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Motivation

Non-magnetic Hamiltonian for N-electrons:

H(v) =
N∑

i=1

−1
2

∆i︸ ︷︷ ︸
kinetic energy

+
∑

1≤i<j≤N

|ri − rj |−1

︸ ︷︷ ︸
interaction energy

+
N∑

i=1

v(ri )︸ ︷︷ ︸
external potential

.

H(v) is linear and acts on the fermionic space
∧N

i=1 L
2(R3). Its domain is

∧N
i=1 H

1(R3):

Ψ ∈
N∧

i=1

H1(R3) =⇒


Ψ(rp(1), rp(2), . . . , rp(N)) = ε(p)Ψ(r1, r2, . . . , rN).

N∑
i=1

∫
R3N
|∇i Ψ|2d3r1 . . .d3rN <∞

Problem: Ψ lives in R3N !

"Curse of dimensionality" : impossible for a computer
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Definition : mixed state

For Ψ ∈
∧N

i=1 H
1(R3), we can define

ΓΨ = |Ψ〉 〈Ψ| ∈ S
(
L2(R3N)

)
the N-body density matrix

and we introduce

PN := {ΓΨ, Ψ ∈ H1(R3), ‖Ψ‖L2 = 1} the set of pure state N-body density matrices.

PN is not convex. Its convex hull is

MN := CH (PN) the set of mixed state N-body density matrices.

Example: for N=1,

P1 only contains rank-1 orthogonal projector.

M1 is the set of operators Γ such that 0 ≤ Γ ≤ 1 and Tr(Γ) = 1.
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Density Functional Theory

Usually, one main object of interest is the ground state energy,

E(v) = min
Ψ∈

∧
H1,‖Ψ‖L2 =1

〈Ψ|H(v)|Ψ〉,

or, equivalently,
E(v) = min

Γ∈PN
Tr (H(v)Γ) .

We will also be interested in the minimization problem

E ′(v) = min
Γ∈MN

Tr (H(v)Γ) .

With some calculations, it holds

Tr (H(v)Γ) = Tr (H0Γ) +

∫
R3

v(r)ρΓ(r) d3r

with the electronic density

ρΓ(r) := N
∫
R3(N−1)

Γ(r, r2, . . . , rN ; r, r2, . . . , rN) d3r2 . . .d3rN .
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Introduction of the representability problem

The density functional theory (DFT), such as presented by Levy (1979) and Lieb (1983),
comes from the following calculations (here, X represents either PN ofMN):

min
Γ∈X

Tr (H(v)Γ) = min
Γ∈X

{
Tr (H0Γ) +

∫
R3

v(r)ρΓ(r) d3r
}

= min
ρ∈IN (X )

{∫
R3

v(r)ρ(r) d3r + min
Γ∈X ,Γ→ρ

{Tr (H0Γ)}
}

where the set IN(X ) is defined by

IN := {ρΓ, Γ ∈ X} set of representable electronic densities.

Introducing
F (ρ) := min

Γ∈X ,Γ→ρ
{Tr (H0Γ)} ,

The minimization problem into the wave function can be recast into a minimization
problem for the electronic density!

Questions:

What is the functional F ? (approximations: LDA, GGA,...)
Do we have an explicit form of the set IN(X ) ? N-representability problem
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N-representability versus v-representability

We are looking for the explicit form of

IN(X ) := {ρΓ, Γ ∈ X}.

Note that this problem is "Hamiltonian free": we do not suppose that Γ is the ground
state of some Hamiltonian.

Historically, the DFT has been derived by Hohenberg and Kohn (1964). They considered:

ĨN(X ) := {ρΓ, Γ ∈ X , ∃ v such that Γ is the unique ground state of H(v)}.

Characterizing this set is the v -representability problem.

it is much more difficult and useless

when considering the magnetic case, the HK theory does no longer work
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N-representability

Theorem (Harriman ’81, Lieb ’83)

It holds IN(PN) = IN(MN) := IN , with

IN =

{
ρ ∈ L1(R3) ∩ L3(R3), ρ ≥ 0,

∫
R3
ρ = N,

√
ρ ∈ H1(R3)

}
.

Remarks:

The map Γ→ ρΓ is linear

MN is the convex hull of PN

Therefore, IN(MN) = ρ (MN) is the convex hull of IN(PN) = ρ (PN)

In particular, IN is convex (not obvious)

David Gontier Magnetic DFT July 10th 2013 7 / 26



N-representability (proof)

Theorem (Harriman ’81, Lieb ’83)

IN =

{
ρ ∈ L1(R3) ∩ L3(R3), ρ ≥ 0,

∫
ρ = N,

√
ρ ∈ H1(R3)

}
.

Idea of the proof (Harriman).
If {Φ1, . . . ,ΦN} are in H1 and are L2-orthonormal, then

Ψ(r1, r2, . . . , rN) =
1√
N!

det (Φi (rj ))1≤i,j≤N satisfies Ψ ∈
N∧

i=1

H1(R3) and ‖Ψ‖L2 = 1.

For this Ψ, we can calculate

ρΨ(r) =
N∑

i=1

|Φi (r)|2.

Inverse problem: for a given ρ ∈ IN , it is enough to take

Φk(r) :=

√
ρ(r)
N
· exp(2πik f (r))

where f is carefully chosen to ensure orthogonality.
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We want to do the same work for the magnetic case
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Magnetic Hamiltonian

According to the Dirac equation, the Hamiltonian for N-electrons is

H(v ,A) =
N∑

i=1

1
2

(
σi ·

(
−i∇i +

1
c
A(ri )

))2

︸ ︷︷ ︸
kinetic energy

+
∑

1≤i<j≤N

|ri − rj |−1

︸ ︷︷ ︸
interaction energy

+
N∑

i=1

v(ri )︸ ︷︷ ︸
external potential

It is linear, and acts on the fermionic space
∧N

i=1 H
1(R3,C2):

Ψ ∈
N∧

i=1

H1(R3,C2) has 2N components :


Ψ(r1, ↑, r2, ↑, . . . , rN , ↑)
Ψ(r1, ↑, r2, ↑, . . . , rN , ↓)

...
Ψ(r1, ↓, r2, ↓, . . . , rN , ↓)


and still satisfies

Ψ(rp(1), αp(1), rp(2), αp(2), . . . , rp(N), αp(N)) = ε(p)Ψ(r1, α1, r2, α2, . . . rN , αN)

N∑
i=1

∑
α1,...αN∈{↑,↓}

∫
R3N
|∇i Ψ(r1, α1, . . .)|2d3r1 . . .d3rN <∞

A is the magnetic potential vector (recall that rot(A) = B is the magnetic field), and σi

contains the Pauli-matrices acting on the i-th spin.
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The new setting !

New Hilbert space:

H = L2(R3,C2) := {Φ = (φ↑, φ↓) ∈ L2(R3), ‖Φ‖H <∞}

with
〈Φ|Ψ〉H =

∫
R3

(
φ↑(x)ψ↑(x) + φ↓(x)ψ↓(x)

)
d3x .

For instance, the set of N-body pure states is now:

PN :=

{
Γ = |Ψ〉 〈Ψ|, Ψ ∈

N∧
i=1

H1(R3,C2), ‖Ψ‖⊗H = 1

}
,

and the set of N-body mixed statesMN is again the convex hull of PN .
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Magnetic DFT

We want to minimize expression of the form

min
Γ∈X

Tr (H(v ,A)Γ) .

This time, it holds

Tr (H(v ,A)Γ) = Tr (H0Γ)

+

∫ (
v(r) +

1
2
|A(r)|2

c2

)
ρ(r)d3r +

∫
R3

A(r) · jp(r) d3r + µB

∫
R3

B(r) ·m(r) d3r

where new objects have appeared:

ρ is still the electronic density

jp is the paramagnetic current

m is the spin density

Recall that A and B satisfy B = rot A. However, as A acts on the orbitals, whereas B
acts on the spin, we usually study the two effects separately and choose:

A = 0 and B 6= 0 for spin effects. Spin Density Functional Theory (SDFT).

A 6= 0 and B = 0 for orbital effects. Current Density Functional Theory (CDFT).
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SDFT

In this presentation, I will present SDFT (A = 0,B 6= 0):

Tr (H(v ,B)Γ) = Tr (H0Γ) +

∫
R3

v(r)ρ(r)d3r + µB

∫
R3

B(r) ·m(r) d3r.

For Γ ∈MN , we can define the spin-polarized electronic densities:

ραβΓ (r) := N
∑

α2...αN∈{↑,↓}N−1

∫
R3(N−1)

Γ(rα, r2α2, . . . , rNαN ; rβ, r2α2, . . . , rNαN) d3r2 . . .d3rN .

With those notations, the usual electronic density is ρ := ρ↑↑ + ρ↓↓.
We also introduce the matrix of spin-polarized electronic densities

RΓ(r) =

(
ρ↑↑(r) ρ↑↓(r)
ρ↓↑(r) ρ↓↓(r)

)
We can then recast the above equation under the form

Tr (H(v ,B)Γ) = Tr (H0Γ) +

∫
R3

trC2


(

v + µBBz µBBx + iµBBy

µBBx − iµBBy v − µBBz

)
(r)︸ ︷︷ ︸

V(v,B)

RΓ(r)


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SDFT

Similarly to standard DFT, we write:

E(v ,B) := min
Γ∈X

Tr (H(v ,B)Γ) = min
R∈JN (X )

{F (R) + (V(v ,B)|R)}

with
F (R) := inf

Γ∈X ,Γ→R
Tr (H0Γ)

and

JN(X ) := {RΓ, Γ ∈ X} set of representable spin-polarized electronic densities.

Problems

We still do not know the functional F (approximations LSDA, GGA, ...)

Can we have a characterization of the sets JN(X ) ? N-representability problem

Remarks

The representability of the R’s is the same as the representability of (ρ,m).

In CDFT, we need the representability of (ρ, jp). Lieb gave the answer to this
question... 23 days ago!

David Gontier Magnetic DFT July 10th 2013 14 / 26



N-Representability of mixed states

We only have the answer for mixed states:

Theorem (DG)

JN(MN) = CN :=
{
R ∈M2×2

(
L1(R3)

)
, R is hermitian positive a.e.,∫

R3
trC2(R) = N,

√
R ∈M2×2

(
H1(R3)

)}
The √ is in the hermitian matrices sense

Very beautiful extension of the standard result:

Theorem (Harriman ’81, Lieb ’83)

IN =

{
ρ ∈ L1(R3), ρ ≥ 0,

∫
R3
ρ = N,

√
ρ ∈ H1(R3)

}
.

Remark
In particular, CN is a convex set. This is not obvious,... I cannot prove it directly!
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Some -useful- ideas of the proof
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Necessary and sufficient conditions

To check that some matrix R is indeed in CN , we use the following result.

Lemma

R :=

(
ρ↑ σ

σ∗ ρ↓

)
is in CN if and only if



ρ↑/↓ ≥ 0, ρ↑ρ↓ − |σ|2 ≥ 0,
∫
ρ↑ +

∫
ρ↓ = N,√

ρ↑/↓ ∈ H1(R3), σ,
√
det ∈W 1,3/2(R3),

|∇σ|2ρ−1 ∈ L1(R3),∣∣∣∇√det(R)
∣∣∣2 ρ−1 ∈ L1(R3).

We will assume this lemma, and the fact that JN(MN) ⊂ CN .
We now prove the converse, i.e. CN ⊂ JN(MN).

Recall that JN(MN) is convex.
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Proof

Lemma

If R =

(
ρ↑ σ

σ∗ ρ↓

)
∈ CN satisfies det(R) = 0 and ρ↑ ≤ 2ρ↓ a.e., then R is pure state

representable.

Proof : similar to the original proof by Harriman.
Introduce Φ↑ = σ/

√
ρ↓, Φ↓ =

√
ρ↓ and

Φk(r) :=
1√
N

(
φ↑

φ↓

)
. exp(2iπkf (r)),

where again, f is chosen to ensure orthogonality of {Φ1, . . . ,ΦN}.
It is easy to check that Γ = |Ψ〉〈Ψ| with Ψ = (N!)1/2 det(φi (rj )) satisfies RΓ = R.

We check that Φk ∈ H1(R3,C2). It is enough to check that φ↑/↓ ∈ H1(R3).
Let us do for instance φ↑:

|∇φ↑|2 =

∣∣∣∣∣
√
ρ↓∇σ − σ∇

√
ρ↓

ρ↓

∣∣∣∣∣
2
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Proof

Then,

|∇φ↑|2 =

∣∣∣∣∣
√
ρ↓∇σ − σ∇

√
ρ↓

ρ↓

∣∣∣∣∣
2

(use |a + b|2 ≤ 2|a|2 + 2|b|2)

≤ 2
|∇σ|2

ρ↓
+ 2
|σ|2

(ρ↓)2 |∇
√
ρ↓|2 (use |σ|2 = ρ↑ρ↓)

≤ 2
|∇σ|2

ρ

ρ↑ + ρ↓

ρ↓
+ 2

ρ↑

ρ↓
|∇
√
ρ↓|2 (use ρ↑ ≤ 2ρ↓)

≤ 6
|∇σ|2

ρ
+ 4|∇

√
ρ↓|2 (use characterization of CN)

∈ L1(R3)

Remark:

The condition ρ↑ ≤ 2ρ↓ is essential! I do not know whether we can remove this
condition, and still ensure pure state representability...

For the rest of the proof, we use the convexity of JN(MN).
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Proof: space decomposition

Lemma

If R =

(
ρ↑ σ

σ∗ ρ↓

)
∈ CN satisfies det(R) = 0 a.e., then R is mixed state representable.

Proof: space decomposition

Let χ ∈ C∞(R) such that χ(x) =

{
0 if x < 1

2 ,
1 if x > 2. .

Introduce

R̃1 = χ2
(
ρ↑

ρ↓

)
R and R̃2 =

(
1− χ2

(
ρ↑

ρ↓

))
R.

Let t = N−1 ∫ trC2(R̃1(x)) d3x ∈ [0, 1], and finally R1 = t−1R̃1 and R2 = (1− t)−1R̃2.
Then,

R = tR1 + (1− t)R2,

and R1,R2 satisfy the hypothesis of the previous lemma, so are pure-state representable.

R1 ∈ JN(MN), R2 ∈ JN(MN) and JN(MN) is convex =⇒ R ∈ JN(MN)
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Proof: space decomposition

Lemma

If R =

(
ρ↑ σ

σ∗ ρ↓

)
∈ CN , then R is mixed state representable.

Proof: rank-1 decomposition
Let us note

√
R =

(
r↑ s
s∗ r↓

)
so that R =

(
(r↑)2 + |s|2 s(r↑ + r↓)
s∗(r↑ + r↓) (r↓)2 + |s|2

)
We introduce this time

R̃1 =

(
(r↑)2 sr↑

s∗r↑ |s|2
)

and R̃2 =

(
|s|2 sr↓

s∗r↓ (r↓)2

)
.

Let t = N−1 ∫ trC2(R̃1(x)) d3x ∈ [0, 1], and finally R1 = t−1R̃1 and R2 = (1− t)−1R̃2.
Then,

R = tR1 + (1− t)R2.

Because R ∈ CN , then r↑, r↓ and s are in H1(R3). Moreover, det(R1,2) = 0 a.e., so that
R1,2 satisfy the conditions of the previous lemma, and therefore are representable.
We conclude as before.
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One application of this result
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Exchange correlation term

In the polarized case, we write

F (R) := min
Γ∈X ,Γ→R

Tr (H0Γ) = EHF
K (R) +

∫
R3×R3

ρ(x)ρ(y)

|x− y| d3x d3y + Exc(R)

and find approximations for Exc(R).

Local approximation: Exc is a local functional.
In particular, if U(r) is a field of unitary matrices, it holds

Exc(R) = Exc(U∗RU).

Therefore,
Exc(R) = Ẽxc(ρ+, ρ−)

where ρ+ and ρ− are the eigenvalues of R.

What is the functional space for (ρ+, ρ−) ?
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Eigenvalues of R

Lemma

If R ∈ JN(MN), then
√
ρ+/− ∈ H1(R3).

Proof√
ρ+/− are the eigenvalues of

√
R :=

(
r↑ s
s∗ r↓

)
∈M2×2

(
H1(R3)

)
.√

ρ+/− are the roots of x 7→ x2 − (r↑ + r↓)x + (r↑r↓ − |s|2).

The discriminant is ∆ := (r↑ + r↓)2 − 4(r↑r↓ − |s|2) = (r↑ − r↓)2 + 4|s|2

The functional ‖∇
√
·‖2L2 is convex, so

√
∆ ∈ H1(R3).

Finally, ρ+/− :=
r↑ + r↓ ±

√
∆

2
∈ H1(R3).
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Conclusion

Conclusion

We have extended the representability result in the non-collinear spin-polarized case

The result only holds in the mixed state setting

Future work

With the recent work of Lieb in CDFT, we can probably find the representability
conditions in CSDFT: representability of (ρ, j,m)

Study mathematically some models used in physics (well-posedness of LSDA...)

Study some non-collinear spin effects (magnons, frustrated solid)
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