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Abstract
In this paper, we deal with controllability properties of linear and nonlinear Korteweg-de Vries
equations in a bounded interval. The main part of this paper is a result of uniform controllability of
a linear KdV equation in the limit of zero-dispersion. Moreover, we establish a result of null control-
lability for the linear equation via the left Dirichlet boundary condition, and of exact controllability
via both Dirichlet boundary conditions. As a consequence, we obtain some local exact controllability
results for the nonlinear KdV equation.

1 Introduction

In this paper, we are interested in two types of controllability results concerning a linearized Korteweg-de
Vries equation. These two types are the following.

e Mainly, we are interested in how the cost of the null controllability of a linear Korteweg-de Vries
(KdV) evolves as the dispersive term is brought to 0% (Theorem 1). In the case of the vanishing
viscosity limit (that is, when a dissipative term is considered rather than a dispersive one), this
problem has been studied in [7] and [11].

e Next, we consider the problem of exact controllability for this equation, when the dispersion coef-
ficient is fixed (Theorems 2 and 3). Such results yield results of local exact controllability for the
usual (nonlinear) KdV equation (Theorems 4 and 5). The controllability of the KdV equation has
already been studied in several papers, see in particular [15, 16, 17, 18, 19].

Let us be more specific on the problem under view. Let 7" > 0 be a given final time. Our system is the
following one:

Yt + VYzaa + (My)r =0 in (OaT) X (Oa 1)7
y|x:0 = U1, y\z:l = V2, ya:|;1;:1 = U3 in (OaT)» (1)
Yjt=0 = Yo in (0,1).

Here, v is a positive dispersion coefficient, M = M(t,x) is a transport coeflicient (constant in the main
problem), v; (i = 1,2,3) are time-dependent functions which constitute the controls of our system.
Observe that the classical KAV equation corresponds to M (t,z) = 1 + 4(t,z).

The principal result which we consider in this paper is the problem of uniform controllability of
equation (1) (where M is a constant) as the dispersion parameter tends to 07. Of course, one can hope
to reach such a property only when the limit system (obtained by setting v = 0 in (1)) is controllable.
In this situation, this means M # 0 and the time of controllability T" is greater than 1/|M|. Due to
the effect of the dispersive term (which is strongly asymmetric), we are able to obtain a result only in
the case M < 0. Moreover, we consider a time of controllability which is of the form Ky/|M|, but our
proof does not apply for any Ky > 1 (such a limitation appears also in the case of vanishing viscosity,
see [7, 11]). Our result is the following.
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Theorem 1. There exists a positive constant Kgsuch that for any negative constant M, there exists
vp > 0 such that for any T > Ko/|M|, any yo € W>°(0,1) and any v € (0,vy), there exist v¥, vy, v§ €
L*(0,T) such that the solution y € L*((0,T) x (0,1)) N C°([0,T); H~*(0,1)) of (1) satisfies yp—r =0 in

(0,1) and moreover the controls are uniform in v in the sense that

V7 2207y + V5 llz20,7) + 105 12200, 7) < K llyollwee(0,1)
for a constant Ky > 0 independent of v and yq.

Remark 1. As far as we know, the question of uniform (local exact) controllability of the KdV equation
(5) in the limit v — 0T, is an open problem. In the case of a vanishing viscosity limit for Burgers
equation, such a result was established in [10].

Next, we consider the problem of controllability of (1) for fixed v. We obtain the following two results
in that case. The first one (Theorem 2 below) is a result of zero-controllability for equation (1) with
M constant. Equivalently, this establishes the controllability on the trajectories of equation (1). This is
done by using only the Dirichlet condition on the left of the domain (the other conditions are kept null).
A similar result has been obtained by L. Rosier [17].

Our second result (Theorem 3 below) is an exact controllability result for equation (1) with M
constant. Here this is done by using two controls, namely both Dirichlet conditions on the left and on
the right of the domain (the Neumann condition on the right is kept null).

Theorem 2. Let M be a constant and v > 0 be fived. Then, for any yo € H~1(0,1), there exists
vy € L2(0,T) such that the solution y € L2((0,T) x (0,1)) NC°([0,T); H1(0,1)) of (1) with vy = v3 =0
satisfies y—p = 0 in (0,1). Moreover, for any v € (0,1), there exists C* > 0 such that

C*
lor]1 20,7y < 7”%”3{4(0,1)' (2)

Besides, for v suitably small (in terms of M only), one can estimate C* as follows:

. C|M|/? 1
¢ :exp{ 172 1+T1/2|M|1/2 J (3)

where C > 0 is a constant independent of M, v and yq.

Remark 2. Theorem 2 is essentially due to L. Rosier [17], but here we require less regularity on yo and
give a different estimate on the size of the control. Precisely, our constant is of order exp(C/(vT)'/?)
instead of order exp(C/(vT)), which is essential in the analysis of Theorem 1.

Theorem 3. Let M be a constant and v > 0 be fized. Then, for any yo, y1 € L?*(0,1), there exist vy
and vy in L*(0,T) such that the solution y € L*((0,T) x (0,1))NC°([0,T]; H=1(0,1)) of (1) with vg =0
satisfies yjp—r = y1 in (0,1).

Remark 3. These results are independent of the length of the interval. This is to be compared to [15],
where L. Rosier considers the case vi = vo = 0 (that is, a control acting via the right Neumann boundary
condition). In that case, the equation for M = 1 is controllable if and only if the length of the interval
does not belong to a countable critical set.

Remark 4. These results could also be established when M is a function depending on (t,x), belonging
to L*(0,T; H(0,1)) N C°([0,T]; L*(0,1)), or even L?(0,T; L°(0,1)) N L>(0,T; L?(0,1)) (see Paragraph
2.2.2, Equations (50)-(51) and Proposition 5).

As a natural consequence of an exact controllability result for the linearized system, one can usually
prove a local exact controllability result for the nonlinear system. Here, as corollaries of Theorems 2
and 3, we get the following results for the Korteweg-de Vries equation. The first one (Theorem 4) is a
result of local exact controllability on trajectories where the control acts upon the left Dirichlet boundary
condition, while the second one (Theorem 5) is a result of local exact controllability via both Dirichlet
conditions.



Theorem 4. Letv > 0 be fized. For7y, € L*(0,1), we considery € L>(0,T; L?(0,1))NL%*(0,T; H}(0,1))
the solution of

yt+yw+Wx+yymwa::O in (07T)X(O71)7
y\x:O =0, y\x:l =0, Yo|z=1 = 0 n(0,7), (4)
Yii=0 = Yo in (0,1).

Then, there exists § > 0 such that for any yo € L?(0,1) satisfying ||yo — Tollz2(0,1) < 6, there exists
vy € HY2725(0,T) for any e > 0, such that the solution y € L*(0,T; H*(0,1)) N C°([0,T]; L?(0,1)) of

Yi + Yz + YYs + VYzze =0 in (0,7) x (0,1),
y|x:0 = V1, y\:vzl = Oa yz|x:1 =0 m (07T)7 (5)
Yit=0 = Yo in (07 1)7

satisfies Yjt=T = Yj¢=T in (0,1).

Remark 5. The same result (with a slightly different functional framework) has been previously obtained
by L. Rosier [17].

Theorem 5. Let v > 0 be fived. There exists > 0 such that for any yo,y1 € L*(0,1) satisfying
lyollz20,1) + llyallz20,1) < 1, (6)
there exists v1, vy € L?(0,T) such that the solution y € L*((0,T) x (0,1)) N C°([0,T]; H~1(0,1)) of

Yt + Yz + YYz + VYzax = 0 n (0, T) X (07 ]-)a
Yz=0 = V15 Yjz=1 = V2, Yg|z=1 = 0 m (O>T)7 (7)
Yjt=0 = Yo in (0,1),

satisfies yp—p = y1 in (0,1).

Remark 6. Note that, despite Remark 3, the KdV equation is locally controllable with vi = vy = 0, even
for critical lengths, see [6, 3, 4].

This paper is organized as follows. In Section 2, we study the Cauchy problem (1). In Section 3, we
establish Theorems 2 and 3, via some observability inequalities (following the classical HUM method,
see [14]). In Section 4 we establish the nonlinear results, Theorems 4 and 5. Section 5 is devoted to the
proof of Theorem 1. Finally, we have put the proofs of some technical properties in Section 6.

2 Cauchy problem

In this section, we explain what we mean by a solution of (1) and we prove regularity results for such a
solution.
2.1 Statement of the results

Definition 1. Given T > 0, yo € H'(0,1) and (vi,vs,v3) € [L2(0,T)]> x H=/3(0,T), we call y a
solution (by transposition) of (1), a function y € L*((0,T) x (0,1)) satisfying

T 1 T T
/ / y fdxdt = (yo,ult=0) r-1(0,1)x 12 (0,1) V/ V1 Uz |p—0 At — V/ V9 Ugg |p—1 db
o Jo 0 0

+ v(vs, Unjomt) 1730, Ty /30,y VS € L2((0,T) x (0,1)), (8)
where u is the solution of
—Up — Vlgyy — Muy, = f in (0,7) x (0,1),
Ujp—0 = Ujg=1 = Ug|z—0 = 0 in (0,T), 9)
Up—p =0 in (0,1).



Remark 7. We will see that the function u in (9) belongs to L?(0,T; H?(0,1)). Moreover, the definite-
ness of the above terms in (8) (in particular the terms concerning Uzz|z—o ANd Ugy|z—1, see (51)) will
follow from regularity results established below.

Now our results concerning the existence, uniqueness and regularity of the solutions of the Cauchy
problem for equation (1) according to this definition, are given in the following three propositions.

Proposition 1. Assume that M is constant. Letyo € H=(0,1), v1, vo € L?(0,T) andvs € H/3(0,T).
Then there exists a unique solution y € L*((0,T) x (0,1)) of (1) such that

Iyl 22 0,1y%0,1)) < (C/v)lyollzr-1¢0,1) + llv1llz20,7) + lv2llzz0,1) + 103l m-1/50,1))s
for some constant C > 0 independent of yo, v1, v2, v3 and v.

Proposition 2. Assume that M is constant. Letyo € H=(0,1), vy, va € L*(0,T) and vz € H~/3(0,T)
as in Proposition 1. Then the solution y € L*((0,T) x (0,1)) of (1) belongs to C([0,T); H=1(0,1)), and
moreover it satisfies the following estimate:

Yl Lo 0,781 0,1)) < (C/V)Ulyollz-1(0,1) + lv1llz20,7) + V2l L20.7) + V3l a-1/50,7))5
for some constant C > 0 independent of yg, v1, v2, v and v.

Remark 8. Observe that Proposition 2 does not follow straightforwardly from Proposition 1. In fact,
from Proposition 1 and equation (1) we have that y € C([0,T]; H=3/2(0,1)) with a suitable estimate. But
in order to prove the continuity in time with values in H=1(0,1), we need a further analysis.

Remark 9. Concerning the general inhomogeneous Cauchy boundary problem for KdV, let us cite [12]
(see also [2, 5, 8]), where conditions

vy, v € HIF93(0,T) and w3 € HY3(0,T), s> —3/4,
are required in order to define a solution.

Propositions 1 and 2 can be extended to the case where M is variable as follows.

Proposition 3. Consider M € Yy, := L*(0,T; H'(0,1)) N C°([0,T]; L?(0,1)). Let yo € H~'(0,1),
v, vg € L2(0,T) and v3 € H™Y/3(0,T). Then there exists a unique solution y € Yy := L2((0,T) x
(0,1))NC([0,T); H1(0,1)) of (1) such that

lllvo < Clyollzr-10,1) + lv1llz2o,7) + lv2llz20,7) + Vsl g-1/3(0,1))
for some constant C > 0 depending on v and ||MHY1/4 but independent of yo, v1, v2 and vs.
The notations Yy and Y74 will be justified at the beginning of Paragraph 2.3.

Remark 10. Let us underline that in Proposition 3 we did not specify the dependence of C with respect
to v, since it is not necessary for our purpose. In the case of Propositions 1 and 2, this dependence is of
polynomial type in 1/v; in the case of Proposition 3, looking at the proof more closely, one can see that
this constant is (at most) of exponential type.

The proofs of Propositions 1, 2 and 3 are done simultaneously. They rely on estimates for the adjoint
system (9), which are of two different types. The first one is a standard energy estimate. The second one
is an improved regularity result for system (9) with M = 0. Using these two estimates and interpolation
arguments, we prove that, whether f is taken in L?((0,7) x (0,1)) or in L'(0,T; H(0,1)), the solution
of (9) satisfies

U|t=0 € H&(Oa ]-)7 Ug|zp=1 € H1/3(07T) and Uzz|e=0) Uzz|c=1 € L2(07T)7 (10)

with appropriate estimates.
We develop these two kinds of estimates in separate paragraphs. Finally in a last step we combine
the two kinds of estimates to conclude.



2.2 Energy estimate

In this paragraph we prove that for f € L2(0,7; H=1(0,1))UL(0,T; L?(0,1)), the solution of (9) belongs
to the space
Yiga 1= L(0,T5 H'(0,1)) 0 C°((0, T} L*(0, 1)), (11)

together with some hidden regularity and suitable estimates. These estimates are slightly different in
the case where M is constant and in the case where M depends on (¢, x).

2.2.1 The case where M is constant
Here we prove that there exists a positive constant C' (independent of v) such that

lull oo 0,7:22(0.1y) + ¥ 2l L2 0,731 (0,1)) + ¥ 2 uafe=1ll20.1) < (C/V FllLzo 100y (12)
and
l[ull oo 0. 7:22(0,1y) + V2 ull L2 07581 (0,1)) + VM |tao=1 |22 0.7) < ClIFI L1 (0.7:02(0.1))- (13)
In order to prove (12) and (13), we will suppose that f belongs to C§°((0,7T") x (0,1)). By an argument
of density, this immediately establishes (12) (resp. (13)) for general f € L?(0,T; H1(0,1)) (resp. for
general f € LY(0,7; L%(0,1))). Unless otherwise stated, we will denote by C' various positive constants
which depend only on M and T (and in particular not on v).

e First case: f € L*(0,T; H=1(0,1)). Here, we show estimate (12).
Let us multiply equation (9) by (1 — z)u and integrate in z. We get

1d [ 1 Mot
) (1 —2)|ul® dx + 1//0 (1 — 2)uplyy — Ullgy) dz — ?/0 lul? da
=(f,(1- x)u>H*1(0,1)><H§(0,1)' (14)
We integrate by parts again:

1d [* 3 ! M (!
“2dt ), (1—$)|U|2d9€+§1//0 |Um|2d$=?/0 ul? da + (f, (1 = 2)u) g1 (0,1)x 113 (0,1)

1 v 1
<C [ pPdo+ g [ e+ (/1O 15

The estimate in the C°([0,7]; L?(0,1))-norm is obtained by multiplying equation (9) by wu:

1d /1 2 !
——— [ Jul dx—i—u/ UpUze dx = (f,u) g 100.1)-
2t ), ; H=1(0,1)x H}(0,1)
This yields:
1d (! 9 v 9
—§£/0 lul® dx + §|Um\z:1| = ([ w)m-100,1)x HL (0,1)- (16)

Combining (15) and (16), we get the existence of a positive constant C such that

1d Ct ! 2 ve®t [t 2 ve®! 2 Ct 2
el (2 —2)|ul*dz )+ Uz | da+——[uzp=1]" < (Ce“" /) f () Fr-100,1)- (17)
2dt 0 2 Jo 2

Finally, integrating between ¢ and T', we obtain estimate (12).

e Second case: f € L'(0,T;L%*(0,1)). Now, we prove estimate (13). The proof is the same as in the
first case except for the right-hand side term which is treated as follows:

1
/ [t z)ut, o) de < flult, )20, 1 (¢ )l L20,0)-
0
When integrating between ¢t and 7', we have
T 1
/ / fudzds < |lul| L7220, I fIl21 0.7:22(0,1)-
t Jo

Using Young’s inequality ab < ea® +¢7'b* and taking into account that the term [[ul|7 o (g 7.12(0.1))
is produced by the left hand side of (17), we obtain estimate (13).



2.2.2 The case where M is variable
Here we prove that there exists a positive constant C' such that

[l Lo 0,7522(0,1)) + Null L2070 0,1)) + Naja=tllz20,m) < CUM vy, I flz2 0,11 0,1)),  (18)
and

ull Lo 0,7322(0,1)) + Nullz2 0,381 0,1)) + Ntajo=t 20y < CUMlly 05 V) f Il 0,7:22(0,1)- (19)

The analysis is the same in both situations f € L%(0,7; H=1(0,1)) and f € L'(0,T; L?(0,1)), so we will
only sketch the proof of the first one. When we multiply equation (9) by (1 — z)u, we estimate the term
concerning M in the following way:

1 1 1
= [ oMusde] < § [ ua do ot (€)M o [l da (20)
0 0 0
When we multiply the equation of u by u, we also have estimate (20) for the term concerning M. From

the corresponding inequalities (15) and (16), we obtain

1d [t v ! v
_1la 9_ 2 v 2 v 2
24t J, ( z)|ul” dz + 2 A |uz|® do + 2‘um|m71‘
(21)

S0(1+(1/V)||M(t)||im(o,1))/o [ul* dz + (C/V)If )71 0,1)-

Using Gronwall’s lemma and thanks to the assumption M € L%(0,T; H'(0,1)), we obtain (18) and (19).

2.3 Additional regularity estimate for M =0

Here we prove an additional regularity result for the following system:

—Up — Vlgpe = g in (0,7) x (0,1),
Ujp—p = Ujg=1 = Ug|g—o = 0 in (0,T), (22)
ey = 0 in (0,1).

Let us introduce some functional spaces which will be useful in the sequel:
Xo:=L*0,T; H2(0,1)), X, := L*0,T;H3(0,1)),

Xo:=L'0,T; H~1(0,1)), X :=LY0,T;(H*n H2)(0,1)),
Yy := L*((0,T) x (0,1)) N C°([0, T]; H~(0,1)), (23)
and
Yy := L*(0,T; H*(0,1)) n C°([0, T]; H3(0,1)). (24)
The spaces Xy and X7 are equipped with their natural norms, while Yy and Y; are equipped with

wllyy = 2wl 20,7y % (0.1)) + 1]l Lo 0,7:-1(0,1))

and
lwlly, = "2 [[w]l L2(0,7:m40,1)) + 1wl 0.1:53(0.1) -
respectively.

Now, for each 6 € [0, 1] we define the (complex) interpolation spaces
Xo:= (X0, X1)ig,  Xo:= (X0, X1)jg, and Yp:= (Yo,Y1)p-

Observe that this notation is consistent with the notations of Proposition 3 and (11).
The regularity result is obtained in two steps:

e First in Paragraph 2.3.1, we prove a regularity result in the space Y7,

e Next, in Paragraph 2.3.2, we interpolate this result with the one of Paragraph 2.2.1.



2.3.1 Regularity result in Y;

In this paragraph we prove that for g € L2(0,T; H3(0,1)) U L*(0,T; (H? N HZ)(0,1)), u belongs to Y;
and there exists a positive constant C' (independent of v) such that

lwlly, + v 2l wepp=i o,y < (/v gl L2 0,7:2(0,1)) (25)

and
—1/2|

wly, +v |Wajg=1ll 10,7y < CllgllLr(0,7:853(0,1))- (26)

We will suppose that g is in C*°([0,T] x [0,1]) with gj,—¢ = gjz=1 = Jrjg=0 = Gzje=1 = 0. Again,
the conclusion in the cases g € L?(0,T; H3(0,1)) and g € L'(0,T;(H? N HZ)(0,1)) follows from an
approximation argument.

Let us apply the operator P; = Opz, to equation (22):

(Pyu); + vPiu = —Pig in (0,T) x (0,1). (27)
We multiply this equation by —(1 — ) Pyu and we integrate in (0, 1):

1d [ 1 1
5% (1 —2)|Pul?dz — 1// (1 —2)PfuPiudr = / (1 —z)PuPygdx. (28)
0 0 0

We compute the second term in the left hand side:
1 1
71// (1 —x)P?uPiudr = 1// (0pz)(Pru)((1 — 2) Prugy — Piu) de
0 0
3 1
_ ¥ / | Pruy |2 da (29)
2 Jo

Here, we used Piujz—,1 = Pitg|z—o = 0, which comes from (22) and the conditions on the traces of g
on the boundaries 0 and 1.
Let us now multiply equation (27) by —Pju and integrate in (0, 1):

1d [t 1 1
—f—/ \P1u|2dx—u/ PfuPludx:/ PiuPigdzx. (30)
The second term gives now:
! v 1 1
—V/ Plu Pyudr = 5/ Oy | Prug|* do = 2—|uzt‘w:1|2. (31)
0 0 v
The boundary conditions which we just used are Piuj,—o,1 = 0, Pruz|,—0 = 0 and vP1uz |p—1 = —Ugt|p—1-

As previously, the latter equalities follow from (22) and the conditions on the traces of g.
Putting together (28)-(31), we obtain

1d (! 3 0! 1 !
3t ), (2—35)\P1u|2dx+§1//0 |P1uw\2da?+$\umz:1|2:/o (2 —2)PyuPygdx. (32)

Integrating between t and T', we get

1 [t 3 [Tl 1 /7
5/ (2—x)\P1u|2(t)d;p+§y// |P1ux‘2dzds+?/ |U:ct|x=1\2d5
0 t Jo v
T p1
://(2—35)P1uPlgdﬂcds7 (33)
t Jo

for a. e. t € (0,T). Now, to estimate the last term in (33), we distinguish the two functional frameworks
for g:



e First case: g € L?(0,T; H3(0,1)). Using Prujz—o,1 = 0 and integrating by parts we get:

T 1 T 1
/ / (2—2)PiuPigdrds = —/ / 9z ((2 — ) Piugy — Pru) dx ds.
0 Jo 0 Jo

Hence we deduce

T 1
‘/ / (Q—x)PluPlgdxds’
0 Jo

IN

CllPrullL20,7;81 0,1)) 192 | L2 0,75220,1))
v C
< §leu||2L2(0,T;H1(O,1)) + ;HQOCJCHZL?((O,T)X(OJ))' (34)

e Second case: g € L'(0,T; (H®> N HZ)(0,1)). In that case the estimate is more direct:

T (1
’ / / (2 —2)PiuPrgdzds
0 Jo

IN

2|| Prul| o< 0,7;22(0,0) | P19l L1 (0,7522(0,1))
< HIPuleorcon + AP0 0ny  (39)
Now we inject (34) and (35) in (33) and take the supremum in ¢ € (0,7"). Finally, we use the following
Poincaré’s inequalities: Vv € H*(0,1) such that v(0) = v(1) = v'(0) = 0, one has
HU||H3(0,1) < C||P1“||L2(o,1) and ||UHH4(0,1) < C'||PlUHH1(0,1)- (36)

Consequently we deduce the desired inequalities (25) and (26).

2.3.2 Interpolation arguments

From Paragraphs 2.2.1 and 2.3.1, we can define a linear mapping A : g — u, where u is the solution of
(22). This mapping continuously maps X4 and X /4 to Y7 ,4, and X; and X; to Y;. Moreover in these
various situations, the norm of the operator A can be estimated by (see (12), (13), (25) and (26))

JAlL2ta v < O/ ALz, v < O 1ALz < C/vY? and Al g, 4, < C:

From classical interpolation arguments (see e.g. [1]), we have that A continuously maps Xy and )?9 to
Yy, for any 0 € [1/4,1]. Moreover the corresponding operator norms satisfy

1Al cxave) < C/vH2 and Al g,y < C- (37)

In the same manner, we can define a linear operator B : g + u,|,—1, which continuously maps X, /4 and
X4 to L?(0,T) and X; and X; to H'(0,T). The same interpolation argument yields for 6 € [1/4,1]:

49— 409_5
HB||L(X9;H%(6_l/4>(O,T)) S CV3(0 2 and ||BH£(}‘E9;H%(0_1/4)(O,T)) S CVS(O 8)' (38)

Taking 6 = 1/2, we obtain that:
o If g€ Xy/5 = L*((0,T) x (0,1)) then the solution of (22) satisfies u € Y} 5 and ugy—1 € HY3(0,T),

with
ullvy)s + VO ltg et s o,y < (C/0M?)Igllx, - (39)

olfgc )?1/2 = L*(0,T; H3(0,1)) then the solution of (22) also satisfies u € Y7 /o and u,,—1 € H/3(0,T),
with

lully, o + 1 e ot ll s,y < Clglg, - (40)
Observe that, in this case, we have
Yij2 = L(0,T5 H?(0,1)) N C°([0, T]; H' (0, 1)). (41)



This already yields uj;—o € H'(0,1) and Ug|p—1 € H'/3(0,T) with

C/v))glx,
lluji=oll 10,1y < (42)
Clallz, ..

and )
(C/v*®)lgllx, 2

(/g ..

It only remains to prove the property in (10) which concerns the terms wuy;|,—o and ugzq|y—;. Let us
prove, for instance, an estimate for u,,|,—o (the same can be done for u,,|,—1). For this, we introduce
p € C3([0,1]) satisfying

v o=1ll 175 0,7y < (43)

plo,1721 =1 and  pjz/41 =0.

Let us consider the function u = p(x)u, which fulfills the equation
Ut + Vlgge = V(3qum + 3pras + pa:a:xu) - P(I)g-
Multiplying this equation by —,, and integrating in (0, 1), we obtain:

1d

1 1
~ 14 ~
5 / ‘ux|2 dx + *|Umac|ac=0|2 = - / (V(3p2Uze + BPzalle + Praatt) — PY)Uzy d.
2dt J, 2 0

Integrating now in the ¢ variable and estimating the right hand side terms, we deduce

T p1
/ / PG Uy dx dt
0 Jo

Let us distinguish both situations in order to bound the last integral in the right hand side of (44):

14

T
5/0 |tz o—ol® dt < C(W\lullT2o. 7,12 (0,1)) + NullT o 0,701 (0,1y)) + . (44)

o If g € Xy, we simply use Cauchy-Schwarz inequality:

T 1
/ / P g Uyy da dt
0 Jo

o Ifge X 1/2 we integrate by parts once more in the x variable:

T r1 T rl
/ / PGz dx dt / / Uy (ng + pgw)dx dt
0 JO 0 JO

Then, from (44), we deduce in both situations that

<2 gl 20,1y % 0.1y + VNullZ2 0,782 (01)))-

< C(||9||2L1(0,T;H1(0,1)) + ||UH%°°(O,T;H1(O,1)))'

—201 112
v ”g”L?((O,T)x(O,l))’

||U3:x|x=0||2L2(O,T) S HU||2L2(0,T;H2(0,1)) + V71||u||%°°(0,T;H1(071)) + { —1 42 (45)
v ||9||L1(0,T,H1(0,1))'

Thanks to (39) and (40), we finally deduce that
(C/v)I9lI72 0,7y % (0,1
v, + e ge=ollZe,r) < { ) (46)
(C/V)||g||L1(0,T,H1(0,1))'

Combining (41) and (42)-(46), we obtain

ol (0,1) + vl o | 11175 0,7

(C/’/l/Q)”g”L?((O,T)x(0,1))7
+ 2 | ugajamollz20r) + V2 Uaw o1 | L2007y < { (47)
C||9||L1(0,T,H1(o,1))-



2.4 Conclusion

We begin by noticing that the solution u of (9) also solves (22) when g := f — M(¢,z)u,. When
f € L?((0,T) x (0,1)) we directly apply the first inequality in (47), whereas when f € L'(0,T; H}(0,1))
we decompose u = uj + us where wu; satisfies (22) with g = f and uqy satisfies (22) with g = —M (¢, x)u,.
Thus, we get

||U|t:0||H1(0,1) =+ V1/6||U;c|x:1 HHl/B(O,T) + V1/2||uwx\ac:0”L2(0,T)

(CVYAIIf = Mug| L2 (0.1)x (0.1));
+ Vl/QHUwz\leHL2(o,T) < { 12 (48)
Cllfller 7,81 (0,1)) + (C/V2) | Mual| L2 (0,7) % (0,1))
Now we distinguish the cases where M is constant and where M is variable:

e M is constant: in order to estimate the Mu, term, we use (13):

=0l 0,1) + V1/6||Uz|x:1||H1/3(o,T) + V1/2Hurw\ac:0”L2(O,T)
(C/FllLz(0.1)%(0,1))
+ V1/2||uacx|gc=1||L2(0,T) < { (49)
(C/V)||f||L1(0,T,H1(0,1))~
e M is variable: we estimate the right hand side with
[Mugllz2omyx 1) < [IMllL=@m201)lluellL20.7:L0.1)
< ClIM||poo,7;r2 00 Ul L2017 774(0,1)) -
Then we use that for any ¢ > 0, there exists Cs > 0 such that
lull 20, 75m7/4(0,1)) < Sllullz2(0,1m2(0,1)) + Csllullz2(0,7;m10,1))- (50)

Finally, using the energy estimates (18) and (19), we get:

luje=oll 1 0,1) + ||u90|9c=1||H1/3(07T)
Cw, M|y, I fll2(0,7)%(0,1))5

+ uzzje=oll20,7) + Uzzje=1ll20m) < ~ (51)
C(% ||M||Y1/4)||f||L1(O,T,H1(O,1))~

Now, the conclusions of Proposition 1, 2 and 3 are consequences of Riesz Theorem and Definition 1 (see
identity (8)). Observe that the continuity in time can be obtained from the L regularity and a classical
density argument since for smooth data we actually have the continuity in time.

3 Proofs of Theorems 2 and 3

3.1 Carleman inequality

We recall that here M is a constant. Let us consider the following backwards (in time) problem, which
is usually called the adjoint system associated to (1):

— 0t — Vgge — M, =0 in (0,7) x (0,1),
Plz=0 = Plz=1 = Pz|z=0 = 0 in (O’T)v (52)
Pl=T = o in (0,1).

The objective of this paragraph is to prove a Carleman inequality for the solutions of this system. After
a simple change of time variable in (52), we have

— 0t — Paze — (M/V): =0 in (0,Tp) x (0,1) := Qy,
Plz=0 = Plz=1 = Pz|z=0 = 0 in (OvTO)a (53)
Plt=To = ¥0 in (07 1)7

10



where Ty := vT. We will rather work with this equation for which obtaining a Carleman inequality will
be clearer. In order to state this estimate, let us set

100 + 4z — 22

Oé(t7x) = tl/Q(TO _ t)1/27

(54)

for (¢t,x) € Qo. Weight functions of this kind were first introduced by A. V. Fursikov and O. Yu. Imanuvilov;
see [9] for a systematic use of them. We denote

&(t) := min a(t,z) = a(t,0) and &(t) ;== max a(t,z) = aft, 1). (55)
z€[0,1] z€[0,1]

Observe that the function « satisfies

C < Ty, Coa < ay < Cra, Coa < —ay, < Cra in (0,Tp) x [0, 1], (56)
lovg| + [awt]| + |wat] < CToa?,  |aw| < C(TEa® + o) < CTga® in (0,Ty) x [0,1], (57)
and
5 X 14
64 — 626 = ———— >0, (58)

(t(To —t))1/2

where C, Cy and (' are positive constants independent of Tj.
We have:

Proposition 4. There exists a positive constant C independent of Ty, v and M such that, for any
o € L?(0,1), we have

To
// oze*QSo‘(|g0m|2 + 32042|<,095|2 + s4a4|g0|2) dx dt < C/ a|x:06*25a\m:0|@m‘z:0|2 dt, (59)
0

0
for any s > C(Tp + Tol/2 + To|M|"/2 /v1/?), where ¢ is the solution of (53).

Remark 11. Observe that in (59), the right hand side is bounded: it suffices to apply (10) to the function
Q=o(t)! /e e=0 W, ).

Remark 12. Note that (somewhat different) Carleman estimates for the linear KdV equation have also
been obtained by L. Rosier [16, 17].

Since the proof of Proposition 4 is very technical, we postpone it to an appendix, at the end of the
paper.

3.2 Proof of Theorem 2

Let us first deduce an observability inequality from the Carleman inequality (59). We consider ¢ the
solution of (52). By the change of variable t — vt (recall that Ty = vT'), we can associate a solution of
(53), on which one can apply (59). Thanks to the definition of the weight « (see (54)), we obtain that

To
52 // e 25 p, | Pdr dt < C’/ oz(t,0)(3_2‘“"(t’0)|<,0M(t,0)\2dt7
Qo 0

for some C' > 0 independent of Ty, v and M. From the definition of o (see (54)), this yields

2 ; To
e Cas/To / / oz dt < C2eCos/To / | (t,0) 2, (60)
TO 0 T 0

for some Cy, C3 > 0. Let us now establish that

1 1
C
/ |pa(t1,7)* dz < W/ lpa(to,2)Pde 0<t; <ty <T, (61)
0 0

11



for some C > 0. We prove (61) by showing the following two estimates:

1 1
/O oty 2) P dz < C / (p(ta, ) ? do, (62)

and
1 C 1 )
| ot 0P o < 5 [ fparalta ) o (63)

for some C' > 0. Once (62) and (63) are established, we define the operator which maps ¢(t2) to p(t1).
Estimate (62) gives the continuity from L?(0,1) to itself, while estimate (63) gives the continuity from

{u € H3(0,1) : u(0) = u(1) = uy(0) = 0}7
to itself. Then a classical interpolation argument gives the desired estimate (61), that is to say, the
continuity from H{ to itself.
First, (62) follows from (17) with f = 0 which, as can be easily seen, is valid regardless of the initial

state @, and by integrating in time. Next, we turn to (63). We define the operator Py := v93,, + MO,,
we multiply the equation (52) by —Pag; and integrate with respect to a:

1 1
V/ PutPuet AT — li / |P2g0\2 dx =0,

where we used the boundary condition ¢,—g,; = 0. It follows that:

1 1
/ Pap(ts, @) de < / \Pap(ts, )2 da. (64)
0 0

Using
1 1 1
/ Vpans (t1,2) di < 2 / Pao(ty, ) do +2 / M (t1, 2) da,
0 0 0

and
1 V2 1 ) C 1 )
/|M%<t1,x>\2dxsf/ (Poa(ts, 2)] dm+—2/ lo(tr, )2 da,
0 4 Jg v=Jo

we deduce with (64) that
1 1
([ 1peptearPao s [ leteafas)
0 0

1 1
(/ |<pxzx(t27x)‘2d$+/ |80(t1,l‘)2d$> .
0 0

Using (62) and the first Poincaré’s inequality in (36), we deduce (63) and hence (61).
In particular, (61) allows us to deduce the following observability inequality from (60):

IN

1
/ |@xww(t17x)|2d'r
0

Q%O

<

1 T
[ lea0oPdr<c [ onl it (65)
0 0

. Ca|M|'/2 1
¢ exp{ v1/2 1+T1/2|M|1/2 )

for some C4 > 0 which depends on T and for v sufficiently small in terms of M.

Now, from this observability inequality for the solutions of (52), it is classical to prove that for any
Yo € H=1(0,1), there exists a control v; € L?(0,T) such that the solution y € Yj of (1) with vy = v3 =0
satisfies y(T,x) = 0 for = € (0,1) with vy estimated by (3). (We recall that the space Y, was defined in
(23).) In the case of internal controllability, an explicit construction of this control is made in Section 4.
This concludes the proof of Theorem 2.

with
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3.3 Proof of Theorem 3

Let y; € L%(0,1). We must find two controls v; and vy in L?(0,7T) such that the solution y € Yy =
L2((0,T) x (0,1)) nC9([0,T); H~1(0,1)) of the system:

Yt + VYzze + My, =0 in (0,7) x (0,1),
Ylo=0 = V1, Yja=1 = V2, Yajo=1 =0 in (0,T), (66)
Yjt=0 = Yo in (0,1)
satisfies
Yi=T = W1 in (0, 1)- (67>

We divide the proof in two steps:

e First, we prove that there exists go € L?(0,1) and controls ¥; and ¥ in L?(0,7) such that the
solution ¥y of

Yt + VYzzz + My, =0 in (0,7) x (0,1),
Ylz=0 = V1, Yjz=1 = V2, Ygla=1 =0 in (0,7), (68)
Yjt=0 = Yo in (0,1)
belongs to € Yy,4 = L?(0,T; H'(0,1)) N C°([0,T]; L*(0,1)) and satisfies
Y= = y1 in (0,1). (69)

Indeed, let h € Yj be the solution of

ht +Vhege + Mhy =0 in (0,7) x (0,1),
Rig—o =0, gy =0, Byjpeg =0 in (0,T), (70)
hit=1 = Y1,z in (0,1)

in the sense described in Definition 1 (observe that y; , € H~'(0,1)). The existence and regularity

of h are provided by Propositions 1 and 2. Let us now introduce

2(tx) = /h(t,g) dé € Vi/a. (71)
which is of course determined up to a constant. We define:
=2t + Vagge + Mz, inD'((0,T) x (0,1)),
{ d:=y1 — 2p=r in L2(0,1).
It is a direct consequence of (70) and (71) that
c; =0 and d, =0,

that is, ¢ is a distribution of time and d is a constant. But from (70), we know that h¢, hyzs €
L?(0,T; H=3(0,1)), hence 2, 240e € L2(0,T; H=2(0,1)), so we have ¢ € L?(0,T). Let us now
introduce

g(t) =d+ /T c(7) dr.
¢

Then, the function y(t,z) = 2(t,z) + g(t) € Y74 satisfies

Ui + Vlwee + M7, =0 in (0,7) x (0,1),

Yalo=1 =10 in (0,7), (73)

Yjt=0 = Yo in (0,1)
with 7o = zj4—0 + g(0) € L?(0,1). Note that from 3 € Y14, we deduce that vy := y,—o and
Uy := Jjz=1 belong to L?(0,T). With these controls, § satisfies (68) and (69).
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e Then, we apply Theorem 1 for the initial condition yo — o € L?(0, 1). This yields that there exists
a control v1 € L?(0,T) such that the solution 3 € Yy of

Yt + Vpze + My, =0 in (0,7) x (0,1),
/y\|r:0 = 617 @\\1:1 =0, gx\z:l =0 in (07T)7 (74)
?7|t:0 =¥o =Y — Yo in (0,1)

satisfies yj;—r = 0 in (0, 1).
Finally, defining y := § — ¥, we realize that y € Y; fulfills (66) and satisfies (67).

4 Controllability of the nonlinear system

4.1 Proof of Theorem 4
4.1.1 Modified Carleman inequality

Let us briefly explain why Proposition 4 is still valid when M is replaced by a function M = M (t,x)
with L$°(L2) regularity, that is, when (53) is replaced by

=1 = Paza — (M(t,2)/v)p; =0 in (0,Tp) x (0,1),
o(t,0) = @(t,1) = p.(t,0) =0 in (0, Tp), (75)
¢(To, z) = po(=) in (0,1).

We recall that Ty := vT.

Proposition 5. There exist two positive constants C and K(Ty, v, ||M| =0 1;12(0,1))) such that, for
any o € L*(0,1), we have

To
// ae” P (|ga|* + 52 |pu|* + s*a|pf?) dx dt < 0/ Ajg0€” N0 0 ol * dt,  (76)
0

0
for any s > K, where ¢ is the solution of (75).

The proof of this proposition will be given at the end of the paper, in Paragraph 6.2.
4.1.2 Linear controllability with more regular controls
Let 2z € Y7 ,4. We consider the following linear control system:

w+ (L+7+ 2/2)w)e + VWeze =0 in (0,7) x (0,1),
Wig=0 = V1, Wig=1 = 0, Wy)p— =0  in (0,7), (77)
Wig—g = Wo in (0,1),

where wj is some state in H'(0,1) with wg(1) = 0.

e Boundary observability inequality. From the Carleman inequality (76) with M(t,z) = 1 + y(¢,z) +
z(t,x)/2 and taking into account the same analysis developed in Paragraph 3.2, we deduce the existence
of a positive constant C* such that

1 T
/0 100, )2 dz < C*(Ty, v, | M]]2) / (Prepocol? d. (78)

From the observability inequality (78), it is classical to deduce that equation (77) is null controllable
with a control v; € L?(0,T). But in the sequel, it will be convenient to have a control which is more
regular than L2(0,7T) (in order to perform a fixed point argument (see paragraph 4.1.3) below).
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e An interior control problem. For that purpose, we will consider an internal controllability problem. Let
us introduce a linear extension operator Iy, which maps functions on [0,1] to functions on [—1, 1] with
support in [—1/2,1], and which is continuous from L?(0,1) to L?(—1,1) and from H'(0,1) to H*(—1,1).
We define

wo = Ty (wp) in H*(—1,1) (79)

and
7 :=11,(y) and % := IT;(2) in L0, T; H'(—1,1)) N L>(0, T; L*(—1,1)). (80)
Let w be some interval (—1, —1 + a) for some 0 < a < 1. The controllability problem under view is the

following: N
Wy + (1 + Y+ 2/2)W)y + Ve = v(t,2)1,(z) in (0,T) x (—=1,1),

{D\w:—l =0, {E|w:1 =0, @aﬂz:l =0 in (OaT)v (81)
W=o = Wo in (—1,1).
Let us prove that there exists v € L2((0,7) x w) such that the solution of (81) satisfies
@yer = 0 in (—1,1).

o Interior observability inequality. For this, we consider the adjoint system associated to (81) with
TO =T "
—t — Gpaw — (1 +7+2/2)/v)d =0 in (0,Tp) x (—1,1),

¢\m:—1 = ¢\w:1 = ¢ac|m:—1 =0 in (OaTO)v (82)
¢(To, ) = do(z) in (—1,1).

Of course, by performing the change of variable x — 2z — 1, one can transform (76) into:

1+ _ 1t
// a(t, T)e 2sa(t, %5 )(|¢wz|2 + 520‘( )
(0,T9) x(—1,1)

T 1+2x
)2|¢w|2 + 8404(757 7)4‘¢|2) dx dt

To
<0 / Qoo™ 20 g P dt (83)
0

for some Cs > 0. It is straightforward from (83) that
To

// e Y| pua|? + 5203 | + s @ p)?) da dt < 05/ ae™ 2 by [P dt. (84)
(0,T0)x (~1,1) 0
Recall that & and & are given by (55).

To reach the interior observability result which we seek, we transform this inequality in two steps:
first we modify the right-hand side, and next we modify the left-hand side.

— Right-hand side. We have

Tg .
/ ae ™ G| dt
0

IN

TO .
c / e (o1
0

IN

To B
C [ a2 ol o

where we have successively used: a trace inequality (observe that 5/2 < 31/12) and the interpolation
inequality corresponding to H3!/12 interpolated between H®/3 and L?. Now we use Young’s inequality
to get

TO -
/ ae ™ G| dt
0

<C/ —(31/16)sav—279/32”¢( )Hi;ls//lsﬁ(w) —25&6(31/16)s&d311/32||¢( )HlL/Ql(S; dt

To . To 3 .
S E/0 6_28(1@_9”¢(t7 ')”%Is/:s(w)dt + Cs /O es(—64a+62a)d311||¢(t, )H%Z(w)dt7 (85)

15



where ¢ is to be fixed later.

— Left hand side. We introduce
with

Now, ¢, satisfies the following system
—P1p — P1yar = 915
¢1\z:—1 = ¢1|m:1 = ¢1m\m:—1 = 07 (86)
¢1 (TOa Jf) = 07

where B
g1 =((L+7+2/2)/v)01¢s — 01,6

Now we estimate ¢; in terms of the L2((0,7p) x (—1,1))-norm of the right hand side of (86). By
employing estimate (39) and recalling (41), we have in particular ¢, € L*(0, To; (H3/2 N H)(—1,1)) and

D11l Lo, 32~ 1,1)) < Cllgallzz(o,70)x (~1,1)) (87)

for some C' > 0. As g, Z € L>®(0,Tp; L*(—1,1)) and |61,] < Ca%/? exp(—sa), we have

”91”%2((0,To)><(—1,1)) < O//(o S e 2% (| |® + sat|p)?) d dt. (88)
o)X (—1,

Now we define

¢2(t7 J}) = 92<t)¢<ta .T),
with

05(t) = exp(—sa)a—>/2.

It follows that ¢- satisfies (86), with g; replaced by
g2 = (L+ T+ 2/2)/1)0207 1, — 02,07 1. (89)
Interpolating (18) and (25), we have ¢o € L2(0,To; H/3(—1,1)) N L>=(0, Tp; H*/3(—1,1)) and
P2l 2 (0,10: 5773 (=1,1))n Lo (0,10: 43 (=1,1)) < Cllg2ll 220, 1051173 (=1,1))- (90)

Observing that 6,07 and 65,07 are bounded and g, Z € L*(0,Ty; H/?(—1,1)) (as easily seen by
interpolation), we find that

g2l 20, 10;m1/3(—1,1)) < CllP1llLao, 1132 (—1,1))- (91)

Here, we have also used that the product of two H'/2(—1,1) functions belongs to H'/3(—1,1).
Finally, we define ¢3 := 03(t)¢(t, x) with

05(t) = exp(—sa)a—"2.
We have again that ¢3 satisfies (86) with, in place of g;:
g3 = (L+ 7 +7/2)/v)0505 " b2, — 03005 ' 6o, (92)

Using the same arguments as previously and the fact that 7 and Z are bounded in L3(0,T; H*/3(—1,1)),
we arrive at

b3l 20,10 m5/3 (=1,1)) L (0,70; 573 (= 1,1)) < Cllg3ll L2 (0,70;52/3(=1,1)) (93)
and
||93||L2(0,T0;H2/3(—1,1)) < C||¢2HLG(O,TO;HE’/B(fl,l))' (94)
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Finally, putting together (87)-(88), (90)-(91) and (93)-(94), we obtain
||¢3||2L2(0,T0;H8/3(—1,1)) < Cs // ae” 2 Y(|ppe|* + s*at|¢]?) da dt, (95)
(0,To)x(—1,1)

for some Cg > 0. We now express (95) in terms of ¢:

T(] R ~
/ 6’2”@*9||¢<t,->\\zs/s<_1,1)dtSCﬁ// e (|pus|? + 57 ¢?) drdt.  (96)
0 (0,To)x(—1,1)

Lastly, we fix e = (2C5Cs)~! in (85) and using (84), it results:
// G20 (| gy 2 + 5267 bul? + s*a%|02) da dt
(0,To) x(—1,1)

To )
< C/O es(—6464+62(x)d311 ||¢(t7 ) H%?(w)dt (97)

Recalling (58) and using again Paragraph 3.2, we reach the following interior observability inequality:

1 T
[ oapde< e, [ ol (99

-1

e Design of the control. From (98), we can deduce the existence of v(t) € L%((0,T) X w) answering the
null controllability problem by using the following method, which will help us to single out a particular
control; this will be useful when handling the nonlinear problem. On L?(—1,1) we introduce the following
norm: ||¢ol|F := ||@]|L2((0,1)xw), Where ¢ is the solution of (82) associated to ¢o. The fact that this is a
norm comes from the unique continuation property for system (82) which follows for instance from (98).

Let F be the space obtained by completing L?(—1,1) with the above norm. We define J as the
following functional on F":

1
To) = g0t + [ o(0.0)0(w) o

The fact that the second term is well-defined on F' and that it is continuous as a function of ¢q is
a consequence of (98). Since J is moreover strictly convex and coercive (as follows again from (98)),
the functional J admits a unique minimum ¢, which furthermore is characterized by the following
Euler-Lagrange equation:

-1

1
voer [[ xotdsdrs [ x0T de =0 (99)
0, T)xw

where again x and ¢* are the solutions of (82) associated to xo and ¢f, respectively. Now, we define
v € L?((0,T) x w) by
v = 1,0". (100)

Hence for any ¢g € L?(—1,1) we have

1 1
[1 w(T, x)podx = //(O,T)x(1,1) vodx dt + [1 (0, z)wo(x)dx = 0,

where @ is the solution of (81) associated to v defined in (100). Hence v is a control which steers wy to
0. Its norm can be estimated by setting x = ¢* in (99); with (98) this yields

Cllwoll £2(-1,1) (101)

CIH’LUOHLZ(OJ).

lvllz20,)xw) <
<

Thanks to estimate (39), we deduce that w € Y; /o and

@y, ,, < CUlvllL2(0,1)xw) + 1ol a1 (~1,1)), (102)
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for some C' > 0. Observe that estimate (39) was established for u solution of (9), which has a null initial
condition but the general situation follows directly from our proof.

e Back to the boundary control problem. Let

w = 7ﬂ|(O,T)><[O,1]- (103)

Then, w solves system (77) for
vy = Bjpp. (104)

We clearly have that w(T,-) = 01in (0, 1). Furthermore, from (101), (102), equation (77) and interpolation
arguments we get that v; € H(1/2=2(0,T) for every ¢ > 0 and

il sz -c 0, < Cllwollm(o,1 (105)

for some C' > 0.

4.1.3 Fixed point argument

Let us recall that y and g fulfill systems (5) and (4), respectively. Then, p = y — 7 satisfies:
Pt + Do+ PPa + (YP)x + VPaze =0 in (0,7) x (0,1),
Plo=0 = V1, Plo=1 =0, pyjp=1 =0 in (0,T), (106)
Plt=0 = Po ‘= Yo — Yo in (0,1).

Our objective is to find v1 such that the solution of (106) satisfies p(7,-) = 0.

Remark 13. In the sequel, we will suppose that py € H'(0,1) and that lpoll m1(0,1) is sufficiently small.
Observe that this can always be assumed by taking vi = 0 during some time, taking into account the
regularizing effect of (106) and using the fact that ||pol|z2(0,1) s sufficiently small.

Then, let us introduce the following fixed point mapping. First we introduce the space
Eq := C°([0,T]; L*(0,1)) N L*(0,T; H'(0,1)) N H*(0,T; H*(0,1)).

We consider in L?((0,7) x (0,1)) the following compact subset:

B:= {z € By /HZHEO < 1}.

To any z € B, we will associate a set of solutions w of (77) with initial condition wy = pg given in the
previous paragraph. More precisely, let us first define the set of controls:

A(z) := {v € L*((0,T) x w) /@ solution of (81) satisfies w);—r = 0 and v satisfies (101)}.
We define

Ao(z) == {w = 1'17‘(07T)><[0,1]/ w fulfills system (81) for some control v € A(z)}

Of course, in the above definition, the function @ satisfies (81) in the sense of Definition 1, with the
functions @, 7 and Z appearing in (81) defined by (79)-(80).

We will use the following Banach space version of Kakutani’s fixed point theorem (see, for instance,
[20, Theorem 9.2.3]):

Theorem 6. Let Z be a Banach space and let Ay : B — 28 be a set-valued mapping satisfying the
following assumptions:

1. Ao(2) is a nonempty closed convex set of Z for every z € B,

2. Ay maps B to a compact subset of B,
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3. the graph of Ag
G(Ay) = {(m,y) € Bx B /y € Ao(a:)},

is closed in Z2.

Then Ay possesses a fized point in the set B, i.e. there exists z € B such that z € Ag(2).

Let us check that Theorem 6 can be applied to Ag and
Z = L((0,T) x (0,1)).

e The fact that Ag(z) is a nonempty closed convex set of Z for every z € B is very easy to verify, so
we leave it to the reader.

e That B is a compact subset of Z is easily seen by Rellich’s theorem and interpolation arguments.

e Let us observe that provided that pg is small enough, Ag maps B into 2. Thanks to (101) and
(102) we have that for each z € B C Z the solution w of (81) belongs to Ey and there exists a constant
C > 0 such that

lwllz, < Clipollar o) < 1.

The last inequality is obtained by taking ||po|| 10,1y sufficiently small.

e It remains to check that the graph of Ag is closed. Consider (z,,yn) a sequence converging in
[L2((0,T) x (0,1))])? to (z,y), with y,, € Ag(z,). We have to prove that y € Ag(z). It is sufficient to be
able to pass to the limit in each term of

Yo + (LG + 20/2)Y0)e + Vingze = va(t,2)Lu(2) in (0,T) x (=1,1).

Note that v,, is bounded in L2, and hence converges weakly to v, up to a subsequence. The only non-trivial
convergence is the one of the nonlinear term z,y,,. But, up to a subsequence, using the compactness of
B, Yy, converges to § weakly in L?(0,T; H'(—1,1)). As z, converges strongly in L?((0,7T) x (—1,1)), it
follows that z,y,, weakly converges to zy,.

This shows that y € Ag(z) and, therefore, the graph of Ay is closed.

Consequently, Theorem 6 applies and this implies that there exists p € Ag(p), that is to say, we
have found a control v; € HY27%(0,T) for all £ > 0, such that the solution solution of (106) satisfies
p(T,-) =01in (0,1). The proof of Theorem 4 is finished.

4.2 Proof of Theorem 5

This part is close to [15]. First, we introduce the operator Lo : L2(0,1) — L?(0,1) which associates to
any y; € L%(0,1) the function g5 € L?(0,1) constructed in Paragraph 3.3 in order to fulfill (68)-(69) with
M=1.

Next, we introduce the operator Ly : L?(0,1) — L?(0,T) which associates to any 7, € L?(0,1) the
control v; € HY?7¢(0,T) constructed in Paragraph 4.1.2 in the case z = 7 = 0: see (104). We call
Ly : L2(0,1) — L2(0,T; H'(0,1)) N C°([0, T]; L2(0, 1)) the operator which associates to g € L2(0,1) the
corresponding solution w given by (103). We underline that L; and L, are linear operators. Indeed, for
what concerns the (uniquely defined) control v, this follows from the characteristic property (99) and
the linearity of ITy. Remark that the continuity of L; and Zl comes from (105).

Finally, we define the operator Lo : L*(0,T; L?(0,1)) — L2(0,T; H}(0,1))nC([0,T]; L*(0,1)) which
associates to f the (unique) solution u of

U + VUgpe + Uy = [ in (0,7) x (0,1),
Ujg—p = Ujg=1 = Uglg—1 = 0 in (0,T), (107)
'U/|t:0 =0 in (O, 1)

Observe that this application is well-defined thanks to (13).
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With all this, we are ready to define our fixed-point mapping A; : B(0; R) C L?(0,T; H*(0,1)) —
L2(0,T; H(0,1)), where R > 0 is to be determined; it is defined as:

Ai(u) = Li[yo — Lo{yr + La(uug)(T)}]. (108)

Note that of course, uu, = (u?/2), belongs to L'(0,T;L?(0,1)) when v € L?(0,T; H(0,1)), hence Ay
is well-defined. Let us prove that it maps B(0; R) into itself and that it is contractive.

e Ay is contractive. Let u,v € B(0; R). We call Cy, Cy, C3 various constants depending only on the
operator norms of the above Ly, etc. We have

IZ1 0 Lo © [La(uty — v0,)(T)]| 220,71 0,1)
C1l|Lo o [La(uuz — vvg)](T) 20,1

Col| La(uny — vog)]llco(o,11;22(0,1))

[ Ax(u) — Al(“)||L2(o,T;H1(o,1))

CSHU2 - U2||L1(O,T;H1(0,1))

IA A IA A CIA

2RCslu — v 20,1171 (0,1)) -

Hence A; is contractive for R small enough, typically

1
R< —. 109
<G (109)

e Ay maps B(0; R) into itself. Now consider u € B(0; R), and observe in the same way as previously
that

AL (W) 20,7501 0)) < Callyollzzco,n) + Collyallrzo,1) + CsR>.

Hence with the choice (109) and if [|yo||z2(0,1) and [[y1]|z2(0,1) are small enough, the operator Ay
maps B(0; R) into itself.

In that case, the operator A; admits a fixed point, by the Banach-Picard Theorem. Then it is straight-
forward to see that such a fixed point answers to the requirements of Theorem 5.

5 Proof of Theorem 1

We start the proof of Theorem 1 by showing that one can suppose that the initial condition has null
traces at x =0 and = = 1.

This is done as follows. For any 1 > 0, we introduce a linear continuous extension operator IIy from
Wh(0,1) to Wy > (—n,1+n). Consider the problem

Yt + VYzax + My, =0 in (0,7) x (—=n,1+n),
Yz=—n = V1, Yjz=14n = V2, yz\r:1+n = U3 in (07T)7 (110)
Y=o = Ila(yo) in (—n,1+mn).

Recall that M is a negative constant in this section. Clearly, by rescaling, this problem is equivalent to

Yyt + Yy, =01n (0,7) x (0,1).

v
(1 + 2n)3Yooe * (14 2n)
Hence, raising Ky, diminishing vq if necessary and taking 7 sufficiently small, we see that solving the
problem with VVOI’oo initial data is sufficient. From now on, we suppose yo € WOI’OO(O7 1).

Now the proof of Theorem 1 is performed in two times. First we drive the state to a small one, and
next we drive it to 0 exactly.
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5.1 Driving the initial state to a “small” one

In this paragraph we drive the initial state yo € WO1 "°°(0,1) to some “small” state. This is only possible
as long as the transport term “helps”, that is to say, when M < 0.
Introduce the following initial state associated to yg, but defined in the whole real line:

) x€(0,1),
ug(x) := { vo() € .1) (111)

0 elsewhere.

The idea we follow here is to consider the solution u of our system associated to ug in R. Then, we prove
that u is “small” in the interval « € (0,1) as long as a time ¢ > 1/|M| has gone by. Finally, it suffices to
take the controls as the corresponding traces of u in order to prove the desired result.

Proposition 6. Consider ug € WH°°(R) given by (111). Let M < 0 and let u be the solution of

Ut + Vlger + Mug, =0  in RT x R,
(112)

Ujp—g = Ug in R.

Then the following holds independently of v: for t > 1/|M]|, the function u satisfies:

[[to]loo 2 (=Mt —1)%?
l[u(t, lze<(0.1) S (=3 ) (113)

Moreover one has
e (- Dl oo @+ S luollwro(m)- (114)

Proof. By performing the change of variable
u(t, z) = u(t,z + Mt),

we arrive at the following equation
Vg + VVgga = 07 (115)

which has as a fundamental solution

1 . T
o) = oy ((31/15)1/3) ’

where Ai is the Airy function

o i €
Ai(z) = 5 /Im(g)_n>oe p {z(xf—!— 3 )| d€.

It follows that for ¢t > 0,

u(t,z) = /RUO(Z) (31/1:5[)1/3 Aj (m (_?)zi\f)tl/; Z> dz

1 fx—Mt—z
= /(0,1)y0(2)(3yt)1/3AZ( (3Vt)1/3 >dz. (116)

We will use the following lemma:

Lemma 1. The Airy function satisfies the following estimate: for x > 0:

0 < Ai(x) < Ai(0) exp <—§x3/2) . (117)
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Proof. Tt is classical (see for instance [13, p. 214]) that the Airy function is a solution of the following

equation:
Ai" — xAi =0, (118)

with Ai(0) > 0 and Ai’(0) < 0. It is then clear that in order to establish (117), it is sufficient to prove
that the function g : z — exp (—22%/?) satisfies

g —xg>0 forz>0.
This is immediate since ¢"” — zg = (1/(2v/2))g.

Now going back to the estimate on u(t,z), we get for x > 0 and t > 1/M,
Ai(0)[|yo| oo 2 [z — Mt—17""
t,x)| < =000 S
|U( 7x)| —_ (Sl/t)l/g eXp 3 (31/t)1/3 Y
which yields (113).

To get (114), we first differentiate (116) with respect to x, and obtain,

1 =DMt
pu(t,z) = [(31/t)1/3 Ai ((31/t)1/3) * (UO)I} (2)
and then for 2 > 1, using Supp ug C [0, 1] (recall that M < 0), we have that
1 _ -— Mt

Denote Ait := Ailg+ (> 0). One has

[ 3ut) Ve ( 301 1/3> (o) @ (1)

z
B / (3Vt)1/3A i ((3ut)1/3> [(u0)x(1 — Mt — z)|dz.
Noting that Ait € L*(R) and that

. .
Ait ( )H = | Ait|| 1 g, for all ¢ > 0, (119)
H (3ut)1/3 (3ut)1/3 L1(R) ©

we conclude by Young’s inequality that

|0pu(t, )] < [[(uo)ell oo 0,1y 14| L1 (wy.
independently of v. O

|0z u(t, 1))

5.2 Conclusion

In this paragraph, we combine the previous paragraph and Section 3 in order to prove the uniform null
controllability of (1) (Theorem 1).
Let us consider yo € Wy>*°(0,1) and M < 0.

o Let 71 € (1/|M|,T) to be chosen later. In the time interval (0,77), we consider u the solution of
(112) with wg given by (111). Then, it is clear that the solution y of the problem

Yt + Vaze + My, =0 in (OaTl) X(O,l),
Ylz=0 = U|z=0; y\;c:l = u\x:la yI|m:l = ur\z:l in (O7T1)7 (120)
Yit=0 = Yo in (07 1)7

also satisfies (113), that is to say,
llyolloo 2 (=MT, — 1)
Ty, M pooroqy < —9lee B St S A 121
ly(T1, )0,y < (T3 P\ ~3 (B3vT)1/2 (121)
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e Now, between t = T and ¢t = T, we apply the null controllability result proved in Paragraph 3.2
for the initial condition y(T1,-) (instead of yg). Doing so we obtain

y(T,-)=0 in (0,1).

Furthermore, we can require that the control satisfies

*

ol ) < = 19T -1 0,1y

where C* is the constant in the estimate (3), where we replace T with T'— T;. It follows that the
control satisfies

1 C|M|/? 1
ol Z2 ez my < yeXp{ oz (1t (M|(T =T1)) '/ 1y(Ta, 72009

Cr| M|M/? 1 2
<o { S (14 e ) | T o

for v € (0,19) and some constant C7 > 0. From (121), we get

C 1 1 4
2 8 1/2 _ _ _1)3/2 2
lollZ2 (2, ) < 1273 eXP{VW <08|M| <1 + (|M(T—T1))1/2> 3\/§T1/2( MTy —1) )} ol
1 1

for v € (0,vp).
Thus, taking 77 > K/|M| with K sufficiently large, the previous constant is bounded by

exp{—C|M|*?/u}/?}  for some C > 0,
when v € (0, ).
e Hence to finish the proof of Theorem 1, it remains only to prove that the norms
1Yje=ollL2(0,m1) NWe=1llr20,10)s 1¥eje=1llL2(0,71)s

are bounded independently of v > 0. This is a direct consequence of (114) for what concerns the
control v3. For controls v; and v, this is for instance a consequence of the following group estimate
for the linear KdV operator:

sup [|u(t, )|l () < Clluollm(w)
t>0

(recall that u fulfills (112)).

6 Appendix: Proof of Carleman inequality

6.1 Proof of Proposition 4
Let ¢ := e **p, where « is given by (54) and ¢ fulfills system (53). We deduce that

Lyt + Layp = L3y,

with
L) = =ty — by — 35%a20h, — (M V), (122)
Lot = —8*a31) — 350,050 — S041) — 3505005 — S(M/V)ap) (123)

and
L3t) = SQpapth + 3520y 00g01). (124)

Then, we have
L1917 2(qq) + 11290117 2(q0) + 2//@ Lyt Loy da dt = || Lst)[|72(q,)- (125)
0

23



In the following lines, we will compute the double product term. For the sake of simplicity, let us
denote by (L;®); (1 <i<2,1<j<5) the j-th term in the expression of L;1).

e First, integrating by parts with respect to x, we have

53
((Ll’l/})l, (ng) )Lz (Qo) = E // a28x|¢w|2dxdt+ 353 // aia$w‘w$|2 dx dt
Qo Qo

3s° 2 2 2
5 (2005, + % 0pq )0z || da di
0]

9s° 2 2 st T 3 2
=5 o O Ol || dx dt — ) o aw‘x:1|w1’|x=1‘ dt
0

248 (126)
_ % // (203 | 4 60050ty Qe + 2 0ay ) [0|? d dt
0
3 3 rTo
> 95 RagelePdrdt — > | a3, _ ooy |? dt
9 T 2 z|z=1 Je=1
Qo 0
—~ CT}s® // &Py da dt.
0
Here, we have used that ¢j,—0,1 = ¥z |,—0 = 0 and (56).
For the second term, integrating by parts again with respect to x, we obtain
3s 9 3s [T 9
((L1¢)1, (L2¢) )L2 (Qo) — — & awm|wwm| dx dt + — az|w:1‘wxm|l~:1‘ dt
2 Qo 2 Jo
3s
- 2 Az |p= O|wxl’\z O| dt
T, (127)
>_7// azz|"/}xz| dwdt""*/ am|m l‘wma:h; 1‘ dt
_CS/ O‘\z:0|wwc\z:0| dt.
0
We consider now the third term of Lot and we get
((Llw)la (ng) L2 Qo // Oéta |'¢x‘ dﬂl‘ dt + = // Oéllta I’l,bl2 dl‘ dt
// Qi |V |* da dt = s// |V, | da dt
0
(128)

s
_5/ O‘t\z 1|wﬂi|w 1‘ dt—*// awmt|¢| dx dt
0 0
> —CsTy (// 3|wz|2dmdt+/ a‘z 1 ¥z )2z 12 dt)
0

thanks to a;.; = 0 and (56)-(57).

24



Furthermore, since azer = 0 and 9,9 = ¢z|m:0 = 0, we have

3
((L1¢)17 (LQw)4)L2(Q0) = —3s // O‘ma:|¢:cx|2 drdt — ES // O[;cxa:am|¢x|2dx dt
Qo Qo

To
+3S/ Vaz|g=1Vaz|g=1Ve|p=1 Al

7733// Ozm|1/1a:z| d:rdt+—// a4m|1/11| dx dt
0 0

3s
- 5 amazw|w:1 ‘wa:|;p:1| dt + 38/ awx@:lwzw‘m:lww‘x:l dt
2 0 0

I
> —3s // Qg |Vn|* d dt — 58/ ax‘w:1|1/)m‘x:1|2dt.
Qo 0

2 o 3 2
_CSTO/(; a|m:1‘wl|a::1| dt.

(129)

Observe that in the last term we have used Cauchy-Schwarz inequality.

For the last term of Lo, we have

(L), (La)s) 2oy = —s(M/(20)) //Q Cpdultbn 2 da dt — s(M/v) // Ctnoanth d dt

—s(v/(20) [ Y ol s Pt + (M (20) /] sl
~soup) [ et da

Using that oy, < 0, this yields

((L'9)1, (L2t)s) > —Cs|M|(T3/v) © o 2 dt Blub 12 da dit
1, (L2¥)5)L2(Qo) 2= s o/v ; 0‘|x:1|¢m\x:1 + Qoa |the|? da:

+s// am|wm|2dxdt—CSMQ(Té/VQ)// P2 da dt.
Qo Qo

All these computations ((126)-(130)) show that

(L)1, L) 20y f// 02l i dt — //Oamwm dx di

—0// (sTEM? /12 +s3T02)a5|z/1|2dxdt—Cs// (To + TE|M|/v)a® || da dt
0 Qo

(130)

e g 2 (131)
_5/ O‘x|x:1‘w$|x=1| dt + 5/ aﬂc\w:1|wwﬁ|x=l| dt
0 0

To TO
—cs/ (To + T + T5 |M|/v) o,y [ty | it — Cs/ 0|V |pol” dt.
0 0

e As long as the second term of L1 is concerned, we first integrate by parts with respect to ¢:

3
((L1%)2, (L2®)1) £2(qo) :_3;//@ Qag Y| dedt > —Cs3Ty // o®1p|? da dt. (132)
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For the second one we use that ¢z),—g = tz;—7 = 0 and (57) and we get

3s
L L 200) = — — 20|05 |2 da dt — caets d d
((L1v)2, (L2v)2) £2(qo) 5 //Qoa |1z |* do dt 35//Qoa Yty da di

= 3s // Qpt || da dt — 3s // Qs dx dit
2 Qo Qo

> —CsTy // B> de dt — 3s // Oz 22y dx dt.
Qo Qo

Again using ¥,—¢ = ¢j;—r = 0 and (57), we deduce
(L1v)2, (L2v)3) 12(qy) = —8// oy |Y]? do dt > —CsTy // o [Y[? da dt.
QU 0

Furthermore,

((L1v)2, (L2v)a) 12 (Qy) = 38 //Q Qg Vethy da dt.

Finally, the last product of the second term of Lyt provides

(133)

(134)

(135)

(L0, L)z = ~sM /@) [ aalyldrar2 Cltiy) [ olletasar ao)

Putting together all the computations concerning the second term of Lyt ((132)-(136)), we obtain

((L13)2, Lob) 12(gy) = —CsTo(s* + Ty + T |M|/v) // Plep|? da dt

— OsTy // P, |* dx dt.

e We consider now the products concerning the third term of Ly1. First, we have

15s°
((Llw)g, (LQ’(/})l)Lz(QO) = — 28 // aiam|w|2dm dt Z 085 // Oé5|¢|2 dx dt.
Qo Qo

Secondly,
2753

9¢3 1o
(L0, L)z =~ [ Rowelydrat+ 25 [0ty g,
0

Using (57), we obtain the following for the third term:

3
(L19)3, (L2)3) L2(Qu) = —3% // (200, 0tz s + a2 0t ) [Y)? da dt

> —Cs’Ty // P |? da dt.
Qo

Furthermore,

((L19)3, (L2¥)4) 12(Qo) = 95° // Qe |the|? da dt.

Finally,
9
L19)s, (Lav)s) 2 (00) = —=8° (M 2 g |9|? da dt
((L1v)s, (L2)5) L2(qQo) 25(/’/)//620040!”96

> —Cs3(TE|M|/v) // QP dx dt.
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Consequently, we get the following for the third term of Lyt ((138)-(142)):
9 3
((L1%)3, Law) 12(q,) = Cos® // P | da dt — % // 2 Qe [ da dt
Qo Qo

3 51,12 952 [To 3 2
—Cs*To(1 + To|M|/v) 0 a’ Y| dxdt+—2 ; e [V p=1 | dL.
0

e As long as the fourth and last term of L1 is concerned, we have:
((L1)a, (L2)1) 12(Qo) = —gsg(M/V) //Q 3 0t || da dit
0
> S |M|(T2/v) // oS [[? da dt.
Qo
Now, we compute the second one:

To
(Lo, L)z =~y 7) [l dwdios Jo0) [ auoalbeyomal?

To
> —Cs|M|(T¢/v) <//Q a3\¢z|2d:cdt+/ a3£_1|1/)m|1_12dz> )
0 0

Additionally, integrating by parts again with respect to x, we have

(L19)4s (L2%0)3) 12(Qo) = —%S(M/V) // ape|Y|? do dt > —Cs|M|(Tg /v) //Q oS ||? d dt.

Furthermore,

(L1th)a, (L2th)a) 12(y) = 3s(M/v) // Q|| d dt > —C's|M|(TE /v) //Q o>, |? da dt.

Finally,

(143)

(144)

(145)

(146)

(147)

(Lo (Lab)s) g =~ 55O /?) [[ asilvP dede > ~Co@izri?) [[ adlop duat

All these computations for (L1t)4 ((144)-(148)) show that

(Ui, L)) 2 ~CIMIGT o)+ Ty 5 TEMI) [ ol oo

To
—OsT02|M|/v// oz3|z/;x\2dzdt—CsT02|M|/v/ 0,y ooy dt.
Qo 0

(148)

(149)

Let us now gather all the product (L1%), Lat))12(q,) coming from (131), (137), (143) and (149).

e As long as the zero order terms are concerned, we will get profit of the term obtained in (138) (or

(143)):

s // o®ip|? da dt.
9

All terms concerning |1/|? can be bounded by

[5(T2 + (TEM2 [12) + $%(To + T2 + (T2|M] /)] / / o®lp[? da dt
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(see (131), (137), (143) and (149)). Then, taking s > C(Tp —|—T01/2 + (To| M |*/? Jv1/?)), all these integrals
can be absorbed by (150).

e On the other hand, from (131) we have that the term involving [, |? in Qo is

—fs// Q| V| ? d dt > Cs// tppr|? d dt. (151)

The presence of (150) and (151) provides that the term

Cs® //Q P, |? da dt (152)
0

is also produced from (L1v, L2t)12(q,). This justifies that the terms on 9,2 bounded by
STolL+ (@M [ alfunf? do
Qo

(see (131), (137) and (149)) are absorbed as long as we take s > C’(Tol/2 + (To|M|Y/2 /M%),

e Concerning the traces, from (131) and (143) we have the terms

3 7o 3 2
4s /O aw\w:l|¢l‘|x:l| dt
and
To )
3/ aa;\m:l|¢x1“x=1| dt.
0

The first one serves to eliminate
To
(T T+ THMI[0) [ e
0
(see (131) and (149)) by taking s > C(Ty + T/ + To| M|/2 /v1/?).

With all this, we get

To
S// a([thee|? + 520 Wu |* + st [¢]?) dar dt + 8/ o=t (Vg |+ 820,21 [ o [7) di
0 0
. (153)
<C (8/0 =0V ool dt + ||L37/)||%2(Q0)> ;

for a choose of s like s > C(Ty + Ty'* + (To|M|"/2/v'/2)). Now, from the expression of Lzt (see (124))
and (125), we see that

L3120, < C(s°T¢ +54T0)// Pl |? da dt
0

which can also be absorbed by (150) with s > CTj.
Finally, we come back to ¢ by using the definition of ¢ = e7**p and the properties on the weight
function « given in (56). As a consequence, we deduce estimate (59).

6.2 Proof of Proposition 5
Let us redefine the expressions of L1, Lot and Lt given in (122), (123) and (124):
qul) = _wzrz - '¢t - 3520‘3'@[117

L2¢ = =S Oégw - 3504x¢m Satw - Ssaxw’(/)w
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and
L3t) = SQgapth + 352 0p0igpth + (M/v)hy + s(M/v)a 1.

The double products of L1 and Lot are exactly the same as in the previous paragraph. This leads
to the following estimate (similarly to (153)):

s// a(\ipm|2 + 520&2|¢z\2 + 54a4|w|2) dz dt
- (154)
éO(s / ool ool dt + / /Q <|M2/u2><wm|2+52a2|w|2>dzdt>7

for s > C(Tp,v).
Therefore, we only need to estimate the last two terms in the right hand side of (154) as long as
M € L*(0,T; L?(0,1)). Let us estimate, for instance, the first term:

T T
S P < [ 1M < IV o 100 | IOy
0
Now, we take into account that there exists a positive constant C' such that

[¢2(®)llz=1) < Clldaa(®)llL20,1) a e t€(0,T)
and that a > 2/T. Consequently, we obtain

T
||M||2Loo(o,T;L2(o,1))/O 92 (017 0.1y 4t < CIIM | F (0. 7:12(0,1) //Q e |? da dt.
0

Analogously, one can obtain the following estimate for the last integral in the right hand side of (154):

[ PP dedt < CIMB sy [ allunf? dodt.
Qo Qo
Then, taking s > C(Tp, v, || M| (12)), we readily deduce (76) from (154).
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