T yy 0 € L*(0,T; L2(0,1)).
The same can be done for all the other terms (since they are bilinear or trilinear). Now using Proposition
10, we see that A’(0) is a surjective map. Hence there exists a neighborhood of (0,0) in HZ(0,1) x Y7 on
which A is onto. This gives the desired result.

5 Proof of Proposition 7

Let 9 := e~ **p, where « is given by (42) and ¢ fulfills system (40). We deduce that

L1¢ + L2¢ = L3¢7

with
Lytp =t + 50 + 105”0300 + 55" 1), (85)
Lotp = 580,y + 108° a3, + 8220 + sapth + 1080400 0e + 305° 2 thy, (86)
and
Ly = —e‘“"{ (€% (BsQa s + 35%Qzaza®))] 4 [€°* (35000 rs + 652awa7;www)]x}
f{ — 6800 Wprr + 12820 0pp Wy — 158302000, + Ts*a apeth + 65302, } (87)

semsed f 4 o) ak ault, e ).

(We recall that azz, = 0.) Then, we have

||L11/1H2L2(Q) + ||L27/’||2L2(Q) + 2//@ Lytp Loy dx dt = ||L37/1H%2(Q)- (88)
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The main part of what follows consists in evaluating the double product term. We will denote by
(Liv); (1 <i<4,1<j <6) the j-th term in the expression of L;i). We recall that o > 0, oz < 0,
Az < 0 and gz, = 0. In the sequel we will repeatedly use that ¥),-01 = ¢z |y=01 = 0.

e First, integrating by parts with respect to x and t, we have

((Llw)l, (L2w)1)L2(Q) = —5s // az¢tm¢xrz dtdx — 5s // amzdjtwmzz dt dx

Q
39// @z (|thee]?)s dtd:c+105/7 QpareVae dtd:v+5s// Qpwa Vi Vpe dt dz
2 JJg Q Q

> —C’ST// a5|1/1m|2dtdw+103// QuoWizWey dt dx.
Q Q
(89)
For the second term, we get
(L1¥)1, (Lo)2) r2(g) = = —bs° // a3 (|¢5]?)e dt dz — 30s® // Q2 0t tbrthy dt da
Q Q (90)
> —Cs3T// a|th,|? dt doz — 30s® // Qi) dt dr.
Q Q
For the third term, we obtain
(L)1, (L2)s)r2@) = *S // )i dt dzx

v

(91)
—Cs°T // a%y? dt dx.
Q
We consider now the fourth term of Lyt and using (44) we readily get

(L)1, (L)) gy = // s (42), dt da

(92)
> —CsT? // a2 dt dx.
Q
The next term gives
((L1)1, (L2tp)s) 2y = —10s // Az Ptz Ve dt dx. (93)
Q
The last term gives
(L1¥)1, (Lo¥)6)r2g) = 30s° // 02y dt da. (94)
Q

All these computations ((89)-(94)) show that

(L)1, (L)) > —CsT // 0 a2 dt di — CST // o745, dt da
—O( ‘)T+sT2)// a%y? dt dx
> e // 0 thra? dt d — 57 // o[t |? dt da )

—€s // ay? dt dx,
Q

for any € > 0, provided that s > CT"'/*, where C' depends on €.
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e Now we consider the second term of L;. The product with the first term of Lo gives

5 5 (T
((Llw)% (L2w)1)L2(Q) = _58// aa:x|w4a:|2 dt dx + 58/ am\z:1|w4z\z:1|2 dt
0

5

755/ O‘x\z:0|w4w\x:0|2 dt.
0

(96)

Similar computations give the following for the second term:

T
(e, (Eavodisigy = 55" [ odves Phedtde 105" [ oy _othgocotiomo
0
—30s3 / / O 0V sp e dt dz
@ T
455 // 2 e [V | dtdx—533/ ai|gg:1|¢mz|:p:1|2 dt
& O
+583/ ai\z:0|wxxx\m=0|2dt* 1083/ ai|x:0¢4x|x=0¢xm\x=0 dt
0 0
T
+3083/ ai|m:()aacaclxzowxmc\aczodjacﬂxzo dt—CS3 /A a3|"/}zxm”'¢}mx|dtdm
0

v

(97)
For the third one we have
(Law)s, (Lo)s) 2y = —s // 03 pagth dt dz — 55° // o thanth dt di
= *// |1/Jm| L dtdz +10s° // « ozmzl)wmim dt dx
1555 // (020 thnaat) dt (98)
Z *7/ 3:|x Owja:xhc 0‘2 t,75 // (63 O[IT|¢’EI| dtdx
—cs° // (W 6] + el 5] it
Then, we see that
((L19)2, (L2¥)a)r2(q) = —3// Qg dtdx—s// Qg Partp dt d
s Q Q
= 2//Qat(|1/1m|2)zdtdx—&—23//Qatxwgzz/1zdtdx
Q
> —CsT //g 05 ([t ? + el (6] + 1521)) dt do
_CST/(; afw:0|¢xw\z:0|2dt'
Next,
T
((L1¢)27(L2w)5)L2(Q) = _108// aza:|¢4a:|2 dtd.’L’-ﬁ-lOS/ azz|m:1w4z\z:1wmmx\$:1 dt
? 0 (100)

—10s / azw\aj:0¢4w\w:0¢wa}x|z:0 dt.
0

We used that oy, = 0.
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Finally,

((Ll'(/})% (LQw)G)LQ(Q) = 308 // (6% aa:wl/)élwwmx dtdx — 303 // Oé awx w4w'¢)w dtdx
- 305 // o aﬂﬂﬂfwjmcz‘z dtdx + 305 / (aiaam)\w:0¢www|w:0www\x:0 dt

—Cs? /Qa ([ V| + Yoz [tes|) dt da.

(101)
Putting together all the computations concerning the second term of Ly ((96)-(101)), we obtain

((L1¢)27L2¢)L2(Q) > _*S// awz|w4z|2dtd$+758 // (67 azz|"/}xwz| dtdz

—75 // o ax;c|'¢)xx‘ dtdl‘_fs/ g |z= 0|w4a;|:r 0| dt
OT
_7/ m|ac 0|1/]z'r|r O| dt—].OS / ax‘z:0w4m|xzowxz\m:0dt
+5s3/0 a3 p=o|Vazajo—o|* dt — es” // a?? dt dx
es // o [, |* dt dx — es® // P [hpe|? dt dz (102)

—es / 3|¢m|2dtdx—es// althag | dt do
T
_685/ O‘|x:0|¢wz|a::0| dt — €33/v O‘|x:0|wwwz|x:0|2 dt
¥ f
765/ O‘\w:0|’¢)4w|x:0|2 dt — OS/ a\w:1|w4w|x:1|2 dt
0 T 0
7053/0 a?x:lea:a:ﬂw:l'zdtv

for any € > 0, provided that s > C(T*/* + T'/?), where C depends on e. (We used that s > C(e)T"/?
for appropriate C(€) and a < CTa3.)

e We consider now the products concerning the third term of Ly1. First, we have

T
(L1v)3, (LaY)1) 2@y = —7533// aiam|z/}wm|2dtdx+2533/ aiu:1|z/}mz|x:1|2dt
2 0 (103)
72553[) ai\x:OW’www\x:OF dt.
Secondly
|4 =4 T =4
(Law)s, (Lat)o)raig) = —2505° //Q 0t |t 2 dt diz — 505° /0 0% olnstecol?dt.  (104)
Third,
(L19)s, (Lot)3) r2() = _537// aZ(|wI|2)mdtdm—7087// Sy gty dit d
9 9 (105)
> 10587// agam\wz|2dtdx—037// Q[ ||| dt d.
Q Q
For the fourth term, we have
(L19)3, (Lo¥)a) 12(q) = _1033// 2t ppthy dt drz — 103 // (2 0) s Pat) dt da
Q (106)
>

—Cs?T /Qa7(1/)1|2+|1/1||1/)m|)dtdx.
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We obtain the following for the fifth term:

((L1w)s, (Lath)s) 2 ) = 1005° / /Q 02 0|t 2 di iz (107)

Finally,
((L1%)3, (L2v)6) r2(q) = —300s° //Q 0y | Vra|* d dt — Cs° //Q O || [t | dt d. (108)
Consequently, we get the following for the third term of Lyt ((103)-(108)):
(L1¥)3, Lo) r2(g) > 258° // 2 e |Vpe|? dt dz — 5505° // Oy | Ve |* dt dz
+10557 // A8 vy || dt dx — 2553 / a3 p—o|Vazale=ol” dt

—50s° / x\z 0|Vze)a= of? dt — es® // a%? dt dx (109)

—es // o, |2 dt dx — es® // P [pe|? dt dz

—CS / a|$=1|q/}a:w£v‘1:1|2dt’
0

for any € > 0, where again s > C(T/* + T'/?) and C depends on e.

e Now, we compute the fourth term. First, we have:

25
(e (L)) = —os' // (ral?), dodt — 12557 // 0ot dar
375
> // p O [V | dt d + —s /o mlm:O'wTErlw:O' dt (110)
—Cs° // QP[P ||| dz d.
Q
Next, we obtain
(L1v)a, (L2¥)2) 12 (@) = —175s7 // al e, |? dt da. (111)
Q
For the third term, we get
45 9 8 2
((Llw)47 (LQ¢)3)L2(Q) = —?S o Oéw()(xw|¢| dtdx. (112)
Then,
((L1v)4, (L2tp)a) 2y > —CS5T// o®p|* dt da. (113)
Q

The fifth term gives

((L1t)a, (Lav)5) r2(q) = —50s° //Qaiam|¢m|2dtdx—(§'s5 //Q &P Ve | V2| dt da. (114)

Direct computations for the last term provides

((L14)4, (L2®)6) £2(q) = 150s” //Q aS || dt da. (115)
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All these computations ((110)-(115)) gives

((Ll’(/J)4,L2’l/J)L2(Q) 2 275 5// « a:pa)|/(/)m:v| dtdw—25s // « Oézx|wm|2 dt dx

4
_js //a amw‘w?dtdx—l——s/ %|z—o\¢m|m:0\ dt
(116)

—€s // 2YP?dt de — es” // o [, |* dt dx

—€s // P |the|? dt d,
Q
for any € > 0, where again s > C(T"/* + T'/?) and C depends on .
Let us now gather all the product (L1%, L2v) 2 () coming from (95), (102), (109) and (116):

(L1, Latp) 2y > ——s// oz |[Vaz|? dt dz + 10053 // 2 [Vpee|? dt dx

—4255° ? 2 |thpe|? dt do + 80s7 // alag,|th,|? dt do
Q

775 // Q; Oéﬂ?ﬂ?|1/)|2dtd$7 75/ w|w=0|w4w|w=0‘ dt

T
_205/ m\x:o|¢xxm\z:0| dt—388/ ailx:0|¢zz|x:o|2dt
0., 0

_1083/ Oéi‘w 0¢4x|m*0¢mz\z*0 dt

—es // Y2 dt de — es // o 1p,|? dt dx o
—es // P [pe|? dt dz — €53 // &P ps|? dt d

_es// Oz|¢4x|2dtdx—es/ %:olwmz:o\ dt
Q 0

T T
7653/ a|3m:0|¢x:cac|x=0|2 dt — 6S/ a\x=0|w4x\ac=0|2 dt
0T 0 T
_CS/ a\x:1|¢4ac|x:1|2 dt — C83 / a?x:1|¢acacx|m:1‘2 dt,
0 0
for s > C(T'/* 4 T'/?).

Let us explain how we handle the wrongly signed terms in [t |? and |1,
parts, we get

100s* // Qe dtde > —100s® // 2 e ypthag dt do — es® // P|thpe|? dt dx
Q Q Q

T T
3 3 2 5 5 2
—€S / a|x:0|¢xa¢x|x=0‘ —€s / a\z:0|wxac\x=0| dt»
0 0

|2. After integration by

(118)

by taking s > CT'/2. The last two terms in the right hand side are already in (117), while the first one
is estimated as follows, by using Cauchy-Schwarz’s inequality:

100s ‘// x|am|¢mz/}4zdtda:‘ <123// am|w4w|2dtd:§+ // b e ||[Vee|? dt dz.  (119)

On the other hand, by integration by parts and Cauchy-Schwarz’s inequality, we have for s > CT/2:

07| [ aSaafuuftdvas| < @22 s ] ol s+ 2 [ atlosa o ards. aon)

Observe that 625 800
= + T < 425. (121)
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Finally, we have

T T T

25
1053‘ / ai\mzo¢4x|x:0¢xz|z:o dt’ < 28/ |04x\z:0|\¢4m\z:0|2 dt + > 85/ |04x|x:0|5\¢m|a;:0\2 dt.
0 0 0

(122)
Now we observe that thanks to (43) we can absorb all the “c terms” in (117) provided that s > CT"/2.
Finally, using again (43) we deduce from (88) the following inequality for :

s// a|1/)4x|2dtdx+53// a3|¢m|2dtdx+s5// QP [Py |* dt dx:
Q Q Q
+s7// a7|wm|2dtdx+39// ®|wp|? dt dx
Q Q

T T
<Ot +5 | @pmbbaamiP i+ s [ f i P ). (129
0 0

Now it is not difficult to see that all the terms in L3t yield a L?-norm estimated by

ILs¢0172(0) gC(SZ//Qaﬂwm?dtders‘*// a4\1pm|2dtd:c+sﬁ// a®lap,|? dt dx
+s // 8|1/1|2dtdx+// *QSa\detdx) (124)

for s > CT"/2. Here we have used that aj, € L>(0,T; W*>°(0,1)). Hence they can be absorbed by the
left hand side of (123) provided that s > CT"/2. We deduce the Carleman inequality for 1

s// a|1/)4m|2dtdx+s3// a3|1/)xm|2dtd:r—|—55// a5|1l)m|2dtdx
Q Q Q
—1—37// a7|wm|2dtdw+59// ®|wp|? dt dx
Q Q

T T
<C(s [ apmlbumPdt+ 5 [ b g e+ //Q e fP dtdr). (125)
0 0

It remains to replace ¢ by ¢, to use (43) and s > CT"? in order to deduce (45).

6 Proof of Lemma 1

We first establish two lemmas before turning to the core of the proof.

Lemma 2. Let p satisfy

Dt + sy = g in (0,T) x (0,2),

Plz=0 = px|w 0= pa::v\m 0=0 in (OvT)v 126
Plz=1 = UQ» Pzlz=1 = =4 in (OvT)7 ( )
Djt=0 = Po in (0,2)

Then for k > 2, one has

1 _
12 = )" 2 p|l oo (0,7:L2(0.2)) + (2 = ) PaallL20.7:L2(0.2)) + (2 = )" Pl L2 (0.7:22(0.2))
_ 1
S - x)k+19”L2(O,T;H*2(O,Z)) + 112 - l‘)k 2pHL2(0,T;L2(0,2)) + 12 - x)k+2p0|\L2(0,2)~ (127)

Proof of Lemma 2. As previously, we multiply by (2 — 2)?**1p; we get

1d [? 2k+1  [?
1% (2 — )T p2de +5 a/ (2 — )% |ppe|? da
0 0
2 2 2
:/ (2—m)2k+1pgdx+6k(2k+1)a/ (2—2)* 1 pee dm—2k(2k+1)(2k—1)a/ (2—2)2*2pp,, dx.
0 0 0
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We utilize Young’s inequality:

‘ / )2 2 ppa| <
‘ / ) pupes| <

Integrate by parts in the last term, we deduce (127).

2 2
1
e [ e-at e ;[ @m0 P
0 0
2 1 2
e[ C-aP ot L [ @0 i
0 €Jo

Lemma 3. Let p satisfy (126). Then for k > 7, one has

1 i
12 = )2 pll e (0,73 172(0,2) Z 12 = )" 00y" || L2 0,1:22(0,2))
=0

S llgllzzo.rs2(0,2)) + IPoll2(0,2) + 192/l 220,7) + 104l 220,77y (128)

Proof of Lemma 3.

First step. Higher order estimates. Let g € L?(0,T;HZ(0,2)). We apply Lemma 2 to ps, (which
satisfies the boundary conditions), and get

(2 — 2)* 2p5xHL°°(O Ti2(0,2)) + (2 = z)k PsellL20,m;52(0,2)) S (2 — ) +1g5m||L2(0,T;H*2(0,2))

12 = 2)* 2psallrzo,miz20.2) + 12 = 2)" 2posallz20,2)  (129)

By an integration by parts, this inequality yields

1 —
12 = )" 2 psall L 0,1:22(0,2)) + 12 = 2)*prall 20,1 L2(0,2)) + 12 — )" P6allL20,1:L2(0,2))

She- $)k+195m||L2(0,T;H—2(0,2)) +1(2 - x)k_zpm||L2(0,T;L2(o,2)) + (2 - x)k+§P0,5x|\L2(0,2)~ (130)

Now in order to estimate the term concerning ps, in the right hand side, we observe that

T 2 T 2 T 2
/ / (2—2)% A ps,ps, do dt = — / / (2—2)* A pgupae da dt-+(k—2)(2k—5) / / (2—x)%k=C|py,|? da dt,
0 Jo 0 Jo 0 Jo

(131)

T 2 T 2 T 2
/ / (2—2)** 2 pgapes dx dt = —/ / (2—2)2* 2 ps,pra da dt+(k—1)(2k—3)/ / (2—x)%~ 4p§L dx dt.
o Jo o Jo o Jo

(132)
The identity (132) may be used to estimate the first integral in the right hand side of (131) (with
ab < ea® + b%/€). Now injecting in (130), we obtain

2

1 e
12— I)k+2p5zHLoc(o,T;L2(o,2)) + Z (2 — x)k Jﬁl jp”L?(O,T;L?(O 2)) N S 2 —x) +lg5z||L2(0,T;H*2(O,2))
=0

4 1
+ 12 — x)* 3p4m||L2(O,T;L2(0,2)) +11(2 - z)k+2p0,5x”L2(0,2)~ (133)

Now to absorb the term concerning py, in the right hand side, we operate in the same way, but here a
boundary term appears:

T p2 T p2
/ / (2= 2)* S paopag do dt = — / / (2 — )% psups, d dt
0 Jo

T
+(k—3)(2k -7 // )28 78| ps, |2 da dt + 225 6/ P3le—0Paz|e—o dt. (134)
0
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This latter term is treated as follows:

T T 1 T
‘ / P3z|z=0P4x|z=0 dt‘ < 6/ |p4:1:\w:()|2 dt + E / |p3a:|x:0‘2 dt.
0 0 0

Now

g 2 1 T 2k—5 (2k —5) )2k=6 2
|Paz|z=0|” dt = ~ 32h% (2—x) DazPsz dt dx — 53T |pax | dt dz,
0 0o Jo

which can be treated as above7 while

T 2 2k 7 Qk 7 2k 8 2
0

which leads us to

3

12 = 2)** 2 psa | L= 722 0.2 + D 12 = 2)* 70 I pll 2o, mi20.2)
7=0

SE—a)r* g5x||L2 0,7:H-2(0,2)) + (2 x)k74p3x||L2(O,T;L2(0,2)) +11(2 - Cl”f)’HEPo,mcHL2(0,2)~ (135)
Then one follows the same steps as previously (note that pj,—g = Pyje—0 = Prajz—o = 0) and finally get

6

12 = 2)* " 2 psal Lo 0,1322(0,2) + D (2 = 2)* " pll 120, 7502(0.2))
j=0

SN@ =2 gsall2rm—202) + 12— ) pllL20.1:0200.2)) + 12 = )" 2po sl 2(0,2), (136)
and consequently, using Proposition 6,

6

1 _ . .
12 = )" 2 psall L= 0,22 0,20 + Y 12 = 2)* T 0pll 20,752 0,2))
j=0

1 ~ ~
S @2 =2)" gl r2o,rm20.2)) + 112 = )5 2posall2(0,2) + 02l £20,7) + 94l 20,7y (137)

Second step. Interpolation. Now we consider the operator which maps (po, g, 02, 04) to (2 — 2)*+1p: it
is continuous from

L2(0,2) x L*(0,T; H™*(0,2)) x L*(0,T)* to L*(0,T5 H?(0,2)) N C°([0,T1; L*(0,2)),
respectively

Hg(0,2) x L*(0,T; Hg (0,2)) x L*(0,T)* to L*(0,T5 H'(0,2)) N C°([0,T]; H°(0,2)).
By interpolation, it is hence continuous from

H2(0,2) x L*(0,T; L%(0,2)) x L*(0,T)? to L*(0,T; H*(0,2)) N C°([0,T]; H*(0,2)).
This concludes the proof of Lemma 3.
Proof of Lemma 1.
We apply Lemma 3 with p = y* and g = Z?:O a;j(t,x)0%y* + h*. We infer

1 4 . .
12 = 2)* 2y | Lo otz 0.2) + D 2 = 2)* 40y L2omy220.2)) S 07 [1L20,13220,2))

=0

+ ) 1105y 20, sz2002)) + WG 2 0,2) + 103220,y + V3220, (138)
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Now, using that the supports of @; are away from 2, we can estimate the terms Z?:o la;09y* | L2(0,7522(0,2))
as follows

3 4
Z deafny* HLZ(O,T;L2(072)) < ez (2 - x)k+j74aiy*||L2(O,T;L2(0,2)) +Clly* HL2(O,T;L2(O,2))7
=0 =0

exactly as in Lemma 3. We get

4

1 4 j— )k
12 = 2)* 2y | Lo mmr0,2)) + O 12 = )" 00y" | L20.13220.2))
j=0

SR (22 (0,72200,2)) F 197 | L200,7:22(0,2)) + W0 | 52(0,2) + 10311 220,77y + V1 |20, 7)-

Using again Proposition 6, and thanks to (58), this gives (70), hence completing the argument.
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