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Abstract

In this paper, we consider a system of conservation laws in-
troduced by DiPerna [12], from the point of view of boundary
controllability, in the context of weak entropy solutions. Bressan
and Coclite [5] have shown that this system is not controllable
when the solutions are of small total variation. We study the use
of a large shock wave for the control.

1 Introduction

1.1 Basic question and previous results

The problems of controllability for one-dimensional systems of conserva-
tion laws and more generally quasilinear hyperbolic systems has known
many progresses since the pioneering work of Cirinà [7], in particular in
the framework of classical solutions of class C1, see in particular Li and
Rao [19] for an important work on this problem.

A general quasilinear hyperbolic system in one dimension reads as
follows

ut +A(u)ux = 0 for (t, x) ∈ R+ × R, (1.1)

where u : R+ × R → R
n is the unknown and the matrix A(u) ∈ Mn(R)

satisfies the strict hyperbolic condition, that is, for any u in the state
domain Ω ⊂ R

n, one has

A(u) has n real distinct eigenvalues λ1 < · · · < λn. (1.2)
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These eigenvalues are the characteristic speeds at which the system prop-
agates; we associate the eigenvectors ri to them. A very important par-
ticular case of hyperbolic systems is given by the systems of conservation
laws:

ut + (f(u))x = 0 for (t, x) ∈ R+ × R, (1.3)

where the flux function f is regular from Ω to R
n. Typically, t is the

time and x is the position.
The general problem of controllability is the following. Consider the

problem posed in the interval [0, 1] rather than in R. In such a case
one needs of course to prescribe boundary conditions on [0, T ] × {0, 1}:
here boundary conditions will be considered as a control, that is, a way
to influence the system to make it behave in a prescribed way. Let us
call u(t, ·) the state of the system at time t. The question is: given
two possible states of the system, say u0 and u1, can we choose the
control suitably, in order that the solution of the system starting from
u0, reaches u1 at time T ?

Let us underline that the boundary conditions for such hyperbolic
systems of conservation laws are in general quite involved (in particular
when the characteristic speeds can change sign). A way to overcome this
difficulty is to reformulate the controllability problem in an underdeter-
mined form: given u0, u1 and T , can we find a solution of (1.1) (without
boundary conditions) satisfying

u|t=0 = u0 and u|t=T = u1?

A very general answer to this problem has been obtained by Li and Rao
[19] in the case of solutions of class C1 with small C1 norm, when the
characteristic speeds are strictly separated from zero.

Theorem 1.1 (Li-Rao, [19], 2002). Consider the system (1.1) with the
condition λ1(u) < · · · < λk(u) ≤ −c < 0 and 0 ≤ c < λk+1(u) < · · · <
λn(u). Then for all φ, ψ ∈ C1([0, 1]) such that ‖φ‖C1 +‖ψ‖C1 < ε, there
exists a solution u ∈ C1([0, T ]× [0, 1]) such that

u|t=0 = φ, and u|t=T = ψ.

In the same functional framework, a result has also been obtained in
certain cases admitting vanishing characteristic speeds, see [11].

But the situation is far less well understood in the context of entropy
solutions of systems of conservation laws (1.3). The origin of this the-
ory stems from the fact that in general the solutions of these equations
develop singularities in finite time. It is hence natural to consider dis-
continuous (weak) solutions. As well-known, such weak solutions are no
longer unique, and it is natural to consider weak solutions which satisfy
entropy conditions aimed at singling out the physically relevant solution.
These entropy conditions are the following:
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Definition 1.2. We define an entropy/entropy flux couple as a couple
of functions (η, q) such that

∀u ∈ R
∗
+ × R, Dη(u).Df(u) = Dq(u).

Then entropy solutions are defined as weak solutions of the system,

ut + (f(u))x = 0,

which moreover satisfy that, for all (η, q) entropy couple with η convex,
stands, in the sense of distributions:

η(u)t + q(u)x ≤ 0.

An important difference between the theory of entropy solutions and
the one of classical solutions is that in the context of entropy solutions,
the system is no longer reversible. This is of course, of great significance
for the study of these equations, and particularly for what concerns
controllability problems. Of course, the C1 solutions of the system are
in particular entropy solutions.

To be more precise, in this paper, we will consider solutions à la
Glimm [15], that is, entropy solutions in the sense above, of small total
variation in x for all times. Note that the meaning of the boundary
value in this context is intricate, especially when the characteristic speeds
are not separated from zero, see in particular the reference of Dubois
and LeFloch [13]. Hence the underdetermined version of the problem is
particularly well suited here.

There are very few studies concerning the controllability problem for
hyperbolic systems of conservation laws in the context of entropy solu-
tions. Ancona and Marson [2] described the attainable set on a half line
for convex scalar (n = 1) conservation laws. In the case of the Burgers
equation, Horsin [16] considered the case of a bounded interval, when the
initial data is not necessarily zero. His method relies on J.-M. Coron’s
so-called return method, on which we shall come back later. For what
concerns systems of conservation laws (n ≥ 2), Ancona and Coclite de-
scribed the attainable set for the particular case of Temple systems [1].
Bressan and Coclite [5] showed that for a hyperbolic system of conserva-
tion laws with fields either linearly degenerate or genuinely nonlinear in
the sense of Lax [17], with characteristic speeds strictly separated from
zero, one can asymptotically converge toward any constant state. But for
what concerns the finite time controllability, Bressan and Coclite showed
the following very surprising result.
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Theorem 1.3 (Bressan-Coclite, [5], 2002). For a class of systems con-
taining DiPerna’s system [12]:

{

∂tρ+ ∂x(ρv) = 0,

∂tv + ∂x

(

v2

2 + K2

γ−1ρ
γ−1

)

= 0,
(1.4)

there are initial conditions ϕ ∈ BV ([0, 1]) of arbitrary small total varia-
tion such that any entropy solution u remaining of small total variation
for all times satisfies:

for any t, u(t, ·) := (ρ, v) is not constant.

We see that the situation is strikingly different from the case of C1

solutions. As we will see, DiPerna’s system is strictly hyperbolic, has
genuinely nonlinear characteristic fields, and there are large zones in
which the two characteristic speeds are away from zero. Hence the Li-
Rao theorem applies, and in the context of C1 solutions, one can reach
constant states in finite time, at least if one stays away from the critical
states when one of the characteristic speeds vanishes. Hence Bressan and
Coclite’s result describes a particular phenomenon due to discontinuities.
To describe very roughly their counterexample, the initial state that they
consider is constituted with a dense distribution of shock waves in [0, 1];
a particular feature of DiPerna’s system is that when two shocks of
the same characteristic family interact, they merge into a larger shock
and create an additional shock in the other characteristic family. This
involves that there is a permanent creation of shocks in the domain,
hence the solution cannot be driven to a constant state.

Now the introduction of system (1.4) was motivated by isentropic
fluid dynamics, which is described by a system very close to (1.4):

{

∂tρ+ ∂xm = 0,

∂tm+ ∂x(m2

ρ + κργ) = 0.
(1.5)

In the above equation, ρ = ρ(t, x) ≥ 0 is the density of the fluid, m(t, x) is

the momentum (v(t, x) = m(t,x)
ρ(t,x) is the velocity of the fluid), the pressure

law is p(ρ) = κργ , γ ∈ (1, 3]. Equation (1.5) is formulated in Eulerian
coordinates. The problem of one-dimensional isentropic gas dynamics is
also frequently studied in Lagrangian coordinates:

{

∂tτ − ∂xv = 0,
∂tv + ∂x(κτ−γ) = 0,

(1.6)

in which case the system is referred to as the p-system; here τ = 1/ρ is
the specific volume. What we have shown in [14] is that the particular
behavior of system (1.4) does not occur in the case of equations (1.5)
and (1.6):
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Theorem 1.4 (G., [14], 2007). Consider two constant states u0 :=
(ρ0,m0) and u1 := (ρ1,m1) in R

∗
+ × R. There exist ε > 0 and T > 0,

such that, for any u0 ∈ BV ([0, 1]) satisfying:

‖u0 − u0‖L1 ≤ ε and TV (u0) ≤ ε,

there is an entropy solution u of (1.5) in [0, T ]× [0, 1] such that

u|t=0 = u0 and u|t=T = u1.

The same result applies for equation (1.6).

Remark 1.5. Actually, the result of [14] describes a broader set of final
states that can be reached via suitable boundary controls. Typically, this
set contains all small C1 states, and also states containing shocks, which
fulfill a so-called Oleinik-type inequality. Also, one can see that in the
case (1.5), no condition of separation of the characteristics speeds from
zero is imposed, despite the fact that these speed can actually vanish.

The proof of Theorem 1.4 given in [14] relies in fact on two different
methods for the case (1.5) and the case (1.6) and give in fact slightly
different results. Actually, the method that we give for (1.6) applies
also for equation (1.5) (see [14] for more details), and allows to get the
following property:

if u0 − u1 is small in total variation,

then the solution of the control problem can be chosen small as well.
(1.7)

This does not mean that necessarily we will have for all times that u(t, ·)
is of total variation of order TV (u0 − u1); actually this is more like
[TV (u0 − u1)]

1/3, but this is typically a behavior which is excluded for
system (1.4). One of the main points is that, for systems (1.5) and
(1.6), when two shocks of the same characteristic family interact, they
merge into a larger shock and create a rarefaction wave in the other
characteristic family. The other method which we present in [14] for
(1.5) does not yield property (1.7), and does not apply to system (1.6).
But what we are going to see in this paper is that it applies to system
(1.4).

1.2 The result

What we show is the following.

Theorem 1.6. Given u0 := (ρ0, v0), u1 := (ρ1, v1) in R
∗
+×R, there exist

ε > 0 and T > 0, such that, for any u0 ∈ BV ([0, 1]; R∗
+ × R) satisfying:

‖u0 − u0‖L1 ≤ ε and TV (u0) ≤ ε,



6 Olivier Glass

there is an entropy solution u of (1.4) in [0, T ]× [0, 1] such that

u|t=0 = u0, and u|t=T = u1.

But of course, the solution which we obtain does not stay of small
total variation for all times!

1.3 Structure of the proof

As in [14], the proof of Theorem 1.6 consists in proving these two con-
secutive propositions.

Proposition 1.7. Let u0 ∈ BV ([0, 1]; R∗
+×R) as in Theorem 1.6. Then

there exist T1 > 0, a constant state ω1 ∈ Ω, and an entropy solution
u : [0, T1] × [0, 1] → Ω of (1.4) such that

u|t=0 = u0 (1.8)

u|t=T1
= ω1. (1.9)

This part is the part where we show that the fact that the solution
stays of small total variation is central in Theorem 1.3. This is connected
to Coron’s return method, which was introduced in [9]; see [10] for more
details on it. Basically, this method advocates that in many situations,
one has better controllability properties when the system goes far from
the base point and returns to it. In the context here the Bressan-Coclite
theorem shows that it is more or less necessary.

The second proposition (which can be seen as finite-dimensional con-
trol result) is the following.

Proposition 1.8. For any (ω, ω′) ∈ (R∗
+ × R)2, there is some T2 > 0

and an entropy solution u of (1.4) in [0, T ]× [0, 1], such that:

u|t=0 = ω (1.10)

u|t=T2
= ω′. (1.11)

We show this two propositions in Sections 3 and 4, which establishes
Theorem 1.6.

2 Characteristics of DiPerna’s system

Let us briefly describe the main characteristics of system (1.4). The
Jacobian matrix A = df associated to (1.4) is the following

A(ρ, v) =

(

v ρ
K2ργ−2 v

)

(2.1)
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Hence it is easily seen that this system is strictly hyperbolic for (ρ, v) ∈
Ω := R

∗
+ × R, with eigenvalues

λ1 = v −Kρβ and λ2 = v +Kρβ, (2.2)

and eigenvectors

r1 =

(

−ρ
Kρβ

)

and r2 =

(

ρ
Kρβ

)

(2.3)

where

β :=
γ − 1

2
∈ (0, 1).

It is straightforward to check that the system is genuinely nonlinear in
the sense of Lax [17]

ri.∇λi > 0 in Ω.

Let us finally describe the wave curves associated to this system. The
wave curves, that is, shock curves and rarefaction curves, is the set of
states in Ω which can be connected to a given fixed state on the left
ul := (ρl, vl) via a shock wave or a rarefaction wave. Shock waves
(associated to each characteristic family) are discontinuities satisfying
Rankine-Hugoniot (in order to be a weak solution of the equation) rela-
tions

f(ur) − f(ul) = s[ur − ul], (2.4)

and Lax’s inequalities (in order to be entropic): for the i-th family of
shocks,

λi(ur) < s < λi(ul) (2.5)

λi−1(ul) < s < λi+1(ur). (2.6)

where s is the speed of the shock, which gives the particular solution

u(t, x) =

{

ul for x/t < s,
ur for x/t > s.

Rarefaction waves are defined by introducing integral curves of ri,
and are a discontinuity-free solutions:







d
dσWi(σ) = ri(Wi(σ)),
Wi(0) = ul,
σ ≥ 0,

The standard (right) shock curves at the point (ρ0, v0) ∈ Ω are given by
the following






v = v0 − K√
β

√

(ρ2β − ρ2β
0 )ρ−ρ0

ρ+ρ0

with ρ ≥ ρ0, along R1(ρ0, v0),

v = v0 + K√
β

√

(ρ2β − ρ2β
0 )ρ−ρ0

ρ+ρ0

with 0 < ρ ≤ ρ0, along R2(ρ0, v0).

(2.7)
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The left shock curves at the point (ρ0, v0) ∈ Ω (when we fix the right
state and look for the right one) are given by the following






v = v0 − K√
β

√

(ρ2β + ρ2β
0 )ρ−ρ0

ρ+ρ0

with 0 < ρ ≤ ρ0, along L1(ρ0, v0),

v = v0 + K√
β

√

(ρ2β − ρ2β
0 )ρ−ρ0

ρ+ρ0

with ρ ≥ ρ0, along L2(ρ0, v0).

(2.8)
Instead of describing of the rarefaction curves in the plane (ρ, v), we
introduce the Riemann invariants associated to system (1.4). Precisely
define

z = v − K

β
ρβ and w = v +

K

β
ρβ , (2.9)

so that
r1.∇w = r2.∇z = 0 and r1.∇z > 0, r2.∇w > 0.

In the (w, z)-plane, rarefaction curves are horizontal and vertical half-
lines.

3 Proof of Proposition 1.7

The proof of Proposition 1.7 relies on large shocks for system (1.4). We
will be able to treat them thanks to the next lemma.

Lemma 3.1. All shocks (u−, u+) are Majda-stable in the sense that

i. s is not an eigenvalue of A(u±),
ii. {rj(u+) / λj(u

+) > s} ∪ {u+ − u−} ∪ {rj(u−) / λj(u
−) < s}

is a basis of R
2(for a j-shock).

(3.1)

Proof. Taking into account the fact that Lax’s inequalities are globally
satisfied along the shock curves (see [12]) this means that 1-shocks (resp.
2-shocks) (ul, ur) satisfy

(r1(u
−), u+ − u−) (resp. (u+ − u−, r2(u

+))) is a basis of R
2. (3.2)

One of the properties of the system (1.4) as shown by DiPerna [12] is
that its shock curves have special behavior in the plane given by the
Riemann invariants. One can express all the wave curves in terms of
η := (2K/β)ρβ and check that

∂R1

∂η
,
∂L1

∂η
≤ 0 and

∂R2

∂η
,
∂L2

∂η
≥ 0,

which involves that expressed in terms of w, the curves satisfy

−∞ ≤ ∂R1

∂w
,
∂L1

∂w
≤ −1 and − 1 ≤ ∂R2

∂w
,
∂L2

∂w
≤ 0.



Controllability of a system of conservation laws 9

(This is referred to as property A2 in [12].) Hence the shock curves are
in confined in cones which involves that (3.2) is satisfied since in the
(w, z) plane, r1 and r2 are vertical and horizontal respectively.

The other ingredient which appeared in [14] was the following.

Lemma 3.2. For any (ρ0, v0) ∈ Ω, there exists (ρ, v) ∈ L2(ω), such that

λ2((ρ, v)) > λ1((ρ, v)) ≥ 3, (3.3)

s((ρ0, v0), (ρ, v)) ≥ 3. (3.4)

Here s is the shock speed given by the Rankine-Hugoniot relation
(2.4).

Proof. Consider (ρ, v) ∈ L2(ρ0, v0), with ρ → +∞. From the Rankine-
Hugoniot relations, one easily computes

s((ρ0, v0), (ρ, v)) = v0 +
Kρ√

β
√
ρ+ ρ0

√

ρ2β − ρ2β
0

ρ− ρ0

Hence clearly s((ρ0, v0), (ρ, v)) → +∞ as ρ→ +∞. Next one sees that

λ1((ρ, v)) = v0 +
K√
β

√

(ρ2β − ρ2β
0 )(ρ− ρ0)

ρ+ ρ0

−Kρβ.

But since β ∈ (0, 1), one has

K√
β
> K.

Hence one deduces that as well λ1((ρ, v)) → +∞ as ρ→ +∞. With the
global strict hyperbolicity this concludes the proof.

Now given u0 := (ρ0, v0) and u0 as in Theorem 1.6, we introduce
u = (ρ, v) as in Lemma 3.2. We introduce the following function U0 ∈
BVloc(R; R∗

+ × R):

U0(x) =







u for x < 0,
u0(x) for 0 ≤ x ≤ 1,
u0 for x > 1.

(3.5)

Exactly as in [14], we can prove the following proposition.

Proposition 3.3. If u0 as small enough total variation, there is a global-
in-time entropy solution U of (1.4) in [0,+∞) × R satisfying

U(0, ·) = U0 in R. (3.6)

Moreover it satisfies:

U|{1}×[0,1] is constant. (3.7)
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By simply taking the restriction of U to [0, 1] × [0, 1], we obtain a
solution of the problem consisting in driving u0 to a constant. The
proof of Proposition 3.3 is exactly the same as in [14] (see also studies
[6, 8, 18, 20, 21] for related problems). It relies only on the Majda-
stability of the large shock and on the positivity of the propagation
speeds on its left. Basically we show that the above initial condition is
propagated for all times as a large shock plus small waves on both sides
of it. However, due to condition (3.3), all these waves travel at positive
speed and eventually leave the domain. The basic ingredient to prove
this is the use of a front-tracking algorithm (see [4] for more details on
this particular construction of solutions of systems of conservation laws).
We refer to the above articles for a complete proof.

4 Proof of Proposition 1.8

This is almost exactly the same as in [14]. There are three zones in Ω
with respect to the signs of the characteristic speeds: the zone Ω− :=
{(ρ, u) / u < −Kρβ} where both characteristic speeds are negative, the
zone Ω+ := {(ρ, u) / u > Kρβ} where both characteristic speeds are
positive and the zone Ω± := {(ρ, u) / −Kρβ < u < Kρβ} where λ1 is
negative and λ2 is positive. These three zones are separated by the two
critical curves C− := {(ρ, u) / u = −Kρβ} and C+ := {(ρ, u) / u = Kρβ}
.

Now to prove Proposition 1.8, it suffices to prove that

1. Given ω and ω′ in the same zone (Ω−, Ω+ or Ω±), one can find a
solution from ω to ω′,

2. One can always find a solution from a given zone to another,

3. One can always go out a critical curve or reach it from one of the
above zones.

1. To prove the first point, let us limit ourselves to the case where
ω and ω′ are sufficiently close one to another. Then since the zones
are path-connected and since a path is compact, one easily deduces the
general case.

Now what one does depends on the zone the states are into. Given ω
and ω′ in Ω+ and sufficiently close one to another, we solve the Riemann
problem (ω′, ω) (see e.g. [4, 17]). If the two states are sufficiently close
one to another, the intermediate state is in Ω+ as well, hence the two
waves obtained in this Riemann problem are of fixed sign speed. Hence
the Riemann solution of this problem answers the question: if one waits
long enough, the solution of this problem with ω′ on R− and ω on R+,
will reach ω′ in [0, 1].
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If both states are in Ω−, the idea is the same, but one has to let the
waves enter from the right boundary, that is, one solves the Riemann
problem (ω, ω′), where the separation between the states occurs at x = 1.
Wait long enough, and ω′ enters [0, 1].

If both states are in Ω±, again, we manage in other that the inter-
mediate state ωm in the resolution of the Riemann problem (ω′, ω) is
in Ω±. Now we use the solution of the Riemann problem (ω, ωm) with
the states separated at x = 1 and the solution of the Riemann problem
(ω′, ωm) with the states separated at x = 0 to join ω′ from ω.

2. To prove the second point, we use roughly the same remark as for
Lemma 3.2. If the state that you consider is in Ω− or Ω±, then by a large
2-shock on the left of the domain, you can reach Ω+. In the same way,
if the state that you consider is Ω−, then you can reach Ω±: reach the
point on the second left shock curve for which v = 0 and observe that
its speed is necessarily positive. The same (with 1-shocks on the right)
can be done to go from Ω+ to Ω− or Ω±. Also, by the same method,
one can leave a critical curve.

3. It remains to explain how to reach a critical curve. It is not difficult
to see that one can arrive to the critical curve C− by a small 1-shock
that one lets enter by x = 1 (with the critical state on x > 1, and a
non-critical state for x < 1), and that one can reach the critical curve
C+ by a small 2-shock that one lets enter by x = 0 (with the critical state
on x < 0, and a non-critical state for x > 0). It suffices to check that r1
is transverse to C− and r2 is transverse to C+. This is easily established
by noticing that β < 1.
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