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Abstract

We establish an Oleinik-type inequality concerning BV entropy solutions of general scalar conservation
laws in one dimension:

ut + (f(u))x = 0 for (t, x) ∈ R+ × R.

This inequality reads, for x ≤ y and t > 0:

f ′(u(t, y))− f ′(u(t, x)) ≤
y − x

t
+

p
‖(f ′′)−‖∞‖(f ′′)+‖∞

“
TV (u(0, ·))− TV (u(t, ·))

”
.

This contains Oleinik’s inequality for convex fluxes; in particular, almost convex and almost concave fluxes
yield solutions that almost satisfy Oleinik’s estimate.

We also show that this inequality is not satisfied in general when one replaces the factor
p
‖(f ′′)−‖∞‖(f ′′)+‖∞

with ‖(f ′′)−‖∞ or with ‖(f ′′)+‖∞.

1 Introduction

We consider a general one-dimensional scalar conservation law:

∂tu+ ∂xf(u) = 0. (1)

Here f : R → R is a smooth flux function, u = u(t, x) ∈ R is the conserved quantity, and t ∈ R+ and x ∈ R
represent time and position coordinates, respectively.

The well-known result of Kruzkov [12] states that for any u0 ∈ L∞(R) there exists a unique entropy solution
of (1) satisfying

u|t=0 = u0. (2)

We recall that by entropy solution, we mean a weak solution which moreover satisfies the so-called entropy
conditions: for any smooth entropy couple (η, q) ∈ [C∞(R; R)]2 (that is a couple satisfying q′ = η′f ′) with η
convex, the following inequality is fulfilled in the sense of measures:

η(u)t + q(u)x ≤ 0. (3)

The classic result of Oleinik [14] states that if f is uniformly strictly convex in the sense that f ′′(·) ≥ κ > 0 on
R, then any entropy solution of (1) satisfies the following one-sided Lipschitz estimate:

u(t, y)− u(t, x) ≤ y − x

κt
for any x ≤ y, any t > 0. (4)

This inequality can be written in a “sharp” form (see Dafermos [5], Hoff [9]): when f ′′(·) ≥ 0 and moreover f ′′

is not identically 0 in a whole interval:

f ′(u(t, y))− f ′(u(t, x)) ≤ y − x

t
for any x ≤ y, any t > 0. (5)

Several inequalities of this type have been established for non-convex fluxes. The following result has been
established by Cheng [3]: for fluxes satisfying the condition that f ′′ vanishes at isolated points only, the solutions
satisfy:

V +[f ′(u(t, ·)); I] ≤ C1
meas(I)

t
+ C2 (6)

for some positive constants C1 and C2 depending on f , where V +[g; I] designates the positive variation of g over
the interval I. Jenssen and Sinestrari [11] established the following: if f has exactly one inflexion point and
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satisfies an additional condition of “non-flatness” at the inflexion point, then any BV solution satisfies, for some
C > 0 depending on f :

f ′(u(t, y))− f ′(u(t, x)) ≤ y − x

t
+ C[TV (u(0, ·))− TV (u(t, ·))] for x ≤ y and t > 0. (7)

LeFloch and Trivisa [13] proved the following estimate, which is valid for any flux regardless of the number of
inflexion points: for some C,C′ > 0 depending on f , the BV solutions satisfy

f ′(u(t, y))− f ′(u(t, x)) ≤ C
y − x

t
+ C′[TV (u(0, ·))− TV (u(t, ·))] for x ≤ y and t > 0, (8)

and the corresponding inequality for V +[f ′(u(t, ·)); I] is valid. Looking more closely at the proof of [13], one can
see that the above constants can be described more accurately: for some C > 0 depending on f , one has, for any
ε > 0 and any BV entropy solution u:

f ′(u(t, y))− f ′(u(t, x)) ≤ (1 + ε)
y − x

t
+
C

ε
[TV (u(0, ·))− TV (u(t, ·))] for x ≤ y and t > 0. (9)

Finally, concerning the spreading of rarefactions waves for solutions of systems of conservation laws —a problem
which we do not address here— let us also mention [2] (for genuinely nonlinear systems) and [13] (for general
systems), and references therein.

The goal of this paper is to improve results such as (6), (7), (8) and (9) for general flux functions f , in a way
that extends Oleinik’s original inequality (4)-(5) for convex fluxes.

Precisely, we prove the following result:

Theorem 1. Consider f ∈ C∞(R; R). For any u0 ∈ L∞(R) ∩ BVloc(R), the unique entropy solution of (1)-(2)
satisfies:

f ′(u(t, y))− f ′(u(t, x)) ≤ y − x

t
+

p
‖(f ′′)−‖∞‖(f ′′)+‖∞[TV (u(0, ·))− TV (u(t, ·))]

for x ≤ y and t > 0, (10)

where the L∞ norms are considered in L∞([−‖u0‖∞, ‖u0‖∞]).

In (10), we used the notation for the negative part x− := max(−x, 0) and for the positive part x+ := max(x, 0)
(in such a way that x = x+ − x−). In the whole sequel, we will systematically use the notation ‖f ′′‖∞ and its
variants ‖(f ′′)−‖∞, etc. for ‖f ′′‖L∞([−‖u0‖∞,‖u0‖∞]), ‖(f ′′)−‖L∞([−‖u0‖∞,‖u0‖∞]), etc. Actually, in the whole
paper, all the states considered will systematically belong to [−‖u0‖∞, ‖u0‖∞] even when not explicitly mentioned.
Finally, we choose as a normalization to consider the solutions u as left-continuous.

Theorem 1 will be shown as a direct consequence of these two joined results:

Proposition 1. Under the assumptions of Theorem 1, the unique entropy solution of (1)-(2) satisfies:

f ′(u(t, y))− f ′(u(t, x)) ≤ y − x

t
+

p
‖(f ′′)−‖∞‖f ′′‖∞[TV (u(0, ·))− TV (u(t, ·))] for x ≤ y and t > 0. (11)

Proposition 2. Under the assumptions of Theorem 1, the unique entropy solution of (1)-(2) satisfies:

f ′(u(t, y))− f ′(u(t, x)) ≤ y − x

t
+

p
‖(f ′′)+‖∞‖f ′′‖∞[TV (u(0, ·))− TV (u(t, ·))] for x ≤ y and t > 0. (12)

In fact, Proposition 2 can be deduced directly from Proposition 1; hence the main part of this paper is devoted
to the proof of Proposition 1. However, as will appear, in some sense we estimate different parts of the solution
when obtaining (11) and (12), which somehow explains that one cannot prove these two results simultaneously.
This is explained in Paragraph 6.1.

As we will see, Theorem 1 can be slightly strengthened as follows.

Theorem 1′. Under the assumptions of Theorem 1, the unique entropy solution of (1)-(2) satisfies, for any
interval I:

V +[f ′(u(t, ·)); I] ≤ meas(I)

t
+

p
‖(f ′′)−‖∞‖(f ′′)+‖∞[TV (u(0, ·))− TV (u(t, ·))] for t > 0. (13)
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Remark 1. In both Theorems 1 and 1’, the constant
p
‖(f ′′)−‖∞‖(f ′′)+‖∞ is not optimal and in fact could be

replaced by the slightly better constant

min
“

max
h‖(f ′′)−‖∞

2
,
p
‖(f ′′)−‖∞(‖(f ′′)−‖∞ + ‖(f ′′)+‖∞)− ‖(f ′′)−‖∞

i
,

max
h‖(f ′′)+‖∞

2
,
p
‖(f ′′)+‖∞(‖(f ′′)+‖∞ + ‖(f ′′)−‖∞)− ‖(f ′′)+‖∞

i”
. (14)

This is explained in Paragraph 6.4.

Note the following feature of Theorem 1: it includes Oleinik’s inequality in the sense that it coincides with
it when the flux is convex (or concave). In particular, the above form of the inequality involves that if the flux
is “almost” convex, then the corresponding solutions “almost” satisfy Oleinik’s inequality. Now we state a result
which is weaker than Theorem 1 in the sense that it does not satisfy this property. The point is that the proof
of this inequality is much simpler. We think that the important simplifications that can be made in this case
may motivate the objects which we introduce in the course of the proof of Proposition 1. This is developed in
Paragraph 6.2.

Proposition 3. Under the assumptions of Theorem 1, the unique entropy solution of (1)-(2) satisfies:

f ′(u(t, y))− f ′(u(t, x)) ≤ y − x

t
+
‖f ′′‖∞

2
[TV (u(0, ·))− TV (u(t, ·))] for x ≤ y and t > 0. (15)

Finally, we will show the following result.

Theorem 2. The conclusions of Theorem 1 are false in general when the factor
p
‖(f ′′)+‖∞‖(f ′′)−‖∞ is replaced

with ‖(f ′′)−‖∞ or with ‖(f ′′)+‖∞ (or even with any factor of the type O(‖(f ′′)−‖∞) or O(‖(f ′′)+‖∞)).

The cited results in [3], [11] and [13] rely on the theory of generalized characteristics due to Dafermos [6]. Here
we rely on a process of selection of binary trees inside front-tracking approximations of the solution of (1)-(2).
We recall that the front-tracking method was introduced by Dafermos as well [4]; here we use a version of the
algorithm which is an adaptation of a method due to LeFloch and the author [8] (for general hyperbolic systems
of conservation laws). This method relies on the so-called inner speed variation estimates (also introduced in [8]),
which are central in the proof here.

The paper is organized as follows. In Section 2, we introduce the front-tracking method that we use to
construct solutions of (1). In Section 3, we introduce some central material needed in the proof. In Section 4,
we establish Proposition 1. In Section 5 we prove the technical results announced in earlier sections. Finally,
in Section 6, we prove Proposition 2; we also explain the wide simplifications that could be made to establish
Proposition 3; then we prove Theorem 1′ and justify Remark 1; finally we prove Theorem 2.

2 Front-tracking algorithm

In this section, we construct particular front-tracking approximations of solutions of (1); this is a remodeling of
the algorithm of [8] (note that the scalar case is much simpler), in an adequate way for the sequel. This is done
for u0 ∈ L1(R) ∩BV (R).

Recall that front-tracking approximations are functions which are piecewise constant over a polygonal subdi-
vision of R+ ×R. We will call each of the line segments of this subdivision fronts, each of its vertices interaction
points; given an interaction point, the outgoing fronts (resp. the incoming fronts) will refer to the fronts touching
the interaction point, located after it (resp. before it) in time. When we follow through time several fronts
connected by interaction points, we will call the resulting piecewise affine curve a front path.

2.1 Riemann solvers

The front-tracking method consists in putting together suitable approximations of the solutions of Riemann
problems. Let us describe the classical solution of the Riemann problem as well as the approximations that we
will use.

Exact Riemann solver. We refer for instance to [7] for this part. The Riemann problem consists in finding a
self-similar entropy solution u(t, x) = u(x/t) of equation (1) for the initial condition:

u(0, x) =


ul for x < 0,
ur for x > 0,

(16)
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where ul and ur are constants. Recall that for a single discontinuity

u(t, x) =


u− for x < ct,
u+ for x > ct,

equation (1) is equivalent to the Rankine-Hugoniot relation

f(u+)− f(u−)

u+ − u−
= c,

and the entropy conditions are equivalent to Oleinik’s E-condition:

f(u)− f(u−)

u− u−
≥ f(u+)− f(u−)

u+ − u−
for u between u− and u+.

Classically (see e.g. [7, §14.1]), the Riemann problem for scalar conservation laws is solved as follows. Given
a ≤ b, we denote by conv[a,b]f (resp. conc[a,b]f) the convex (resp. concave) hull of f on [a, b]. We introduce the
function g in the following way:

• if ul < ur, we fix g := (conv[ul,ur ]f),

• if ul > ur, we fix g := (conc[ur,ul]f).

If ul < ur (resp. if ur < ul), the function g′ in non-decreasing on [ul;ur] (resp. non-increasing on [ur, ul]);
consequently, in both cases the function g′ has an inverse, which is possibly discontinuous: let us choose to take
it left-continuous in the first case and right-continuous in the second case.

Now the wave fan is given by

u(t, x) =

8<:
ul for x

t
< g′(ul),

[g′]−1(x/t) for g′(ul) <
x
t
< g′(ur),

ur for x
t
> g′(ur).

(17)

In the sequel, we will denote by λ
min

(ul;ur) and λ
max

(ul;ur) the lowest and highest wave speeds in the Riemann
problem (ul;ur), respectively. Precisely:

λ
min

(ul;ur) := g′(ul) and λ
max

(ul;ur) := g′(ur).

As in [8], this allows to introduce the inner speed variation (isv in short) as the following value:

ϑ(ul;ur) := λ
max

(ul;ur)− λ
min

(ul;ur).

Approximate Riemann solvers. We introduce two kinds of approximate solvers. The principle is the following:
these solvers regroup parts of the outgoing wave fan as “wave packets” and make these packets travel as a single
discontinuity (a front), whose (single) speed is the lowest wave speed in the packet. The two solvers are the
following.

• The approximate solver using the splitting strategy, with precision ε, generates the following piecewise
constant approximation of (17). We introduce N as

N :=
lλmax

(ul;ur)− λ
min

(ul;ur)

ε

m
,

where d·e is the upper integer part. We introduce the intermediate speeds λ0 . . . λN :

λ0 := λ
min

(ul;ur), λ1 := λ
max

(ul;ur), if N = 1,

λi := λ
min

(ul;ur) + i
2
(λ

max
(ul;ur)− λ

min
(ul;ur)), 0 ≤ i ≤ 2 if N = 2, (18)8>>>>>>>>>>><>>>>>>>>>>>:

λ0 := λ
min

(ul;ur),

λ1 := λ
min

(ul;ur) + ε,

λi := λ1 +
i− 1

N − 2
(λN−1 − λ1), 1 ≤ i ≤ N − 1,

λN−1 := λ
max

(ul;ur)− ε,

λN := λ
max

(ul;ur),

if N ≥ 3. (19)
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(See Remark 3 below concerning this particular choice for cutting the Riemann wave fan.) We introduce
the corresponding intermediate states:

vi := [g′]−1(λi) for i = 0 . . . N,

or, in other words,

vi := min
n
u ∈ [ul, ur], g′(u) = λi

o
if ul < ur,

vi := max
n
u ∈ [ur, ul], g′(u) = λi

o
if ur < ul.

The solver with splitting strategy generates the following approximation of (17):

u(t, x) =

8<:
ul = v0 for x/t < λ0,
vi for λi−1 < x/t < λi, i = 1 . . . N − 1,
ur for x/t > λN−1.

(20)

Hence, there are N outgoing fronts, separating N + 1 states (including ul and ur).

• The approximate solver using the no-splitting strategy, generates the following (cruder) approximation of
the Riemann problem (ul, ur):

u(t, x) =

(
ul for x/t < λ

min
(ul;ur),

ur for x/t > λ
min

(ul;ur).
(21)

In other terms, the Riemann fan is approximated by a single front traveling at its lowest speed.

Remark 2. Note that in the above constructions, each intermediate state v in {v0, v1, . . . , vN , ur} satisfies
f(v) = conv[ul;ur ]f(v) if ul < ur (respectively f(v) = conc[ur ;ul]f(v) if ul > ur). It follows that each front
separating u− and u+ which has been constructed by one of the above solvers satisfiesˆ

conv[ul;ur ]f
˜
|[u−;u+]

= conv[u−;u+]f (resp.
ˆ
conc[ur ;ul]f

˜
|[u+;u−]

= conc[u+;u−]f).

As a consequence, each front travels at speed λ
min

(u−;u+). It also follows that any outgoing front in the solver
using the splitting strategy has an inner speed variation ϑ(u−;u+) no more than ε (and exactly ε for the leftmost
and rightmost ones in (19)).

Remark 3. The convention (19) is different from the one in [8], where the choice for cutting the Riemann wave
fan is to take

λi := λ
min

(ul;ur) +
i

N
(λ

max
(ul;ur)− λ

min
(ul;ur)). (22)

In other words, in (19) we choose to “charge” a little bit more the leftmost and the rightmost fronts. This has
absolutely no importance in this section (it only matters here that all fronts travel approximately at the correct
speed and have an inner speed variation no more than ε), but it will be technically easier to handle (19) than (22)
in Section 4.

2.2 Front-tracking approximations.

Now we construct a sequence of front-tracking approximations of solutions of the Cauchy problem (1) with initial
condition

u(0, x) = u0(x) in R, (23)

where u0 is given in BV (R) ∩ L1(R). Let us describe the algorithm.

1. First, for each ε > 0, we take a piecewise constant approximation u0,ε of u0, with compact support, satisfying:

infR u0 ≤ u0,ε ≤ supR u0,
TV (u0)− ε ≤ TV (u0,ε) ≤ TV (u0)
‖u0,ε − u0‖L1(R) ≤ ε.

(24)

2. At each jump point x of u0,ε, we approximately solve the Riemann problem u0,ε(x−;x+) by means of the
approximate solver with splitting strategy, with precision ε.

3. We let the fronts evolve at their constant speeds until two fronts meet: hence we get a piecewise constant
function uε defined for small t > 0.

4. The function uε is extended over an interaction point P (where two fronts meet) according to the following
procedure. Suppose that exactly two fronts interact, and call ul, um and ur the left, middle and right states
respectively; then:
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• if ϑ(ul;ur) > 2ε, extend uε beyond the interaction point by using the approximate solver with splitting
strategy;

• else, use the approximate solver with no-splitting strategy.

Additional convention. If needed, we modify the speeds of an amount of ε at most in order that at each time, at
most one interaction takes place, and this interaction involves exactly two fronts. Moreover, this can be done in
such a way that two fronts that meet would have met regardless of this modification and that the order of the
fronts (according to the variable x) is never changed. To get this property, apply the following procedure: if for
some time there are at least three fronts concerned with interactions, simply accelerate the involved front which
is the most on the left, by a suitably small quantity. This advances the time of the leftmost interaction. In the
sequel, we will refer to this additional amount of speed as the additional displacement.

The goal of the above strategy is to construct an approximation where all fronts have a uniformly small
inner speed variation. For this reason, fronts having an inner speed variation no more than ε are considered as
completely satisfactory, while fronts having an inner speed variation larger than 2ε are considered as unacceptable
and have to be split (in pieces having an inner speed variation no more than ε). Hence as long as the approximation
is defined, one can already affirm that

for any front α in the approximation, ϑ(α) ≤ 2ε, (25)

where ϑ(α) := ϑ(uα
−, u

α
+), uα

− and uα
+ being the states on the left and on the right of α, respectively.

2.3 Inner speed variation estimates

In order to prove that the above algorithm is well defined, we will have to estimate the evolution of the inner
speed variation across interactions (ul, um) + (um, ur) → (ul, ur) where ul, um and ur are the left, middle and
right states respectively. From now, we will systematically use this notations for the three incoming states at
an interaction point. Sometimes, we will use the notations uP

l , uP
m and uP

r to specify that they correspond to
the interaction point P . An interaction satisfying (um − ul)(ur − um) ≥ 0 is called monotone; it is called non-
monotone otherwise. Also, at an interaction point, we will call the larger front, the incoming front maximizing
the difference between the states that it separates, in absolute value.

We have the following estimates:

Proposition 4 (Estimates on the inner speed variation). Across an interaction, one has for some Ci > 0:

• Monotone case: (ul < um < ur or ur < um < ul):

ϑ(ul, ur) ≤ max(ϑ(ul, um), ϑ(um, ur)) +
“
λ

min
(um;ur)− λ

min
(ul;um)

”
+
. (26)

• Non-monotone case 1 — larger front on the left: (um < ur < ul, ul < ur < um):

ϑ(ul, ur)− ϑ(ul;um) ≤ Ci|ur − um|. (27)

• Non-monotone case 2 — larger front on the right: (um < ul < ur, ur < ul < um):

ϑ(ul, ur)− ϑ(um;ur) ≤ Ci|ul − um|. (28)

Moreover, one can take in (27) and (28):

Ci =
p
‖(f ′′)−‖∞‖f ′′‖∞. (29)

A version for systems of such inequalities has been established in [8]. Since the above version is more precise
(but it works only for for scalar equations!), we will establish Proposition 4 in Section 5. Note that the precise
value of the constant Ci in (29) is useless in this section. However, as easily guessed, it will be important in the
proof of Proposition 1.
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2.4 Finite number of fronts and interaction points.

Let us show that the total number of fronts and the number of interaction points are finite in the above con-
struction. This will prove that the algorithm can be continued for all times.

Call N(t) the total number of fronts at time t, and introduce the following value (which somehow measures
the total “focusing” of the approximation):

Θε(t) :=
X

α front

(ϑ(α)− ε)+
ε

.

That the numbers of fronts and interaction points remain finite is a direct consequence of the following lemma
(compare with [8, Lemma 5.1]).

Lemma 1. The functional

I(t) :=
2Ci

ε
TV (uε(t)) +N(t) + 2Θε(t),

is non-increasing, and moreover I(t+)− I(t−) ≤ −1 across an interaction time.

Proof of Lemma 1. Of course I is constant between interaction times, and we only have to prove the second
assertion. This is discussed according to the type of interaction under view; call P the interaction point. We
denote by ∆TV (uε)(t) the dissipation of total variation across time t, counted positively, i.e. ∆TV (uε)(t) :=
[TV (uε)](t

−)− [TV (uε)](t
+). (Recall that in all cases, TV (uε) does not increase.)

• Monotone interactions: in that case, as the two fronts meet (and would have met regardless of the modifi-
cation of the speeds), we deduce that“

λ
min

(uP
m;uP

r )− λ
min

(uP
l ;uP

m)
”

+
= 0.

Hence it follows from (26) that

ϑ(uP
l , u

P
r ) ≤ max(ϑ(uP

l , u
P
m), ϑ(uP

m, u
P
r )).

Hence, the no-splitting strategy is always used at a monotone interaction point. This fact will be frequently
used in the sequel. Consequently in this situation none of the three terms of I increases. And the second
term satisfies N(t+)−N(t−) = −1.

• Non-monotone interactions where the no-splitting strategy is used: in that case it follows from (27)-(28)
that

Θε(t+)−Θε(t−) ≤ Ci

ε
∆TV (uε)(t).

As in that case, we still have N(t+)−N(t−) = −1, the claim follows.

• Non-monotone interactions where the splitting strategy is used: in that case, it follows from the construction
that

N(t+)−N(t−) ≤ ϑ(uP
l ;uP

r )

ε
− 1.

The fact that we used this solver means that ϑ(uP
l ;uP

r ) > 2ε. Denote ϑ the inner speed variation of the
larger incoming front. It follows from Proposition 4 that

2ε ≤ ϑ(uP
l ;uP

r ) ≤ ϑ+ Ci∆TV (uε)(t),

hence

ϑ+ Ci∆TV (uε)(t) ≥
2ε+ ϑ(uP

l ;uP
r )

2
.

It follows that
2(ϑ− ε)+ ≥ 2(ϑ− ε) ≥ ϑ(uP

l ;uP
r )− 2Ci∆TV (uε)(t).

Since it follows from the construction that each outgoing front has an inner speed variation less than or
equal to ε, we have that

Θε(t+)−Θε(t−) ≤ − (ϑ− ε)+
ε

,

and the result follows.
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2.5 Limit of the front-tracking sequence.

The two following classical bounds result easily from the construction: the total variation of uε is uniformly
bounded (as a non-increasing in time functional):

TV (uε(t, , ·)) ≤ TV (uε(0, ·)) ≤ TV (u0),

and one has the Lipschitz in time estimate (due to the finite speed of propagation)

‖uε(t)− uε(s)‖L1(R) ≤ TV (u0)
`
‖f ′‖∞ + ε

´
|t− s|.

As follows from a standard diagonal procedure and from Helly’s theorem, we get the existence of some measurable
function u in L∞(R+;BV (R))∩Lip(R+;L1(R)), such that for some sequence (uεν )ν∈N, with εν → 0+ as ν → +∞,
one has the following convergences:

for all t ∈ R+, uεν (t, ·) → u(t, ·) in L1
loc(R), (30)

and
uεν → u in L1

loc(R+ × R). (31)

It remains only to prove that u is an entropy solution. Recalling (25) and taking the additional displacement of
the algorithm into account, we deduce that any front (traveling at speed σ) has approximately the correct speed
in the sense that:

|λ− σ| ≤ 3ε, ∀λ ∈ [λ
min

(ul;ur), λ
max

(ul;ur)]. (32)

Deducing that u is an entropy solution from (32) is entirely similar to [8, Lemma 5.6]; for the sake of completeness,
we briefly sketch the proof. It is sufficient to prove that for any convex entropy couple (η, q), for any ϕ ∈
C∞0 (R+ × R) with ϕ ≥ 0, the following inequality holds:ZZ

R+∗×R
[η(uε)ϕt + q(uε)ϕx] dt dx =

Z T

0

X
α

`
ẋα(t) [η(uε)]α(t)− [q(uε)]α(t)

´
ϕ(t, xα(t)) dt ≥ −O(ε),

where the sum is over all fronts at time t, each front α is described by t 7→ xα(t) during its time interval
of existence [Tα

1 , T
α
2 ], and the brackets designate the jump of a quantity across α. We introduce Uα(t, x) on

[Tα
1 , T

α
2 ] × R equal to uε(α

−) for x < xα(t) and to uε(α
+) for x > xα(t). Now it is sufficient to prove that the

following inequality holds for each front α:Z T α
2

T α
1

`
ẋα(t) [η(uε)]α(t) − [q(uε)]α(t)

´
ϕ(t, xα)dt

=

Z T α
2

T α
1

Z
R

(η(Uα)ϕt + q(Uα)ϕx) dt dx−
»Z

R
η(Uα)ϕ(·, x) dx

–T α
2

T α
1

(33)

& −ε|uε(α
+)− uε(α

−)||Tα
2 − Tα

1 | ‖ϕ‖C1 . (34)

(Once (34) is established, it remains to sum according to α, and to let ε→ 0+.)

Now to get (34), introduce the actual solution bUα of the Riemann problem (u(α−), u(α+)), centered at the

point (Tα
1 , xα(Tα

1 )) and estimate the integrals in (33). When we replace Uα with bUα in (33) we obtain a non-

negative result by the admissibility of the actual solution bUα; it remains to estimate the errors. For the first
(resp. second) integral, the integrand generates an error of size O(1)|uε(α

+)−uε(α
−)|‖ϕ‖C1 , and thanks to (32)

we see that this difference lies in a triangle of area O(1)ε|T2 − T1| (resp. in an interval of length O(1)ε|T2 − T1|),
which concludes the proof.

3 Preliminary material

Before getting to the proof of Proposition 1, let us introduce some tools which we will use during the proof.

3.1 Terminology

Now that we have defined the front-tracking approximations, let us add some terminology. We will call a positive
(resp. a negative) front, a front with left and right states (u−, u+) such that u− < u+ (resp. u− > u+).
Note that in general this distinction is not very relevant when the flux is general (it is essentially a matter of
parameterization). On the other hand, in the case of a convex flux, positive fronts make the left-hand side
of Oleinik’s inequality positive while negative fronts make it negative. Hence, it is natural here to distinguish
positive and negative fronts, because of the particular form of the right-hand side of (11): roughly speaking, in
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the situation where the additional error term in (11) vanishes, positive fronts are rarefaction fronts (which are
important) while negative fronts are shocks (which should be ignored).

At an interaction point P ∈ R+∗ × R, we will call the total variation dissipated at P , and denote [∆TV ](P )
or even ∆TV when there is no ambiguity, the following value:

[∆TV ](P ) := |uP
r − uP

m|+ |uP
m − uP

l | − |uP
r − uP

l | (> 0).

Finally, additionally to the inner speed variation of a front (u−, u+), we will define the outer speed variation (osv
in short) of a front as the following value:

τ(u−, u+) := f ′(u+)− f ′(u−).

Note that, unlike the inner speed variation, the outer speed variation can likely be negative. Also remark that
Lax’s inequalities

f ′(u−) ≥ λ
min

(u−, u+) and f ′(u+) ≤ λ
max

(u−, u+) (35)

involve the relation
τ(u−, u+) ≤ ϑ(u−, u+). (36)

3.2 Interaction estimates on the speeds

In this paragraph, we state some preliminary lemmas, which compare the speeds of the incoming and outgoing
fronts (not their inner speed variation as in Proposition 4) across an interaction point. The first two lemmas are
independent of the previous approximating scheme; the last one is valid for an ε front-tracking approximation
constructed by the above process. Of course, one cannot expect the difference of speeds across an interaction to
be measured by an interaction potential term; the interaction estimates which we present here are inequalities,
with various “error terms”.

Lemma 2 (Monotone interactions). Consider ul < um < ur (or ul > um > ur). Then:

λ
min

(ul;ur) ≤ λ
min

(ul;um), (37)

λ
max

(um;ur) ≤ λ
max

(ul;ur). (38)

Moreover, we have the two following (compatible) possibilities:

λ
min

(ul;ur) = λ
min

(ul;um) or λ
min

(um;ur) ≤ λ
min

(ul;ur), (39)

and
λ

max
(um;ur) = λ

max
(ul;ur) or λ

max
(ul;ur) ≤ λ

max
(ul;um). (40)

Lemma 3 (Non-monotone interactions, positive outgoing fronts). Consider three states ul, um and ur, with
either ul < ur < um or um < ul < ur. Consider the larger incoming front (u−;u+), that is (u−;u+) := (ul;um)
in the former case, (u−;u+) := (um;ur) in the latter. Then the following holds:

λ
min

(ul;ur) ≥ λ
min

(u−;u+)− (‖(f ′′)−‖∞/2)∆TV, (41)

λ
max

(ul;ur) ≤ λ
max

(u−;u+) + (‖(f ′′)−‖∞/2)∆TV. (42)

Lemma 4 (Non-monotone interactions, negative outgoing fronts). Consider, in an ε front-tracking approximation
constructed by the above algorithm, two fronts (ul, um) and (um;ur) which are interacting, with um < ur < ul or
ur < ul < um. Then the following holds:

• Case 1: um < ur < ul. In that case, call (ũ, ur) the rightmost outgoing front. One has:

λ
min

(ul;ur) ≥ λ
min

(um;ur), (43)

λ
max

(ul;ur) ≤ λ
max

(um;ur) + [f ′(ũ)− f ′(ur)]+ + 2ε. (44)

• Case 2: ur < ul < um. In that case, call (ul, ũ) the leftmost outgoing front. One has:

λ
min

(ul;ur) ≥ λ
min

(ul;um)− [f ′(ul)− f ′(ũ)]+ − 2ε, (45)

λ
max

(ul;ur) ≤ λ
max

(ul;um) + 2ε. (46)

Remark 4. The asymmetry between Lemmas 3 and 4 comes from the fact that we want to have an error term
relying on ‖(f ′′)−‖∞. Clearly, one has an equivalent statement of Lemma 3 for negative outgoing fronts, when
‖(f ′′)+‖∞ replaces ‖(f ′′)−‖∞. Note however that one cannot expect estimates such as (41)-(42) to be true in the
context of negative outgoing fronts (even if we replace ‖(f ′′)−‖∞ by any other factor vanishing with (f ′′)−): this
is easily seen by considering a convex flux.

We postpone the proofs of Lemmas 2, 3 and 4 to Section 5.
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3.3 Origin of the surplus of inner speed variation

In this paragraph, we discuss how a front can have acquired an inner speed variation larger than ε (which as
explained in Section 2, one can consider as a “surplus”). Consider a front α at time t > 0. To such a front, we
associate an inner speed variation source tree, which we will denote by T (α), according to the following
algorithm:

• we start from the “root” front α: if ϑα ≤ ε we stop immediately the tree, that is we take T (α) := {α}; else
we go backwards in time, and:

• at each interaction point that we meet:

– if it is a point of monotone interaction (hence using the non-splitting strategy), we add as branches to
the tree all the incoming fronts that have an inner speed variation larger than ε,

– if it is a non-splitting point of non-monotone interaction, we add as a branch to the tree the incoming
front that has the same sign as the outgoing front, if it has an inner speed variation larger than ε;
else, the branch stops here,

– if this point is a splitting point, we use the convention that the branch stops here. It is not difficult to
observe that in fact, this last case cannot happen, because we only follow fronts with an inner speed
variation larger than ε.

By convention we consider the tree as a set of fronts (which are connected one to another); hence we consider
that two trees intersect when they have a front in common (not just an interaction point). Note that according
to the above algorithm, all branches stop before t = 0 since all fronts outgoing from time t = 0 have an inner
speed variation less than or equal to ε. Also note that the only case where a front having an inner speed variation
less than or equal to ε belongs to such a tree is when it is equal to the whole tree. Finally, remark that in such
a tree, all fronts share the same sign. We give an example of how such a tree could look like in Figure 1.

isv source tree

negative fronts

positive fronts

α

Figure 1: An example of inner speed variation source tree

Denote V(α) the set of vertices of T (α), where the top of the tree (that is, the interaction point to which the
root α arrives) is excluded, but the vertices at the bottom of the leaves are included. We claim the following.

Lemma 5. 1. The construction is transitive in the sense that

β ∈ T (α) and γ ∈ T (β) ⇒ γ ∈ T (α).

2. The inner speed variation source trees are disjoints in the sense that, given two fronts α and β, one has

T (α) ∩ T (β) 6= ∅ ⇒ T (α) ⊂ T (β) or T (β) ⊂ T (α).

3. Given a front α, one can estimate the inner speed variation of α by

ϑα − ε ≤
p
‖(f ′′)−‖∞‖f ′′‖∞

X
P∈V(α)

[∆TV ](P ). (47)

The proof of Lemma 5 is postponed to Section 5.
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3.4 A scenario for the origin of outer speed variation

In this paragraph, we describe a sort of “tree” which is intended to play the same role for the outer speed variation
as the tree described in Paragraph 3.3 does for the inner speed variation. However, it will play this role only in
a particular situation, as we will see.

Given a negative front α at time t > 0 with a positive outer speed variation, we draw its outer speed
variation source tree, which we denote by bT (α), as follows. (By convention, if τ(α) ≤ 0 or the front is

positive, we stop immediately and fix bT (α) := {α}.) Else, starting from the root α, we go backward in time, and
at each interaction point:

• if the interaction point is a monotone interaction point, add to the tree the incoming fronts that have a
positive outer speed variation;

• if the interaction point is a non-monotone interaction point, stop the branch here.

• stop at t = 0 of course.

Remark 5. Since fronts outgoing from a splitting (non-monotone) interaction point can likely be selected in the
above process, two selected branches can in fact rejoin at such a point. See for instance Figure 2. Consequently
this selection of fronts should be more accurately called a graph. However we see from the above algorithm that
the tree stops at a point of this type. Hence it suffices to consider that we artificially disconnect all fronts outgoing
from a splitting point to perceive this graph as a tree.

osv source “tree”

α

positive fronts

negative fronts

splitting point

Figure 2: An example of outer speed variation source tree

Remark that in this tree, again, all fronts share the same sign. Denote bL(α) the set of the leaves of bT (α),
that is, the fronts at which the tree stops (the root α being of course excluded). We call such a leaf good if and
only if it is generated at a positive time and one of the following possibilities occurs:

• it emerges from a non monotone interaction point um < ur < ul and the front considered is not the
rightmost one,

• it emerges from a non monotone interaction point ur < ul < um and the front considered is not the leftmost
one.

(In particular, a leaf cannot be good if it emerges from a non monotone interaction point using the no-splitting
strategy.) Call a good tree a non-trivial tree whose all leaves are good. Call inner vertices the vertices of the tree,
except the top of the tree and the bottom of its leaves. It follows from the previous construction that all inner
vertices of a good tree are monotone interaction points, and hence use the no splitting strategy.

We claim the following.

Lemma 6. 1. The construction is transitive:

β ∈ bT (α) and γ ∈ bT (β) ⇒ γ ∈ bT (α).

2. The outer speed variation source trees are disjoints in the sense that, given two fronts α and β, one hasbT (α) ∩ bT (β) 6= ∅ ⇒ bT (α) ⊂ bT (β) or bT (β) ⊂ bT (α).

3. Let α be a negative front. Assume that the tree bT (α) is good. Then

τ(α) ≤
X

β∈ bL(α)

ϑ(β). (48)

We prove Lemma 6 in Section 5.
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4 Proof of Proposition 1

4.1 Starting point

We consider u0 ∈ L1(R) ∩ BV (R), and a sequence (uεν ) of εν-front-tracking approximations converging to the
entropy solution u of (1)-(2), in the sense of (30)-(31).

We consider T > 0 and we will first establish the following inequality on uεν :

f ′(uεν (T, y))− f ′(uεν (T, x)) ≤ y − x

T
+

p
‖(f ′′)−‖∞‖f ′′‖∞[TV (uεν (0, ·))− TV (uεν (T, ·))]

+O(εν) for x ≤ y. (49)

Then, we will pass to the limit and extend the result to slightly more general u0.
To establish (49), we consider ν ∈ N∗, x < y and T > 0. Now, consider uεν at time T: if there is no front in

the interval {T} × (x, y], there is nothing to prove since f ′(uεν (T, y)) = f ′(uεν (T, x)). If there is only one front
between x and y, the result is true with only O(εν) on the right hand side. This follows directly from (25) and
(36).

Henceforth, we suppose that there are at least two fronts inside (x, y]. It is clear that to establish (49), it is
sufficient to establish it when x and y are located exactly on separated fronts, and the values to be considered in
the left hand side of (49) are f ′(uεν (T, x−)) and f ′(uεν (T, y+)). (If necessary, move x to the right and y to the
left: this does not modify the left hand side, and reduces the right hand side.) From now on, we suppose that x
and y are located on different fronts, and aim at proving (49) with this convention. To simplify the notations,
we will drop the index εν from uεν until Paragraph 4.4.4; when εν itself is concerned, we will drop the index ν
from it. Also, unless otherwise stated, the values of the approximations uεν (t, ·) at the point x will be the ones
from the left.

4.2 Tracing fronts backwards

In this paragraph, we explain how we choose to “trace”, starting from x and y, two continuous lines γx and γy,
made of fronts, backwards in time. This will crucially depend on the sign (positive or negative) of the front that
we consider. Recall that the difference of treatment of positive and negative fronts can be explained by the fact
that we want an error of the form

p
‖(f ′′)−‖∞‖f ′′‖∞∆TV . In particular, negative fronts which do not intervene

in Oleinik’s inequality in the convex case, should more or less be considered as “error generators” here.
The tracing algorithm is carried out in several steps:

• for positive fronts, the algorithm selects a unique front path,

• for negative fronts, the algorithm selects a front tree (which is not the tree considered in Paragraph 3.3,
and not quite the one of Paragraph 3.4),

• then another step (which we call “postprocessing”) is performed on each tree selected above for negative
fronts (if any): either it singles out a front path inside this tree, or it tells to abandon this tree and repeat
the above steps on the “next” front living at time T .

4.2.1 Tracing positive fronts backwards.

Now, supposing that the front located at x or y is positive, we choose to “extend” it as a path for times t ≤ T
according to the following rule: follow backwards in time the front which is located at x (resp. y), and at each
interaction point:

• if the interaction point is a non-monotone interaction point, follow the incoming front that is positive;

• if the interaction point is a monotone interaction point:

– for the front path coming from x, pick the slowest (i.e. the right) incoming front,

– for the front path coming from y, pick the fastest incoming front in the following particular sense:
choose the one which maximizes λ

max
(u−, u+). (Choose arbitrarily in case of equality.)

Call γx (resp. γy) the resulting piecewise affine path. Apply the above rule until γx (resp. γy) reaches t = 0. (It
may happen that γx ∩ γy 6= ∅.) In the case under view, we fix γx := x (resp. γy := y).

Remark 6. Due to the convention that all fronts travel at the minimum speed of the wave packet, we cannot
affirm that the incoming front which maximizes λ

max
(u−, u+) is the left one. One can imagine situations where

this is not the case; this is due to the approximation, and is likely to disappear as ε→ 0+.
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4.2.2 Tracing negative fronts backwards.

Now, we suppose that the front located at x or y is negative. We choose to extend it for times t ≤ T as a tree.
This tree is an extension of the tree discussed in Paragraph 3.4; we will call it extended outer speed variation
source tree. This is done according to the following rules: if the front has a nonpositive outer speed variation,
stop the tree immediately; else follow backwards the front located at x (resp. y), and at each interaction:

• if the interaction point is a monotone interaction point, add to the tree the incoming fronts that have a
positive outer speed variation;

• if the interaction point is a non-monotone interaction point:

– if it is a non-splitting interaction point, add the positive incoming front, and extend this positive front
to t = 0 with the rule of Paragraph 4.2.1,

– if it is a splitting interaction point, then

∗ if um < ur < ul and the front which we want to extend is the rightmost one, add the positive
incoming front, and extend this positive front with the above rule for positive fronts,

∗ if ur < ul < um and the front which we want to extend is the leftmost one, add the positive
incoming front, and extend this positive front with the above rule for positive fronts,

∗ in all the other cases, stop the branch of the tree here.

Of course, all branches that we select must also stop when they touch t = 0.

Remark 7. Let us remark that the extended osv source tree coincides with the osv source tree if and only if we
do not add positive fronts, that is, if and only if all the leaves of the osv source tree which do not touch t = 0 are
good. Hence an extended osv source tree either touches t = 0 or coincides with a “good” osv source tree.

4.2.3 Postprocessing.

Now in a second step, we simplify the tree(s) generated by a negative front according to the following rules. At
the beginning, we fix γx := x and γy := y.

• If the tree contains no branch that reaches t = 0 or if it corresponds to a single front with non positive
outer speed variation, “abandon” it, that is, replace γx with the next front on the right of γx at t = T (if we
considered the x-tree) or on the left of γy (if we considered the y-tree), and iterate the process. Naturally,
stop if the x-front and the y-front considered at time T are the same, i.e. if γx = γy.

• If on the contrary, we are in a situation where the tree under view reaches t = 0, then we select a front
path inside it according to the following rules. Start again from the front at time T (located at γx and γy,
respectively), and go backwards in time in the tree. It follows from the algorithm of Paragraph 4.2.2 that
in this process, we will only meet monotone interaction points, unless the branch becomes a positive front
path. At each interaction point:

– if one and only one of the incoming fronts belongs to the tree, of course we follow this one, (this
includes in particular non-monotone interaction points, and positive parts of the tree),

– if the two incoming fronts belong to the tree: we consider the subtrees generated respectively by these
two incoming fronts:

∗ if only one of the subtrees still satisfies the condition that it reaches t = 0, follow this branch,

∗ if both subtrees satisfy the condition that they reach t = 0, then what we do depends on the side
(left or right) of the tree that we consider:

· for a x-tree, pick the left incoming front,

· for a y-tree, pick the right incoming front.

At the end of the process, either γx = γy, (i.e. we have abandoned all the fronts between x and y except the
last one corresponding to γx = γy) or we get two distinct front paths γx and γy that both meet t = 0 and which
start respectively from γx and γy (see for instance Figure 6 in Paragraph 4.4 below for an example of the latter
case). Call A the set of all fronts living at time T , whose tree has been abandoned in the process; we will call
such fronts abandoned as well.
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4.2.4 Structure of the proof.

Now the rest of proof is done in two steps:

• First, we establish (49) in the case where we have singled out two front paths γx and γy that both meet
the axis t = 0 (possibly meeting each other before touching t = 0). In other words, we estimate in this case

f ′((γy)+)− f ′((γx)−) = f ′(γy(T )+)− f ′(γx(T )−).

While doing this, we actually do not take all the dissipation of total variation into account.

• Next, we prove that the trees that we “abandoned” in the above process can be taken into account in the
rest of the total variation dissipation (this will include the case when γx = γy). In other words, we estimate

f ′(y)− f ′(x)−
ˆ
f ′(γy(T )+)− f ′(γx(T )−)

˜
,

with the rest of the total variation dissipation.

The largest part is done in the following paragraph, where the central proposition is stated and proved.

4.3 The central proposition

4.3.1 Statement

In this paragraph and until Paragraph 4.4.3, we consider that the previous process yielded two distinct fronts γx

and γy and drew from them two front paths γx and γy (with γx = γx(T ) < γy(T ) = γy).
Let us call γ̇x(t) (resp. γ̇y(t)) the speed of the front path γx (resp. γy) at time t ∈ [0, T ]. This is uniquely

defined except at interaction times. If γx and γy meet at a positive time, we call t̃ their meeting time, that
is, the largest time t for which γx(t) = γy(t). In other words, when we follow γx and γy backwards in time
starting from t = T , this is the first time the two front paths meet. Else, we define t̃ := 0. It is a consequence of
the convention of Paragraph 4.2.2 that t̃ = 0 except possibly if both γx and γy represent positive fronts at the
time they meet (at a splitting interaction point with negative outgoing fronts, only one of the outgoing fronts is
extended backwards by the above process, and is a candidate to be γx or γy).

In the sequel, it will be convenient to express that only a part of the total variation dissipation at an interaction
point P is used in an estimate, the “rest” of the total dissipation at the interaction point being possibly used to
estimate another term. For this purpose, we introduce I(T ) as the set of all interaction points between times 0
and T . Given an application N : I(T ) → N∗, we introduce IN (T ) as the set of all interaction points between
times 0 and T , where each interaction point P is counted N (P ) times:

IN (T ) :=
[

P∈I(T )

N (P )
∪

i=1
{(P, i)}. (50)

Call the second coordinate of (P, i) a marker, and (P, i) a representative of P .
We will also introduce an allocation of the total variation dissipation, that is, for each (P, i) ∈ IN (T ), we will

determine the i-th elementary part of total variation dissipation at P (which we will denote by ∆TV (P, i)) in
such a way that

∆TV (P, i) ≥ 0 and

N (P )X
i=1

∆TV (P, i) = ∆TV (P ).

This allocation is obvious when N (P ) = 1. Finally, since there is no total variation dissipation at monotone
interaction points, the function N can be defined arbitrarily at such points; this has no importance.

The main result of Paragraph 4.3 is the following.

Proposition 5. Given T > 0, there exist an application N : I(T ) → N∗ and an allocation of ∆TV , such that for
γx and γy constructed as above, there exist subsets D(α) of IN (T ) defined for all front α living at time T , such
that the following properties hold. One has the following estimates on the speeds of the fronts: for all t ∈ [t̃, T ]:

γ̇x(t) ≤ γ̇x(T ) +
p
‖(f ′′)−‖∞‖f ′′‖∞

X
(P,i)∈D(γx)

∆TV (P, i) + 8ε, (51)

γ̇y(t) ≥ γ̇y(T )−
p
‖(f ′′)−‖∞‖f ′′‖∞

X
(P,i)∈D(γy)

∆TV (P, i)− 8ε. (52)

One has the following estimates on the osv of abandoned fronts:

∀α ∈ A, τ(α) ≤
p
‖(f ′′)−‖∞‖f ′′‖∞

X
(P,i)∈D(α)

∆TV (P, i). (53)

Finally, the subsets D satisfy:

if α and β are two distinct fronts living at time T, then D(α) ∩ D(β) = ∅. (54)
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The rest of Section 4.3 is devoted to the proof of Proposition 5. This proof is split as follows. First, we
describe the function N and the allocation of total variation dissipation. Next, we will explain why one has
estimates of the type (51)-(52) —the sets D(γx), D(γy) are selected during the process—; there are several cases
to consider, according to the sign of the front path and to its side (left for γx or right for γy). Then, we will
select D(α) for abandoned fronts α ∈ A and justify (53). Finally we prove the central condition (54) on the sets
D selected before. We write these parts in different paragraphs.

4.3.2 The function N and the allocation of total variation dissipation.

For a splitting point of interaction Q, we define νQ as the number of fronts outgoing from Q. We will generically
call µ1, . . . , µνQ , these fronts, numbered from left to right; when β is such an outgoing front, we note ιβ ∈
{1, . . . , νQ} the index such that β = µιβ .

Let us first describe the function N that we will use. We consider the set S of all splitting interaction points
Q, whose outgoing fronts are negative.

• For any Q ∈ S, we consider the isv source tree of the larger incoming front at Q (that is to say, the negative
one); on the vertices of this tree and on Q, we set N = νQ − 1.

We claim that at most one value of N is given to each interaction point R by this convention. Suppose
indeed that two different values are given to a point R.

– If R ∈ S, then N (R) = νR − 1, and no other value can be given to it, since no splitting point can be
the vertex of an isv source tree (only possibly the top of it).

– Suppose now R 6∈ S. Hence there are Q1 and Q2 in S which have this point inside the isv source tree
of their negative incoming front. Since R 6∈ S these two trees have a front in common. By Lemma 5,
one of these isv source trees is included in the other one. But this inclusion cannot be strict, because
Q1 and Q2 are splitting points, and there are no splitting point in the inside of an isv source tree.

• Finally, we can choose N = 1 everywhere else.

Now concerning the allocation of total variation dissipation: it is trivial for points on which N equals 1. On the
other points (say, P ), this depends on the nature of the point Q which generated this value of N (as we just
explained, Q is unique). Again we call µ1, . . . , µνQ the fronts outgoing from Q, from left to right.

• First case: uQ
r < uQ

l < uQ
m. In that case, define

∆TV (P, i) :=
ϑ(µi+1)
νQX
j=2

ϑ(µj)

∆TV (P ) for i = 1, . . . , νQ − 1. (55)

• Second case: uQ
m < uQ

r < uQ
l . In that case, define

∆TV (P, i) :=
ϑ(µi)

νQ−1X
j=1

ϑ(µj)

∆TV (P ) for i = 1, . . . , νQ − 1. (56)

The allocation of total variation dissipation described by (55)-(56) includes the case P = Q.

4.3.3 Proof of (51)-(52): positive front paths.

We consider here a front path (γx or γy) along which the front is positive during the whole time interval [t̃, T ].

• We begin with the case of the left front path γx, and establish (51). Starting from t = T , we go backwards
in time. To estimate the speed of γx, we define

σx(s) := λ
min

(γx(s)−, γx(s)+).

It is possible that γ̇x(s) 6= σx(s) due to the additional displacement (see the convention in Paragraph 2.2);
however we always have, apart from interaction times:

|σx(s)− γ̇x(s)| ≤ ε.

Now, at each time of interaction (say s) involving γx, we have according to the situation:
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– if the interaction located at γx(s) is monotone, then

σx(s+) ≥ σx(s−),

as follows from Lemma 2 (see in particular (39)) and the choice that we made in Paragraph 4.2.1;

– and if it is non-monotone, then it follows from Lemma 3 that

σx(s+) ≥ σx(s−)− ‖(f ′′)−‖∞
2

∆TV (γx(s)).

(Note that the above inequality is valid whether P := γx(s) is a splitting point or not, since in all
cases

σx(s+) ≥ λ
min

(uP
l , u

P
r ),

that is, the front followed by γx after time s travels at least as fast as the slowest outgoing front.)

Summing over all interactions points inside γx during (t̃, T ), we get (51) in that case, by choosing D(γx)
to be the set of non monotone interaction points on γx during times in (t̃, T ). We remark that N is equal
to 1 on D(γx) (because points at which N has values larger than 1 have negative outgoing fronts). We
represent the situation in Figure 3.

γx

negative fronts

t = T

D(γx)

t = 0

positive fronts

Figure 3: A example of positive γx

• Now we turn to the right front path γy, and prove (52). Here, we define

σy(s) := λ
max

(γy(s)−, γy(s)+),

the maximal speed in the Riemann problem determined by the front γy at time s. Again we get from the
algorithm of Paragraph 4.2.1 and Lemmas 2 (see in particular (40)) and 3 that:

– if the interaction located at γy(s) is monotone, then

σy(s+) ≤ σy(s−),

– and if it is non-monotone, then

σy(s+) ≤ σy(s−) +
‖(f ′′)−‖∞

2
∆TV (γx(s)). (57)

(Again the above inequality is valid whether the point P := γx(s) uses the splitting strategy or not, since
the value λ

max
increases when one considers the outgoing fronts from left to right, and equals λ

max
(uP

l , u
P
r )

for the rightmost front.)

Now we note that for all s,
γ̇y − ε ≤ σy(s) ≤ γ̇y + 2ε. (58)

This follows from the fact that all fronts have an inner speed variation less than 2ε and from the convention of
Paragraph 2.2. Hence summing (57) along all interactions that concern γy, and then applying (58), we get (52)
in that case, where again D(γy) is the set of non monotone interaction points on γy during times in (t̃, T ). Again
N is equal to 1 on it.
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4.3.4 Proof of (51)-(52): negative front paths.

We consider here the case where a front path selected above is negative during the whole time interval [0, T ].
(Recall that in that case t̃ = 0.)

Considering the algorithm described in Paragraph 4.2, we see that during the history of this path, all in-
teraction points are monotone (otherwise, the front path is either stopped or continued as a positive front). In
particular, these points use the no splitting strategy.

We will classify these interaction points according to the following cases of the postprocessing algorithm:

• Class a: points at which both incoming fronts were in the tree, and we extended γx (or γy) by picking the
incoming front on the right,

• Class b: points at which both incoming fronts were in the tree, and we picked the one on the left,

• Class c: points at which only one of the incoming fronts was in the tree.

For z = x (resp. for z = y), call Iz
a , Iz

b and Iz
c the set of interaction points of class a, b and c, respectively, in

the history of γx (resp. in γy). We claim that for t ∈ [0, T ],

f ′(γx(t)−) ≤ f ′(γx(T )−) +
X

P∈Ix
a

τ(uP
l ;uP

m), (59)

f ′(γy(t)+) ≥ f ′(γy(T )+)−
X

P∈Iy
b

τ(uP
m;uP

r ). (60)

Let us explain this in the case (59); (60) is treated likewise. We follow γx (backward in time): the characteristic
speeds on the sides of γx change only at interaction times. We want to compare the characteristic speed of the
state on the left of γx before and after the interaction. We discuss according to the class of the interaction point:

• Class a: in that case, as we go across the interaction in growing time, the left state is changed and its
characteristic speed has decreased of τ(uP

l ;uP
m) > 0 (since the left incoming front was in the tree, it has a

positive osv). This is taken into account in the last term of (59).

• Class b: in that case, as we go across the interaction in growing time, the left state is conserved, so there
is nothing to add to (59).

• Class c: in that that case, the outer speed variation of the front that we did not pick in the tree was
nonpositive. Hence,

– either it was the left incoming front, and the left characteristic speed has increased (or has stayed
constant),

– either it was the right incoming front, and the left state is conserved.

In both cases, we do not need to add an error term to (59).

Hence we get (59)-(60).
Now we claim that the terms

P
P∈Ix

a
τ(uP

l ;uP
m) and

P
P∈Iy

b
τ(uP

m;uP
r ) can be estimated in the total variation

dissipation term
p
‖(f ′′)−‖∞‖f ′′‖∞(TV (u0)− TV (u(t))). This is a consequence of Lemmas 5 and 6. The main

fact is that the front that has been left in cases a for the x-tree and b for the y-tree has a good osv source tree.
We explain this in the case of the x-tree, since the reasoning is the same in the case of the y-tree. Consider an
interaction point counted in Ix

a . We consider the incoming front that is not selected in γx at this point (that is,
(uP

l ;uP
m) since P ∈ Ix

a ), and draw the extended osv source tree of this front. We claim that this tree is good (in
the sense of Paragraph 3.4). Indeed, if one of its leaves were not good, then it follows from the construction of
Paragraph 4.2.2 (see Remark 7) that this osv source tree had a branch touching t = 0, which is in contradiction
with the fact that we are in case a (we did not pick the front (uP

l ;uP
m) when applying the postprocessing algorithm

of Paragraph 4.2.3).
Now, using (59)-(60), and Lemma 6, we arrive at

f ′(γx(t)−) ≤ f ′(γx(T )−) +
X

P∈Ix
a

X
β∈ bL(uP

l
;uP

m)

ϑ(β), (61)

f ′(γy(t)+) ≥ f ′(γy(T )+)−
X

P∈Iy
b

X
β∈ bL(uP

m;uP
r )

ϑ(β). (62)

Now we will use Lemma 5 to estimate each ϑ(β), but we do not apply directly Lemma 5 to the front β. From
the construction, the front β outgoes from a non-monotone interaction point Q at t > 0 which uses the splitting
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strategy; it is not the leftmost (resp. the rightmost) outgoing front, if uQ
r < uQ

l < uQ
m (resp. if uQ

m < uQ
r < uQ

l ).

Again we call µ1, . . . , µνQ , the fronts outgoing from Q. We study the cases uQ
r < uQ

l < uQ
m and uQ

m < uQ
r < uQ

l

separately.

• First case: uQ
r < uQ

l < uQ
m. In that case, it follows from Proposition 4-(28) that

ϑ(uQ
l ;uQ

r ) ≤ ϑ(uQ
m;uQ

r ) +
p
‖(f ′′)−‖∞‖f ′′‖∞∆TV (Q).

Now we apply Lemma 5 on the incoming front (uQ
m;uQ

r ) to get

ϑ(uQ
m;uQ

r )− ε ≤
p
‖(f ′′)−‖∞‖f ′′‖∞

X
R∈V(u

Q
m;u

Q
r )

∆TV (R).

Recalling the construction of the approximate solver with the splitting strategy, and in particular (19) (see
also Remark 3), we deduce

νQX
i=2

ϑ(µi) = ϑ(uQ
l ;uQ

r )− ε,

and hence that
νQX
i=2

ϑ(µi) ≤
p
‖(f ′′)−‖∞‖f ′′‖∞

“
∆TV (Q) +

X
R∈V(u

Q
m;u

Q
r )

∆TV (R)
”
.

(Note that there are at least three outgoing fronts when the splitting strategy is applied apart from t = 0.)
In other words, we can measure by a term of the typep

‖(f ′′)−‖∞‖f ′′‖∞ × (total variation dissipation),

the inner speed variation of all the outgoing fronts at Q, except the leftmost one. But recall from Paragraph
4.2.2 that this latter front will not stay a purely negative one, so it does not have to be counted here. In
that case, we fix ι̃β := ιβ − 1; this will be used later.

• Second case: uQ
m < uQ

r < uQ
l . This case is treated exactly as the previous one: replace the use of (28) with

the one of (27); apply Lemma 5 to (uQ
l ;uQ

m) and finally arrive at

νQ−1X
i=1

ϑ(µi) ≤
p
‖(f ′′)−‖∞‖f ′′‖∞

“
∆TV (Q) +

X
R∈V(u

Q
l

;u
Q
m)

∆TV (R)
”
.

(Here the rightmost outgoing front is excluded.) In that case, we fix ι̃β := ιβ .

Now we choose D(γx) and D(γy) as follows. We summarize the situation: for each P ∈ Ix
a (resp. P ∈ Iy

b ),
we associate the leaves β of the osv source tree of the left (resp. right) incoming front at P ; to each leaf β we
associate the interaction point Q from which β is outgoing; to this Q we associate the vertices of the isv source
tree of the negative incoming front at Q; we denote these interaction points by R. Now we define D(γx) (resp.
D(γy)) as the union of (R, ι̃β) for all of these interaction points R, together with (Q, ι̃β). (The “−1” in the above
ι̃β := ιβ − 1 is intended to make the marking consistent with the second union in (50), which begins at i = 1.)

We illustrate this in Figure 4 below: the solid lines represent the osv source tree of γx, the black solid lines
being γx itself; the dotted lines are fronts that do not belong to any tree; the dashed lines represent the isv
sources trees.

We observe that in the above construction, each (R, i) is associated to a unique (Q, i): Q is the first splitting
point that we meet when we follow the fronts in the approximation forward in time, starting from R. In turn,
each (Q, i) is associated to a unique β given by the i-th outgoing front at Q (or the (i+ 1)-th one, according to
the nature of the interaction at Q); each β is associated to a unique P ∈ Ix

a or P ∈ Iy
b : P is the first point in

γx or γy that we meet when going forward in time in the approximation, starting from β. In other words, each
“marked interaction point” is counted at most once in the above sums.

Transferring the previous information into (61)-(62), we obtain

f ′(γx(t)−) ≤ f ′(γx(T )−) +
p
‖(f ′′)−‖∞‖f ′′‖∞

X
(M,i)∈D(γx)

∆TV (M, i), (63)

f ′(γy(t)+) ≥ f ′(γy(T )+)−
p
‖(f ′′)−‖∞‖f ′′‖∞

X
(M,i)∈D(γy)

∆TV (M, i). (64)

Finally, as by construction, for all t ∈ [0, T ], the front γx(t) (resp. γy(t)) has a positive outer speed variation and
an inner speed variation no more than 2ε, we have

f ′(γz(t)+) ≤ λ
max

(γz(t)−; γz(t)+) ≤ λ
min

(γz(t)−; γz(t)+) + 2ε ≤ f ′(γz(t)−) + 2ε ≤ f ′(γz(t)+) + 2ε,

for z = x or y, which yields (51)-(52) in that case.
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isv source trees

t = 0

t = T

Ix
a

(R, i)

(Q, i)

Figure 4: A example of negative γx

4.3.5 Proof of (51)-(52): positive-negative front paths.

Now we consider a front path that is successively positive and negative. According to the algorithm described in
Paragraph 4.1, there is some t̂ ∈ (0, T ) such that the front under view is positive during [0, t̂), and then negative
during (t̂, T ]. As the front paths that we select do not meet when they are negative, we have t̃ < t̂.

Performing the above reasonings during time intervals [t̃, t̂] (Paragraph 4.3.3) and [t̂, T ] (Paragraph 4.3.4), we
see that it is enough to compare γ̇x(t̂−) and γ̇x(t̂+) (resp. γ̇y(t̂−) and γ̇y(t̂+)) and to show that the error is of
order ε. But according to the algorithm of Paragraph 4.2.2, we see that the situation where a negative front is
continued as a positive front occurs only if the interaction point at time t̂ is a non-monotone interaction point P
(with negative outgoing fronts), and we are in one of the following three cases:

• or the no-splitting strategy was used,

• or uP
r < uP

l < uP
m and the outgoing front that we considered was the leftmost one,

• or uP
m < uP

r < uP
l and the outgoing front that we considered was the rightmost one.

Note that the first case is in fact included in the two latter ones. Moreover, the negative outgoing front γx(t̂+)
or γy(t̂+) under view has a positive outer speed variation by construction. Hence, one can apply Lemma 4, with
in both cases the term within brackets equal to zero. One easily concludes that

|γ̇z(t̂−)− γ̇z(t̂+)| ≤ 4ε,

in both cases z = x and z = y.
Hence we can define D(γx) (resp. D(γy)) by taking the union of the representatives (M, i) selected for the

negative fronts during times (t̂, T ] (following Paragraph 4.3.4) and of the representatives (M, 1) selected for the
positive fronts during times [0, t̂) (following Paragraph 4.3.3), see an example in Figure 5. Remark in particular
that in Lemma 4, no total variation dissipation is used; consequently we do not add a representative of γx(t̂) to
the selection D(γx) (or D(γy)).

point of sign change

t = T

Ix
a

t = 0

positive fronts

negative fronts

D(γx)

Figure 5: A example of positive-negative γx
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4.3.6 Proof of (53).

For α 6∈ A ∪ {γx, γy}, we can define D(α) := ∅, since these fronts have no importance. This includes positive
fronts at time T which do not belong to {γx, γy}, since abandoned fronts are negative.

Now let us define D(α) for α ∈ A. There are several cases to consider, according to the reason why the
algorithm abandoned α:

• if τ(α) ≤ 0, define D(α) := ∅, in such a way that (53) is satisfied, and that this front will not have to be
considered in the proof of (54).

• if τ(α) > 0, we reason in the same way as we did in Paragraph 4.3.4 concerning fronts (uP
l ;uP

m) with
P ∈ Ix

a . We begin by drawing the osv source tree of α. The fact that α was abandoned implies that this
tree is good. As in Paragraph 4.3.4, we associate to each of its leaves β the corresponding interaction point
Q from which this leaf outgoes. Call ιβ the rank of β as a front outgoing from Q, and determine ι̃β as
Paragraph 4.3.4. Now we consider the “larger” incoming front at Q (that is the negative one), and the isv
source tree of this larger front. We define D(α) as the set of the vertices of this isv source tree, where we
add ι̃β as a marker, plus (Q, ι̃β). Now, proceeding as in Paragraph 4.3.4, we get that

ϑ(β) ≤
p
‖(f ′′)−‖∞‖f ′′‖∞

“
∆TV (Q, ι̃β) +

X
R∈V(u

Q
−;u

Q
+)

∆TV (R, ι̃β)
”
,

where (uQ
−;uQ

+) is the bigger incoming front at Q. Hence (53) follows from Lemma 6 as previously.

4.3.7 Proof of (54).

It remains to establish (54). Consider a representative (M, i) of an interaction point M which belongs to D(α)∩
D(β), where α and β are two different fronts living at time T . Several cases are in order:

• if the front(s) outgoing from M is (are) positive, then necessarily (M, i) = (M, 1) has been selected in
D(α) and D(β) during Paragraph 4.3.3 or during the “positive part” of Paragraph 4.3.5, since the other
representatives (M, i) which are selected in a set D have negative outgoing fronts. In particular, it is not
possible for α or β to be an abandoned front. Hence {α, β} = {γx, γy}. But for positive front paths, we
only consider (M, i) inside γx or γy, (strictly) after time t̃; this contradicts the definition of t̃.

• if the front(s) outgoing from M is negative: there are two types of such (M, i): those of type (Q, i) where
Q is a splitting point which has been selected as the bottom of the leaf of an osv source tree; those of
type (R, i) where R has been selected as the vertex of an isv source tree. As noticed above, these are easy
to distinguish, because the first type (Q, i) corresponds to a splitting point, while the latter type of (R, i)
corresponds to a non splitting point. We treat these two types separately.

– M is non splitting. Starting from M , we follow the fronts forward in time until we reach a splitting
interaction point Q. This is done in a clear unique way. It follows from the construction that for both
D(α) and D(β), Q is an interaction point from which outgoes a leaf µ of an osv source tree drawn
from either α, β ∈ A or from P ∈ Ix

a ∪ Iy
b . Moreover, the marker i of (M, i) indicates which one of

the outgoing fronts at Q is µ.

In the case where µ is constructed from the osv source tree of P ∈ Ix
a ∪ Iy

b , the point P itself was
constructed as a vertex of the osv source tree of γx (resp. γy). From the transitivity of Lemma 6, it
follows that µ belongs to the osv source tree of γx (resp. γy). In all cases, we see that µ belongs tobT (α)∩ bT (β). Now the fact that the osv source trees are disjoint in the sense of Lemma 6 implies that
α = β, since osv source trees can have only one front living at time T .

– M is splitting. We can reason as for the point Q in the above case and conclude in the same way.

This ends the proof of Proposition 5.

4.4 Conclusion

There remain three steps to establish (11):

• to obtain a form of (49) which does not count the cost of abandoned trees (yet) in the two following cases:

– Case 1: γx and γy do not meet except perhaps at t = 0,

– Case 2: γx and γy meet at a time t̃ > 0,

• to count the cost of abandoned trees on (49) (and to treat the case γx = γy),

• to pass to the limit in (49) in order to obtain (11).

This is done in the next paragraphs.
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4.4.1 Case 1

Suppose that we are in the first situation. This is described in Figure 6. We have

γy − γx = γy(0)− γx(0) +

Z T

0

[γ̇y(τ)− γ̇x(τ)]dτ

≥
Z T

0

[γ̇y(τ)− γ̇x(τ)]dτ,

since the fronts γx and γy did not cross each other. Now, using Proposition 5, we get that

γy(0)

t = 0

other fronts

γx, γy

γx γy
x y

γx(0)

t = T

Figure 6: Case 1

y − x ≥ γy − γx ≥ T (γ̇y(T )− ˙γx(T ))−
p
‖(f ′′)−‖∞‖f ′′‖∞T [e∆TV (T, x, y)]− 16εT. (65)

where e∆TV (T, x, y) is a part of the total variation dissipation:

e∆TV (T, x, y) :=
X

(P,i)∈D(γx)

∆TV (P, i) +
X

(P,i)∈D(γy)

∆TV (P, i) ≤ TV (u0)− TV (u(T )). (66)

Now the construction and the admissibility of the solutions of the Riemann problems (u(γx−);u(γx+)) and
(u(γy−);u(γy+)) involve that

f ′(u(γx−)) ≥ γ̇x(T )− ε and f ′(u(γy+)) ≤ γ̇y(T ) + 2ε.

Together with (65)-(66), this yields the conclusion.

4.4.2 Case 2

other fronts

γxx yγy

t = T

t = t̃

x̃

γx, γy

Figure 7: Case 2

Now we suppose that we are in the second situation, such as described in Figure 7. We call t̃ > 0 the time
of meeting of γx and γy, and denote x̃ := γx(t̃) = γy(t̃). Recall that γx and γy are necessarily positive fronts at
the time they meet. Arguing as previously, we get that

f ′(u(γy+))− f ′(u(γx−)) ≤ γ̇y(T )− γ̇x(T ) + 3ε

≤ γ̇y(t̃)− γ̇x(t̃) +
p
‖(f ′′)−‖∞‖f ′′‖∞ e∆TV (T, x, y) +O(ε).
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Thus, if we manage to prove that

γ̇y(t̃)− γ̇x(t̃) ≤
p
‖(f ′′)−‖∞‖f ′′‖∞∆TV (t̃, x̃) +O(ε), (67)

we will have established (49) (even, without the non-negative (y − x)/T term). Recall in particular that the
interaction point at time t̃ is not included in D(γx) and D(γy) (see Paragraph 4.3.3 concerning positive front
paths). Moreover this interaction point cannot appear in other sets D since it has positive outgoing fronts.

Since there are several fronts outgoing from (t̃, x̃), the interaction taking place at (t̃, x̃) is necessarily non-
monotone (and uses the splitting strategy). Hence, using Proposition 4, it follows that in the outgoing Riemann
problem (u(t̃, x̃−);u(t̃, x̃+)) the inner speed variation satisfies:

ϑ(u(t̃, x̃−);u(t̃, x̃+)) ≤ 2ε+
p
‖(f ′′)−‖∞‖f ′′‖∞∆TV (t̃, x̃).

But it follows from the construction of the solver using the splitting strategy that

λ
min

(γy(t̃+)−; γy(t̃+)+)− λ
min

(γx(t̃+)−; γx(t̃+)+) ≤ ϑ(u(t̃, x̃−);u(t̃, x̃+)).

Taking the possible additional displacement of fronts of Paragraph 2.2 into account, we deduce

γ̇y(t̃+)− γ̇x(t̃+) ≤ ϑ(u(t̃, x̃−);u(t̃, x̃+)) + ε.

Hence, (67) follows, which concludes the proof of (49) where the abandoned trees still have to be counted.

4.4.3 The cost of abandoned trees

At this step we have proved that

f ′((γy)+)− f ′((γx)−) ≤ y − x

T
+

p
‖(f ′′)−‖∞‖f ′′‖∞

X
(M,i)∈D(γx)∪D(γx)

∆TV (M, i) +O(ε). (68)

Note that the case when the process of Paragraph 4.2.3 made γx = γy can be included in that case. Indeed it is
again a consequence of (25) and (36) that

f ′(γx+)− f ′(γx−) ≤ 2ε

Hence (68) is still valid in this case by setting D(γx) = D(γy) = ∅.
It remains to justify why the trees that we abandoned in the process of Paragraph 4.2.3 can be counted in

the “rest” of the total variation dissipation term
p
‖(f ′′)−‖∞‖f ′′‖∞[TV (u0) − TV (u(t))]. There are two kinds

of abandoned fronts:

• those that were abandoned because they had a negative osv: jumping them makes the inequality to prove
stronger,

• those were abandoned because their osv source tree did not reach t = 0, but which had a positive osv: the
error made in (49) by jumping to the other side of the front is precisely measured by Proposition 5-(53),
hence this can be incorporated in

p
‖(f ′′)−‖∞‖f ′′‖∞[TV (u0)− TV (u(t))].

In other words,

f ′(y)− f ′(x)−
ˆ
f ′(γy+)− f ′(γx−)

˜
=

X
α∈A

τ(α)

≤
p
‖(f ′′)−‖∞‖f ′′‖∞

X
(M,i)∈ ∪

α∈A
D(α)

∆TV (M, i).

This concludes the proof of (49).

4.4.4 Proof of (11)

It remains to pass to the limit in (49). Remark that for each t ∈ R+, due to (30), one has the convergence (up
to a subsequence),

uεν (t, x) → u(t, x) for almost every x ∈ R.

Now using (24) and
TV (u(t, ·)) ≤ lim inf

ν→+∞
TV (uεν (t, ·)),

22



we reach the conclusion that

f ′(u(t, y))− f ′(u(t, x)) ≤ y − x

t
+

p
‖(f ′′)−‖∞‖f ′′‖∞[TV (u(0, ·))− TV (u(t, ·))] for a. e. x ≤ y. (69)

Since u has a representative such that u(t, ·) is left continuous in R for all t (see e.g. [1, Theorem 2.4]), we
conclude that, if we modify u on some negligible set, (69) is valid everywhere, which concludes the proof of (11)
when u0 ∈ L1(R) ∩BV (R).

Of course, the general case u0 ∈ L∞(R) ∩ BVloc(R) follows easily by using the finite speed of propagation:
it suffices modify properly u0 (bringing it back 0 for instance) outside a zone [x − λ̂T, y + λ̂T ], where λ̂ >
‖f ′‖L∞([−‖u0‖∞;‖u0‖∞]).

5 Proof of the technical results

In this section, we establish all the technical results mentioned above.

5.1 Proof of the interaction estimates on the speeds.

5.1.1 Proof of Lemma 2.

We only treat the case of ul < um < ur, since the case ul > um > ur is entirely similar.

• Concerning (37): this is a direct consequence of conv[ul,ur ]f ≤ conv[ul,um]f on [ul, um].

• In the same way, inequality (38) is consequence of conv[ul,ur ]f ≤ conv[um,ur ]f on [um, ur].

• Now, to establish (39): let us suppose that the first possibility in (39) is not satisfied, that is, λ
min

(ul;ur) <

λ
min

(ul;um). It follows that (conv[ul,ur ]f) has no contact point with f in (ul;um]: if it did (call u∗ such a
point), then it would follow that

(conv[ul,ur ]f)|[ul,u
∗] ≡ (conv[ul,um]f)|[ul,u

∗],

in contradiction with our assumption. Now we consider

u := min{u ∈ [um;ur], (conv[ul,ur ]f)(u) = f(u)}. (70)

It follows that
(conv[ul,ur ]f)|[u,ur ] ≡ (conv[um,ur ]f)|[u,ur ],

and that on [ul, u], conv[ul,ur ]f is affine. The conclusion follows easily that

λ
min

(ul;ur) = (conv[ul,ur ]f)′(u) ≥ (conv[um,ur ]f)′(um) = λ
min

(um;ur).

• The proof of (40) is similar to the proof of (39): just consider

u := max{u ∈ [ul;um], (conv[ul,ur ]f)(u) = f(u)}

instead of (70).

5.1.2 Proof of Lemma 3.

We have two inequalities to prove in the two cases of a non-monotone interaction which generate a positive
outgoing wave. We prove these four properties separately.

• Inequality (41) in the case ul < ur < um. In that case (41) is again a consequence of the general property
of the convex hull that

(conv[a,b]f)′(a) ≥ (conv[a,c]f)′(a) for a ≤ b ≤ c, (71)

which results from conv[a,b]f ≥ (conv[a,c]f)|[a,b]. Consequently the term −(‖(f ′′)−‖∞/2)∆TV is actually
not necessary here.

• Inequality (42) in the case ul < ur < um. In that case (u−, u+) = (ul, um) and ∆TV = um − ur. In terms
of convex hulls, we have

λ
max

(ul;ur)− λ
max

(u−;u+) = (conv[ul,ur ]f)′(ur)− (conv[ul,um]f)′(um).
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Figure 8: Variation of speed during a non monotone interaction

We introduce (see Figure 8):

u := sup
n
u ∈ [ul;ur)

.
f(u) = conv[ul,ur ]f

o
,

u := inf
n
u ∈ (ur;um]

.
f(u) = conv[ul,um]f

o
.

It is clear that conv[ul,um]f can be obtained by gluing together conv[ul,u]f and conv[u;um]f (even if u = um).
It follows that

λ
max

(ul;um) ≥ λ
max

(ul;u)

Moreover it results from the definition of the convex hull that the segment [(u, f(u)), (u, f(u))] is above the
graph of conv[ul,u]f . Hence we have, if u < u,

λ
max

(ul;u) ≥
f(u)− f(u)

u− u
.

In the limit case u = u (= ur) we have λ
max

(ul;u) = f ′(u) = f ′(u) . Now it follows from the definition of
u that conv[ul,ur ]f is affine in [u, ur] and

λ
max

(ul;ur) =
f(ur)− f(u)

ur − u
,

where the right hand side has to be replaced with f ′(ur) in the limit case u = ur. It follows that

λ
max

(ul;ur)− λ
max

(ul;um) ≤ λ
max

(ul;ur)− λ
max

(ul;u)

≤ f(ur)− f(u)

ur − u
− f(u)− f(u)

u− u

≤
Z 1

0

h
f ′(u+ τ(ur − u))− f ′(u+ τ(u− u))

i
dτ

≤ ‖(f ′′)−‖∞
2

(u− ur)

≤ ‖(f ′′)−‖∞
2

(um − ur).

The limit cases are easily included in the above discussion.

• Inequality (42) in the case um < ul < ur. This case results from the general property of the convex hull,
symmetrical to (71), that for a ≤ b ≤ c,

(conv[a,c]f)′(c) ≥ (conv[b,c]f)′(c) for a ≤ b ≤ c. (72)

Again we do not need the term −(‖(f ′′)−‖∞/2)∆TV in the case under view.

• Inequality (41) in the case um < ul < ur. This is the symmetrical case of inequality (42) in the case
ul < ur < um. Here we introduce

u := inf
n
u ∈ (ul;ur]

.
f(u) = conv[ul,ur ]f

o
,

u := sup
n
u ∈ [um;ul)

.
f(u) = conv[um,ur ]f

o
,

and then it suffices to proceed as for (42) in the case ul < ur < um.
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5.1.3 Proof of Lemma 4.

• Proof of (43). It is a general consequence of the definition of the concave hull (see (71) and (72) for the
convex hull), that:

(conc[a,c]f)′(c) ≤ (conc[b,c]f)′(c) and (conc[a,c]f)′(a) ≥ (conc[a,b]f)′(a) for a ≤ b ≤ c. (73)

Now consider um < ur < ul; we get

λ
min

(ul;um) ≤ λ
min

(ul;ur).

Now using that

λ
min

(ul;um) ≥ λ
min

(um;ur), (74)

since the fronts (ul;um) and (um;ur) are meeting (and would have met regardless of the additional dis-
placement), we get (43).

• Proof of (46). Consider ur < ul < um. Here (73) yields that

λ
max

(ul;ur) ≤ λ
max

(um;ur).

Since again (ul;um) and (um;ur) are meeting, we see that (74) is still valid. Using that for fronts α

constructed by our algorithm, λ
min

(α) ≤ λ
max

(α) ≤ λ
min

(α) + 2ε, we get (46).

• Proof of (44). Consider um < ur < ul. First, from conv[um,ur ]f ≤ f on [um, ur] we immediately deduce
that

λ
max

(um;ur) = (conv[um,ur ]f)′(ur) ≥ f ′(ur). (75)

(This is the limit case b→ c− in (72)). Now, we distinguish two cases:

– if the interaction point uses the no-splitting strategy: ũ = ul: then as in (75) we have

λ
min

(ul;ur) = (conc[ur,ul]f)′(ul) ≤ f ′(ul),

and hence

λ
max

(ul;ur) ≤ λ
min

(ul;ur) + 2ε

≤ f ′(ur) + (f ′(ul)− f ′(ur)) + 2ε

≤ λ
max

(um;ur) + (f ′(ul)− f ′(ur))+ + 2ε.

– if the interaction point uses the splitting strategy: then it follows from the construction of the approx-
imate solver that

λ
min

(ũ;ur) = f ′(ũ) = λ
max

(ul;ur)− ε,

and hence

λ
max

(ul;ur) = f ′(ur) + (f ′(ũ)− f ′(ur)) + ε

≤ λ
max

(um;ur) + (f ′(ũ)− f ′(ur))+ + ε.

• Proof of (45). Consider ur < ul < um. Here we start from

λ
min

(ul;um) = (conv[ul,um]f)′(ul) ≤ f ′(ul).

Again, we distinguish the two cases:

– if the interaction point uses the no-splitting strategy: ũ = ur: then

λ
max

(ul;ur) = (conc[ur,ul]f)′(ur) ≥ f ′(ur),

and hence

λ
min

(ul;ur) ≥ λ
max

(ul;ur)− 2ε

≥ f ′(ul)− (f ′(ul)− f ′(ur))− 2ε

≥ λ
min

(ul;um)− (f ′(ul)− f ′(ur))+ − 2ε.

– if the interaction point uses the splitting strategy: then it follows again that

λ
max

(ul, ũ) = f ′(ũ) = λ
min

(ul;ur) + ε,

and hence

λ
min

(ul;ur) = f ′(ul) + (f ′(ũ)− f ′(ul))− ε

≥ λ
min

(ul;um)− (f ′(ul)− f ′(ũ))+ − ε.
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5.2 Proof of the interaction estimates on the inner speed variation.

Note that a version of Proposition 4 was proved in [8] in the case of systems: in this case there is an additional
interaction term in the right hand side of (26). Here we prove that we can get rid of the additional term in
(26) and that we can take Ci as in (29) for (27)-(28). These inequalities are rather direct, except in the case of
(27)-(28) for a negative outgoing wave (i.e. ur < ul).

5.2.1 Proof of (26).

Let us briefly explain (26). We only treat the case ul < um < ur since the other one is similar. We introduce

u1 := max
˘
u ∈ [ul, um], f(u) = conv[ul,ur ]f(u)

¯
,

u2 := min
˘
u ∈ [um, ur], f(u) = conv[ul,ur ]f(u)

¯
.

• Suppose that ul < u1 ≤ u2 < ur. Then conv[ul,ur ]f coincides with conv[ul,um]f (resp. with conv[um,ur ]f)
on [ul, u1] (resp. on [u2, ur]), hence

ϑ(ul;ur) = λ
max

(um;ur)− λ
min

(ul;um)

= λ
max

(um;ur)− λ
min

(um;ur) + λ
min

(um;ur)− λ
min

(ul;um)

≤ ϑ(um;ur) +
`
λ

min
(um;ur)− λ

min
(ul;um))+.

• Suppose ul = u1 < u2 < ur (resp. ul < u1 < u2 = ur). In that case, we see that ϑ(ul;ur) = ϑ(u2, ur)
(resp. ϑ(ul;ur) = ϑ(ul, u1)) and the conclusion follows.

• The case ul = u1 < u2 = ur involves ϑ(ul;ur) = 0.

5.2.2 Proof of (27)-(28): the case of a positive outgoing wave.

The cases of positive outgoing waves (ul < ur) follow directly from Lemma 3. Moreover, we can obtain the result
with a better constant than (29). As a matter of fact, if we subtract (41) from (42) we already get the result
with constant ‖(f ′′)−‖∞ ≤

p
‖(f ′′)−‖∞‖f ′′‖∞; but taking a closer look, we see that we can obtain ‖(f ′′)−‖∞/2

as a constant by using

• (42) and (71) in the case ul < ur < um,

• (41) and (72) in the case um < ul < ur.

As we will see, the two cases where ul > ur need a different treatment.

5.2.3 Proof of (27)-(28): the case of a negative outgoing wave.

It is rather clear that if we used the same strategy as is the previous paragraph in the case of a negative outgoing
wave (ul > ur), the error terms would be of the type ‖(f ′′)+‖∞∆TV .

We restrict our attention to inequality (28) in the case ur < ul < um since inequality (27) in the case
um < ur < ul is a symmetrical situation. The proof of (28) follows several steps.

1. Reduction to a non degenerate flux. It will be convenient to work with a non-degenerate flux, as it is
defined in [8]: in the scalar case, a non-degenerate flux is a flux f ∈ C∞(R; R) satisfying:n

u ∈ R
.
f ′′(u) = f ′′′(u) = 0

o
= ∅.

The basic point is the following.

Lemma 7. The set of non-degenerate fluxes is a Baire second category set, for Whitney’s topology.

Lemma 7 is a (very) particular case of [8, Theorem 2.3]. Also, it could be proved elementarily by using Baire’s
Theorem.

Using Lemma 7, one sees that it is sufficient to prove (28) in the case of a non-degenerate flux. Indeed, one
can find a sequence (fn) of non-degenerate fluxes, converging to f for the Ck norm on any compact subset of R
(in particular on [−‖u0‖∞, ‖u0‖∞]). It is then enough to pass to the limit inˆ

(conc[ur,ul]fn)′(ur)− (conc[ur,ul]fn)′(ul)
˜
−

ˆ
(conc[ur,um]fn)′(ur)− (conc[ur,um]fn)′(um)

˜
≤

p
‖(f ′′n )−‖∞‖f ′′n‖∞(um − ul).
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The passage to the limit comes for instance from:
|(conc[a,b]f)′(a)− (conc[a,b]g)

′(a)| ≤ ‖f ′ − g′‖∞,
|(conc[a,b]f)′(b)− (conc[a,b]g)

′(b)| ≤ ‖f ′ − g′‖∞.
(76)

Let us explain the first inequality. This is easily adapted for the second one and in the case of the convex hull
too. It is clear from the definition that

(conc[a,b]f)′(a) = inf
n
λ ∈ R

.
f(x) ≤ f(a) + λ(x− a) on [a, b]

o
.

One can assume f(a) = g(a) since constants do not intervene here. Now (76) follows fromn
λ+ ‖f ′ − g′‖∞ ∈ R

.
g(x) ≤ g(a) + λ(x− a) on [a, b]

o
⊂

n
λ ∈ R

.
f(x) ≤ f(a) + λ(x− a) on [a, b]

o
.

2. Second reduction. Now let us prove that we can reduce to the case where:

∀u ∈ [ul, um), conc[ur,u]f is not affine. (77)

Indeed:

• if conc[ur,ul]f is affine then the result is trivial,

• else, if conc[ur,u]f is affine for some u ∈ (ul, um) (but not for u = ul), then we introduce

u := min
n
u ∈ (ul, um)

.
conc[ur,u]f is affine

o
> ul.

Then replacing um with u makes the new statement (28) to prove stronger (the left hand side is unchanged,
and the right hand side is diminished, since ϑ(ur;u) = 0, and the term ∆TV := um − ul is also smaller),
and now we are in the situation described by (77).

From now on we suppose that the flux is non-degenerate and that (77) holds.

3. Proof in the reduced case. Define L : [ul, um] 3 u 7→ (conc[ur,u]f)′(u). Our goal is to prove that L is
continuous and right-derivable in [ul, um], with its derivative satisfying

d

du+
L(u) ≤

p
‖(f ′′)−‖∞‖f ′′‖∞. (78)

(Recall that ur < ul < um) For this purpose, we pick u ∈ [ul, um], and discuss according to the situation at the
point u.

• If u is a “standard” contact point, in the sense that:

(conc[ur,u]f)′(u) = f ′(u) and f ′′(u) < 0.

Then in a right neighborhood of u, one constructs conc[ur,·]f by extending conc[ur,u]f with f . Hence L is
continuous and derivable in such a neighborhood, and moreover it satisfies (78) (even, with 0 on the right
hand side).

• If u is a “critical” contact point, in the sense that:

(conc[ur,u]f)′(u) = f ′(u) and f ′′(u) = 0.

At such a point, one has f ′′′(u) 6= 0. As a concave hull of a function is above this function and below its
tangents, it follows that f ′′′(u) > 0. One can locally define the application

G(v, w) :=

(
1

w−v

“
f(w)−f(v)

w−v
− f ′(v)

”
for w 6= v,

1
2
f ′′(v) otherwise,

=

Z 1

0

(1− θ)f ′′(v + θ(w − v)) dθ.

(This is the standard way to define the mixed curve for systems, see e.g. [10, Theorem 5.1].) Clearly, G is
regular, and moreover

∂vG(u, u) =
1

3
f ′′′(u) > 0.
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Hence by the implicit function theorem, one can locally define around u a regular application ϕ solution to

f(w)− f(ϕ(w))

w − ϕ(w)
= f ′(ϕ(w)), (79)

and satisfying ϕ(u) = u. Note that ∂wG(u, u) = 1
6
f ′′′(u) > 0, hence locally ϕ is decreasing. Consequently,

for w in a right neighborhood of u, one constructs conc[ur,w]f by gluing together conc[ur,ϕ(w)]f and the
affine function connecting the points (ϕ(w), f(ϕ(w))) and (w, f(w)).

It follows that in such a neighborhood,
L(w) = f ′(ϕ(w)).

Now differentiating (79) with respect to w yields

d

dw
f ′(ϕ(w)) =

f ′(w)− f ′(ϕ(w))

w − ϕ(w)
(80)

To estimate the right-hand side, we temporarily admit the following lemma.

Lemma 8. Let a < b and g ∈ C0([a, b]; R) such thatZ b

a

(b− x)g(x) dx = 0. (81)

Then
1

b− a

Z b

a

g ≤
p
‖g−‖∞(‖g−‖∞ + ‖g+‖∞)− ‖g−‖∞ ≤

p
‖g−‖∞‖g+‖∞. (82)

Now (79) and Taylor’s integral formula involve that (81) is satisfied with

g = f ′′, a = ϕ(w) and b = w.

Applying (82) yields, together with (80), that (78) is satisfied.

• If u is a “transversal” touching point, in the sense that:

(conc[ur,u]f)′(u) < f ′(u).

Then we introduce u as

u := inf
n
v ∈ [ur, u)

.
(conc[ur,u]f)(v) = f(v) and (conc[ur,u]f)′(v) = (conc[ur,u]f)′(u)

o
.

The case u = ur is excluded by condition (77). Hence we deduce

f(u)− f(u)

u− u
= f ′(u). (83)

Moreover, for v < u we have (conc[ur,u]f)′(v) > (conc[ur,u]f)′(u), hence it follows, together with the non-
degeneracy of f , that conc[ur,u]f coincides with f in some left neighborhood of u. Note that one cannot
have f ′′(u) = 0, because the tangent to f at u is above the graph of conc[ur,u]f , hence of the one of f (and
the flux is non-degenerate). Hence f ′′(u) < 0. It follows that one can define a regular function ϕ in a right
neighborhood of u, in such a way that ϕ(u) = u and (79) applies. It is indeed sufficient to apply implicit
functions theorem to

H(v, w) :=
f(w)− f(v)

w − v
− f ′(v),

which we can do because as a consequence of (83), one has

∂vH(u, u) := −f ′′(u) > 0.

Now as previously one constructs conc[ur,w]f for w in a small right neighborhood of u, by gluing together
conc[ur,ϕ(w)]f and the affine function connecting the points (ϕ(w), f(ϕ(w))) and (w, f(w)). Again we apply
Lemma 8, and (78) follows.

To conclude, we have (78) in all (interesting) cases, and it follows that

λ
min

(ul;ur) ≥ λ
min

(um;ur)−
p
‖(f ′′)−‖∞‖f ′′‖∞(um − ul). (84)

Since on another side
λ

max
(ul;ur) ≤ λ

max
(um;ur),

as seen from (73), we obtain (28). �
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Remark 8. Observe that (84) is not in contradiction with Remark 4, since it is only valid when (77) is satisfied.
In a situation where conc[ur,u]f is affine for u in some interval I, the inner speed variation ϑ(ur;u) is null for

all u ∈ I, while λ
max

(ur;u) = λ
min

(ur;u) may vary, even if f ′′ ≥ 0.

Proof of Lemma 8. Of course, we may exclude the trivial case g = 0 from the discussion. We introduce some
parameter µ ∈ [0, b− a]; then we have the following inequalities:Z b

a

g(x)dx ≤
Z b−µ

a

b− x

µ
g+(x)dx+

Z b

b−µ

g+(x)dx−
Z b

a

g−(x)dx

≤
Z b

a

b− x

µ
g+(x)dx+

Z b

b−µ

“
1− b− x

µ

”
g+(x)dx−

Z b

a

g−(x)dx

=

Z b

a

“ b− x

µ
− 1

”
g−(x)dx+

Z b

b−µ

“
1− b− x

µ

”
g+(x)dx

≤ ‖g−‖∞
Z b−µ

a

“ b− x

µ
− 1

”
dx+ ‖g+‖∞

Z b

b−µ

“
1− b− x

µ

”
dx

=
h (b− a)2

2µ
+
µ

2
− (b− a)

i
‖g−‖∞ +

µ

2
‖g+‖∞.

Taking

µ := (b− a)

s
‖g−‖∞

‖g−‖∞ + ‖g+‖∞
(∈ [0, b− a])

yields the first inequality. The second one is just the subadditivity of the square root.

Remark 9. Clearly, one has alsop
‖g−‖∞(‖g−‖∞ + ‖g+‖∞)− ‖g−‖∞ ≤ ‖g+‖∞

2
.

But one cannot compare in general
p
‖g−‖∞(‖g−‖∞ + ‖g+‖∞)−‖g−‖∞ and ‖g−‖∞/2. This explains the maxima

appearing in formula (14), see Paragraph 6.4.

5.3 Proofs of Lemmas 5 and 6.

5.3.1 Proof of Lemma 5

That the selection process is transitive is a straightforward consequence of the construction. Now let us establish
the second assertion. Consider two fronts α and β and a front γ ∈ T (α) ∩ T (β). Of course one can suppose
α 6= β. Starting from γ, move up in the tree. As the algorithm of Paragraph 3.3 stops at any interaction point
using the splitting strategy, at each interaction point which we meet in the process, there is only one outgoing
front. Hence as long as in this process we do not have met α or β, the front that we consider is necessarily in
T (α) ∩ T (β). When we reach α or β, the transitivity yields the conclusion.

Now, let us establish (47). Given a front γ, we call tγ its time of generation, given an interaction point P , we
call tP its time, i.e. its first projection. We consider a front α. We exclude the case ϑα ≤ ε from the discussion
since (47) is trivial in that case (in particular this excludes the case tα = 0). Call t̃ the minimal time of a leaf of
the tree T (α). We prove (85) by induction, precisely, we prove that for any s ∈ [t̃, t],

max
n
ϑβ , β ∈ T (α) such that tβ < s

o
− ε ≤

p
‖(f ′′)−‖∞‖f ′′‖∞

X
P∈V(α),
s. t. tp<s

[∆TV ](P ). (85)

We start at the minimal time t̃. Considering the algorithm of Paragraph 3.3, at the corresponding interaction
point:

• or it is an interaction using the splitting strategy: this is excluded, since from such an interaction point,
outgoes only fronts with inner speed variation no more than ε; we have excluded this case.

• or it is a monotone interaction (using the no-splitting strategy): in that case, both incoming fronts had an
inner speed variation not more than ε, while the outgoing front has an inner speed variation larger than ε.
Using (26) and remarking that meeting of the incoming fronts involves that the last term in (26) vanishes,
we conclude that this case is also excluded.
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• or it is a non-monotone interaction using the no-splitting strategy: in that case, the larger incoming front
(the one with the same sign as the outgoing one) has an inner wave speed no more than ε, while the
outgoing one has inner wave speed more than ε. Using (27)-(28), we see that this involves that (85) is valid
for times immediately after t̃.

After the initial time t̃, both sides of (85) can only change at interaction times. Consider an interaction time t
which modifies a side of (85). There are two possibilities for the right hand side to change:

• or the interaction point considered is not an inner vertex of T (α), that is, none of the incoming fronts
belongs to the tree: in that case, the previous discussion for time t̃ can be reproduced.

• or the interaction point considered is an inner vertex of T (α), that is at least one of the incoming fronts
at this point was already in T (α). In that case, considering the algorithm of Paragraph 3.3, there are only
two possibilities:

– or the interaction uses the no-splitting strategy and is monotone: in that case, the conclusion comes
from (26) and from the “induction hypothesis” (the fact that (85) was valid for previous times),

– or the interaction uses the no-splitting strategy and is non-monotone, and the conclusion comes from
the induction hypothesis and (27)-(28).

This concludes the proof of (85) and hence of Lemma 5.

Remark 10. One could have defined the isv source tree differently, for instance by picking only the front with
the larger inner speed variation at a monotone interaction point where both incoming fronts have an inner speed
variation larger than ε. Lemma 5 would still be valid in that case.

5.3.2 Proof of Lemma 6

The transitivity is again a direct consequence of the construction. Concerning the second assertion: again, we
consider α and β two fronts such that bT (α) ∩ bT (β) 6= ∅ and moreover we assume α 6= β. Again, one can go up
(forward in time) in the tree without ambiguity, and the fronts considered stay in both trees, until we meet α or
β. The transitivity yields the conclusion.

Now, we aim at establishing (48). We use the same notations as in the previous paragraph, and we perform an
induction on the size of the tree (the number of its fronts). We call t̃ the minimal time of a leaf of the tree T̂ (α);
here t̃ > 0 because the tree under view is good in the sense of Paragraph 3.4 (the outer speed variation source
tree can reach t = 0 in general). We exclude from the discussion the cases where α is positive (by assumption)
or has a nonpositive outer speed variation (by triviality). Now:

• if the tree has only one front, then (48) is a trivial consequence of (36),

• next, we assume that we have proved (48) for any good outer speed variation source tree which is composed

of no more than n fronts. Let us show that this is valid for trees with n + 1 fronts. Suppose that bT (α)
is such a tree (n ≥ 1). We go back in time starting from α. The first interaction point that we find is
necessarily a monotone interaction point (otherwise, there is only one front in this tree). There are two
possibilities:

– or both incoming fronts have a positive outer speed variation,

– or only one of the incoming fronts has a positive outer speed variation,

In both cases we can apply the induction hypothesis on each tree of the incoming fronts that have a positive
outer speed variation, and then the conclusion simply comes from

f ′(ur)− f ′(ul) = f ′(ur)− f ′(um) + f ′(um)− f ′(ul).

This concludes the proof of (85) and hence of Lemma 6.

6 Complements.

6.1 Replacing
√
‖(f ′′)−‖∞‖f ′′‖∞ with

√
‖(f ′′)+‖∞‖f ′′‖∞

A first obvious remark is that we can readily infer Proposition 2 from Proposition 1 by noting that u is an entropy
solution of (1) if and only if v := −u is an entropy solution of

vt + (g(v))x = 0 for (t, x) ∈ R+ × R,
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where
g(·) := −f(− · ).

(Think of the vanishing viscosity approach for instance.) Hence applying Proposition 1 on v gives Proposition 2
on u.

Let us underline that doing so, we somehow estimate parts of u which are different from those that we consider
when proving Proposition 1. Indeed, when doing as described above, we invert the respective roles of positive
and negative fronts. In particular, if we had wished to prove Proposition 2 directly, in Section 4 we would have
inverted the roles of positive and negative fronts, that is, negative fronts would have been continued as front
paths, while positive fronts would have been continued as trees, the abandoned fronts would have been positive
ones, etc.

Remark in particular that Proposition 4 is valid when instead of taking Ci =
p
‖(f ′′)−‖∞‖f ′′‖∞, we take

Ci =
p
‖(f ′′)+‖∞‖f ′′‖∞ (in that case, the proofs of Paragraphs 5.2.2 and 5.2.3 are inverted). Note also that the

equivalent of Lemma 3 for negative fronts naturally yields a coefficient ‖(f ′′)+‖∞ instead of ‖(f ′′)−‖∞, and that
an equivalent of Lemma 4 can be proved for positive fronts.

6.2 Replacing
√
‖(f ′′)−‖∞‖(f ′′)+‖∞ with ‖f ′′‖∞/2

In this paragraph, we wish to underline that the proof would have been way shorter and simpler if the goal had
been to prove (15) instead of (11).

We list the simplifications of that case:

• The proof of Proposition 4 with Ci = ‖f‖∞/2 is simpler since the analysis of Paragraph 5.2.2 is sufficient
in that case; hence Paragraph 5.2.3 is unnecessary;

• Lemma 3 is valid for both positive and negative fronts when one allows a coefficient ‖f ′′‖∞/2 instead of
‖(f ′′)−‖∞/2.

• The most important consequence of that is the following one: since Lemma 3 is always valid, we do not
need to distinguish between positive and negative fronts, and they all can be treated as we treat positive
fronts in Paragraph 4.2.1. Hence no trees are in order here: we do not need Lemmas 5 and 6, nor the
algorithms of Paragraphs 4.2.2 and 4.2.3; in the proof of Proposition 5, only the reasoning for positive front
is used (in particular we need not mark interaction points); finally, Paragraph 4.4.3 is unnecessary.

6.3 Proof of Theorem 1′

Fix I := [a, b]. In order to establish Theorem 1′, it is sufficient to prove, instead of (11):

nX
i=1

f ′(u(T, yi))− f ′(u(T, xi)) ≤
b− a

T
+

p
‖(f ′′)−‖∞‖f ′′‖∞[TV (u(0, ·))− TV (u(T, ·))], (86)

for any family of 2n real numbers xi and yi satisfying

a ≤ x1 ≤ y1 ≤ · · · ≤ xn ≤ yn ≤ b.

Considering the supremum over all such families (xi, yi) in (86) yields (13). Now in order to prove (86), it is
enough to establish, instead of (49):

nX
i=1

f ′(uεν (T, yi))− f ′(uεν (T, xi)) ≤
b− a

T
+

p
‖(f ′′)−‖∞‖f ′′‖∞[TV (uεν (0, ·))− TV (uεν (T, ·))] +O(εν), (87)

where of course the term O(εν) can depend on n.
Now we perform the same analysis as in the proof of Proposition 1 for each couple (xi, yi): for each i we

determine front paths γx
i and γy

i , their meeting time t̃i when going back in time (set to be 0 if they do not
meet), and sets D(γx

i ), D(γy
i ) and D(α) for abandoned trees. If during the process of Paragraph 4.2.3 we have

abandoned all the fronts between xi and yi, we consider that D(γx
i ) = D(γy

i ) = ∅ (see Paragraph 4.4.3). Now
there are two cases in order.

First case. Let us assume that, for all 1 ≤ i < j ≤ n, the front paths γy
i and γx

j do not meet during times
t > max(t̃i, t̃j).
1. Let us show that all the sets D(γx

i ), D(γy
i ) and D(α) for abandoned trees are disjoint. This can be seen as

follows:
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- The points in D(γx
i ) and D(γy

j ) with negative outgoing fronts and the points in D(α) for abandoned fronts
can be shown to be distinct as in Paragraph 4.3.7: “marked interaction points” with negative outgoing
fronts in a set D can be connected in a unique way to front α at time T .

- Concerning the points in D(γx
i ) and D(γy

j ) with positive outgoing fronts, we remark that the various paths
(γx

i )|t>t̃i
and (γy

j )|t>t̃j
have no intersection:

· two front paths γx
i and γy

i cannot intersect at a time t > t̃i by the definition of t̃i;

· two front paths γy
i and γx

j with i < j cannot intersect at a time t > max(t̃i, t̃j): this is precisely our
assumption of the “first case”,

· two front paths γy
i and γx

j with i > j cannot intersect at a time t > max(t̃i, t̃j), because in that case
γy

j and γx
i are between γx

j and γy
i , and cannot intersect themselves nor exit from the zone delimited

by γx
j and γy

i .

2. For each i, the analysis of Section 4 shows that

f ′(uεν (t, yi))− f ′(uεν (t, xi)) ≤
yi − xi

t
+

p
‖(f ′′)−‖∞‖f ′′‖∞

X
P∈D(γx

i )∪D(γ
y
i )

∆TV (P ) +O(εν)

in Case 1, (88)

f ′(uεν (t, yi))− f ′(uεν (t, xi)) ≤
h
γ̇y

i (t̃+i )− γ̇x
i (t̃+i )

i
+

p
‖(f ′′)−‖∞‖f ′′‖∞

X
P∈D(γx

i )∪D(γ
y
i )

∆TV (P ) +O(εν)

in Case 2. (89)

Now there actually can be meetings of γx
i and γy

j (1 ≤ i < j ≤ n) for t = max(t̃i, t̃j) and the total variation

dissipation at this point is used to measure the terms γ̇y
i (t̃+i ) − γ̇x

i (t̃+i ) appearing in (89). Suppose that such a
meeting happens (call P̃ this interaction point): let us show that the total variation dissipation at the corre-
sponding interaction point can be counted only once. Note that necessarily t̃i = t̃j since, due to the assumption,
γy

i and γx
j are between γx

i and γy
j for times t > max(t̃i, t̃j). We claim that, in place of (67), standsX

k s.t. t̃k=t̃i

γ̇y
k(t+)− γ̇x

k (t+) ≤ ϑ(uP̃
l ;uP̃

r ) + εν ≤
p
‖(f ′′)−‖∞‖f ′′‖∞∆TV (P̃ ) + 3εν . (90)

The first inequality follows directly from the fact that the front paths γy
i , γx

k , γy
k for i < k < j such that t̃k = t̃i,

and γx
j are in the same order at time t̃+i as they are at time T (they cannot change their order without crossing

each other); the second one comes again from Proposition 4.
Now summing up the inequalities above yields (87) in the first case.

Second case. Let us assume that there is a meeting of γy
i with γx

j for a time t > max(t̃i, t̃j), for some 1 ≤ i < j ≤ n.
We consider the largest time t for which this happens (among all times and indices i, j). If there is an ambiguity,
consider i the smallest index, and j the largest index for which γy

i meets γx
j at time t. Call P the interaction

point at time t. See for instance Figure 9, where the curves γx
k and γy

k are represented only for t ≥ t̃k (in that
case i = 1 and j = 4).

Now, we reduce D(γy
i ) and D(γx

j ) by removing the points in these sets corresponding to times t ≤ t. Note
that γy

i and γx
j represent positive fronts at times t ≤ t and immediately after t (since they meet). Consequently,

the points that are removed belong to the paths γy
i and γx

j .
Reasoning as previously and using the maximality of t, one sees that D(γy

i ) and D(γx
j ) do no longer intersect

other sets D, nor other front paths γz
k , nor themselves. Moreover, due to the maximality of t, for k such that

i < k < j (if any), the front path γx
k meets γy

k at time t̃k ≥ t and do not cross other front paths γx
l or γy

l for
l = i, . . . , k − 1, k + 1, . . . , j for times > t.

Now, we perform the same analysis as in Paragraph 4.4.2 to get

f ′(uεν (y+
i ))− f ′(uεν (x−j )) ≤ γ̇y

i (T )− γ̇x
j (T ) + 3εν

≤ γ̇y
i (t)− γ̇x

j (t) +
p
‖(f ′′)−‖∞‖f ′′‖∞ e∆TV (T, x, y) +O(εν)

≤
p
‖(f ′′)−‖∞‖f ′′‖∞ e∆TV (T, x, y) +O(εν),

where e∆TV (T, x, y) is given again by (66), with the “new” sets D(γy
i ) and D(γx

j ). Note in particular that here
we simply get γ̇y

i (t) − γ̇x
j (t) ≤ 0 from the fact that γy

i is on the left of γx
j , and that we did not use the total
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Figure 9: Crossing of γy
i and γx

j

variation dissipation at P in the above estimate. Concerning the indices k such that i < k < j, the above analysis
of the first case applies, i.e. we can use (88)-(89)-(90). We get in total

f ′(uεν (y+
i ))− f ′(uεν (x−j ))+

X
i<k<j

f ′(uεν (y+
k ))− f ′(uεν (x−k )) ≤

p
‖(f ′′)−‖∞‖f ′′‖∞ b∆TV (T, x, y)+O(εν), (91)

with b∆TV (T, x, y) := ∆TV (P ) +
X

(P,l)∈D(γ
y
i )∪D(γx

j )

∆TV (P, l) +
X

(P,l)∈D(γx
k)∪D(γ

y
k
)

for i<k<j

∆TV (P, l). (92)

Now, we remove yi, xj and all the intermediate points xk, yk for i < k < j from the list of the points
x1, y1, . . . , xn, yn. We now consider (xi, yj) as the i-th couple, (xj+1, yj+1) as the (i + 1)-th couple if any etc.,
and reiterate the whole process. The various front paths γx

k and γy
k which are now selected are the same (except

naturally those which have been removed), but now the numbering and the meeting times t̃k have changed. As
a consequence, the points in the various sets D with negative outgoing fronts are the same, but there can be
additional points in the sets D with positive outgoing fronts, located on the various front paths γz

k . Since the
sets D which are used in (91)-(92) did no longer intersect other sets D nor other front paths γz

k , the result follows
from an induction on n.

6.4 Justification of Remark 1

In this Paragraph, we briefly explain how one can obtain the constant of Remark 1.
It follows from the proof of Proposition 1 that the constant

p
‖(f ′′)−‖∞‖f ′′‖∞ that we obtain is chosen as

the worst constant between the one of Proposition 4 and the one of Lemma 3. Looking more closely to the proof
of Proposition 4 (see in particular Lemma 8), we see that could have used the constant

max
h‖(f ′′)−‖∞

2
,
p
‖(f ′′)−‖∞(‖(f ′′)−‖∞ + ‖(f ′′)+‖∞)− ‖(f ′′)−‖∞

i
in Proposition 1.

Of course, the same remark for Proposition 2 yields the constant

max
h‖(f ′′)+‖∞

2
,
p
‖(f ′′)+‖∞(‖(f ′′)+‖∞ + ‖(f ′′)−‖∞)− ‖(f ′′)+‖∞

i
and as previously one takes the better of these two constants to get the main result.

6.5 Proof of Theorem 2

In this paragraph, we prove that one cannot replace
p
‖(f ′′)+‖∞‖(f ′′)−‖∞ with ‖(f ′′)−‖∞ (or even with

C‖(f ′′)−‖∞ for some constant C independent from f) in (10). The same counterexample can easily be adapted
to prove that one cannot replace this factor by ‖(f ′′)+‖∞ either.

The counterexample is given by a family of fluxes (fn)n≥1. These are constructed in the following way. Choose
ψ ∈ C∞(R−) such that 8>>>><>>>>:

ψ = 1 on (−∞,−4],
ψ = 0 on [−1, 0],
ψ′ ≤ 0 on R−,
ψ′′ < 0 on (−4,−2),
ψ′′ > 0 on (−2,−1).

(93)
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Such functions can easily be constructed. Now introduce Λ ∈ C∞0 (0, 1) satisfying8<: Λ ≥ 0,Z
Λ = 1/2.

(94)

Now for n ≥ 1, fn is defined as

fn(x) :=

8><>:
Ψ(x) on R−,

ρn(x) := n

Z x

0

„Z y

0

Λ((1− z)
√
n)dz

«
dy on R+.

(95)

0

ũ

ur
u1

m

u2
l

u2
m

u1
l

1

Figure 10: Counterexample: the fluxes

Note that fn(1) ≤ 1/2 for all n ≥ 1, and that fn is affine for x ≥ 1.
Now we define ur := −4 and we introduce ũ > −4 sufficiently close to −4, in order that the tangent to the

graph of Ψ at ũ cuts the axis x = 1 at an ordinate greater than 1/2. This is of course independent from n. For
n ∈ N∗, we define un

m and un
l in R+ as solving the equations (see Figure 10):

ρn(un
m) := 1 and Ψ(ũ) + Ψ′(ũ)(un

l − ũ) = ρn(un
l ).

Clearly, 1 < un
l < un

m, and hence fn is affine in [un
l , u

n
m].

Now consider, such as described in Figure 11, the meeting after some time of the right contact discontinuity
(un

m;ur) and the contact discontinuity (un
l ;un

m).

t = T

t = 0

ur

ũ

un
l

un
m

x y

Figure 11: Counterexample: the interaction

This yields a left contact discontinuity (un
l ; ũ) immediately followed by a rarefaction wave (ũ, ur) of constant

inner speed variation. We choose x and y close enough to the interaction point such that u(T, x) = ũ and
u(T, y) = ur, by taking the intersection of the sides of the outgoing wave fan with the line t = T , where T is a
time greater than the interaction time, but very close to it. Then we see that we arrive at a contradiction with

f ′n(u(T, y))− f ′n(u(T, x)) ≤ y − x

T
+ ‖(f ′′n )−‖∞[TV (u(0, ·))− TV (u(T, ·))] for x ≤ y and t > 0,

for n large enough, because ‖(f ′′n )−‖∞ and f ′n(u(t, y))− f ′n(u(t, x)) remain constant (positive for the latter), the
term y−x

T
is negligible if T is chosen sufficiently close the time of interaction (alternatively, we could choose the

time of interaction large enough), but TV (u(0, ·))− TV (u(t, ·)) = un
m − un

l tends to 0.
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