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MOTIVATION

Non-magnetic Hamiltonian for N-electrons:

N 1 N
-1
H(V): E —EA,'—F E |I’,‘—I’j| + E V(I’,‘)
i=1 1<i<j<N i=1
—_——— ———
kinetic energy interaction energy external potential

H(v) is linear and acts on the fermionic space AN, L*(R®). Its domain is AN, H*(R®):
\Il(rp(l), rp(z), ey rp(N)) = E(p)\u(n, r,..., rN),

ve \H(R®) =

N
=1 Z/ |Viw)d®r ... d%ry < o0
i—1 R3N
Problem: W lives in R3N |
"Curse of dimensionality" : impossible for a computer
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DEFINITION : MIXED STATE

For W € AN, H(R?), we can define
My =V) (V] €8 (Lz(R‘W)) the N-body density matrix
and we introduce
Py = {ly, We&H(R?, |[V][2=1} the setof purestate N-body density matrices.

Pn is not convex. lts convex hull is

Mpy ;= CH (Pn) the set of mixed state N-body density matrices.

Example: for N=1,
@ Py only contains rank-1 orthogonal projector.
@ M; is the set of operators ' such that 0 < T <1 and Tr(l') = 1.
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DENsITY FUNCTIONAL THEORY

Usually, one main object of interest is the ground state energy,

E(v) = (VIH(V)|V),

min
VeAHL ||V 2=1

or, equivalently,
E(v) = rr&ljr)\l'l‘r(H(v)l').

We will also be interested in the minimization problem
/7 _ .
E'(v)= I_.renj\l/rsmTr(H(v)I').
With some calculations, it holds
Tr (H(v)I) = Tr (Hol) +/ v(npr(r) dr
R3

with the electronic density

or(r) := N/ F(rra, ... rn;rr2, ... rN) dBra. .. e
R3(N—1)
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INTRODUCTION OF THE REPRESENTABILITY PROBLEM

The density functional theory (DFT), such as presented by Levy (1979) and Lieb (1983),
comes from the following calculations (here, X represents either Py of My):

Péiﬂ Tr (H(v)IN) = rr'rélg {Tr(Hor) + /11@ v(r)pr(r) d3r}

{/RB v(0)p(r) dr + Foin {Tr(Hor)}}

pETu(X)
where the set Zn(X) is defined by

In:={pr, T € X} set of representable electronic densities.
Introducing

F(p) :== _min p{Tr(Hol')},

rex,r—

The minimization problem into the wave function can be recast into a minimization
problem for the electronic density!
Questions:

o What is the functional F 7 (approximations: LDA, GGA,...)
@ Do we have an explicit form of the set Zny(X) 7 N-representability problem
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N-REPRESENTABILITY VERSUS V-REPRESENTABILITY

We are looking for the explicit form of
In(X) :=A{pr,T € X}.

Note that this problem is "Hamiltonian free": we do not suppose that I is the ground
state of some Hamiltonian.

Historically, the DFT has been derived by Hohenberg and Kohn (1964). They considered:
In(X) := {pr,T € X,3 v such that I is the unique ground state of H(v)}.

Characterizing this set is the v-representability problem.
@ it is much more difficult and useless

@ when considering the magnetic case, the HK theory does no longer work
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N-REPRESENTABILITY

Theorem (Harriman '81, Lieb '83)
It holds IN(PN) = IN(MN) = Ty, with

In= {p e "R} NLR?, p>0, /Ra p=N, pe Hl(]R3)}.

Remarks:
@ The map I' — pr is linear
@ My is the convex hull of Py
o Therefore, Zy(Mn) = p (M) is the convex hull of Zn(Pn) = p (Pn)

@ In particular, Zy is convex (not obvious)
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N-REPRESENTABILITY (PROOF)

Theorem (Harriman '81, Lieb '83)

In = {p e MR NL3R?), p>0, /p =N, pe Hl(R3)}.

Idea of the proof (Harriman).
If {®1,...,Pn} are in H! and are L>-orthonormal, then

-
AT

For this W, we can calculate

N
det (®i(r;));<; j<n satisfies \Ue/\Hl(Ra) and |||z =1.

i=1

\Il(rl,rg, PN I’N)

N
pu(r) =Y |®i(r).
i=1
Inverse problem: for a given p € Zy, it is enough to take
Dp(r) := &I\Il’) - exp(2rik f(r))

where f is carefully chosen to ensure orthogonality.
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We want to do the same work for the magnetic case
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MAGNETIC HAMILTONIAN
According to the Dirac equation, the Hamiltonian for N-electrons is

H(v,A) = XN:% (o',- . (—iV,- + iA(r;)))2 + Z Iri—r| 7+ év(n’)

i=1 1<i<j<N
N——

kinetic energy interaction energy external potential

It is linear, and acts on the fermionic space AN, H*(R3, C?):

w(r17T7 I"27T,...,rN7T)
N w(r17T7 r27T,~~~7rN7~L)
Ve /\ H*(R?,C?) has 2" components : )
i=1 :
\U(l’l,\l/, r27\L7"'7rN7\L)

and still satisfies

W(rp1)s Qp(1)s Fp(2)s Xp(2)s - - - Fp(N)s Op(ny) = E(P)V(r1, 1,12, 02, .. . Py, aun)

N
g E / N \V,'\U(rl,al, .. 4)|2d3r1 .. .d3I'N < o0
R3

i=1 ay,...aye{t,}

A is the magnetic potential vector (recall that rot(A) = B is the magnetic field), and o;
contains the Pauli-matrices acting on the i-th spin.
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THE NEW SETTING !

New Hilbert space:
H=L(R°,C%) :={d=(¢",0") € L’(R?), ||®]ln < oo}

with

@) = [ (60" () + 3w () .

For instance, the set of N-body pure states is now:

i=1

N
P = {r =) (v, ve AH'R,C), [V|ox = 1}»

and the set of N-body mixed states My is again the convex hull of Py.
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MacNETIC DEFT

We want to minimize expression of the form
min Tr (H(v,A)l).
This time, it holds

Tr (H(v,A)l') = Tr (Hol")
+/ (v(r) + %Miﬁg)ﬁ) p(r)dr + /}R3 A(r) - jp(r) & + s /R3 B(r) - m(r) &’

where new objects have appeared:
@ p is still the electronic density
@ jp is the paramagnetic current

@ m is the spin density

Recall that A and B satisfy B = rot A. However, as A acts on the orbitals, whereas B
acts on the spin, we usually study the two effects separately and choose:

@ A =0 and B # 0 for spin effects. Spin Density Functional Theory (SDFT).
o A # 0 and B = 0 for orbital effects. Current Density Functional Theory (CDFT).
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SDFET
In this presentation, | will present SDFT (A = 0,B # 0):

Tr (H(v, B)F) = Tr(HOF)+/

V(R)p(r)dr + i / B(r) - m(r) &°r.
3 R3
For I € My, we can define the spin-polarized electronic densities:

3 3
p?ﬁ(r) =N E / I'(ra,rgocz,.,,,rNaN;rﬁ,rzocz,.,.,rNaN)d rz,,.d rn.
N—
az.anetipn-1 BN

With those notations, the usual electronic density is p := p'T 4+ p*.
We also introduce the matrix of spin-polarized electronic densities

R - () 210)

p(r) pH(r)

We can then recast the above equation under the form

Tr (H(v,B)I) = Tr (HolN) +/

ra ( v + ugB; 1Bx +1uBBy) (") Re(r)
R3

neBx —iusBy v — ugB;

V(v,B)
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SDET

Similarly to standard DFT, we write:

E(v,B):= F@Q Tr (H(v,B)lr) = Remln {F(R)+ (V(v,B)|R)}

with
F(R) := ; mf Tr(Hor)
ex

and
In(X) :={Rr,T € X} set of representable spin-polarized electronic densities.

Problems

o We still do not know the functional F (approximations LSDA, GGA, ...)

o Can we have a characterization of the sets Jn(X) ? N-representability problem
Remarks

o The representability of the R's is the same as the representability of (p, m).

o In CDFT, we need the representability of (p,jp). Lieb gave the answer to this
question... 23 days ago!
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N-REPRESENTABILITY OF MIXED STATES

We only have the answer for mixed states:

Theorem (DG)

In(Mp) =Cn ::{R € Max2 (Ll(]R3)) , R is hermitian positive a.e.,

/3 tre2(R) = N, VR € Maxo (HY(R?)) }

@ The i is in the hermitian matrices sense

@ Very beautiful extension of the standard result:
Theorem (Harriman '81, Lieb '83)

IN:{peLl(R3), p=>0, /p:/v, ﬁeHl(JR?)}-
R3

Remark
In particular, Cy is a convex set. This is not obvious,... | cannot prove it directly!

David Gontier Magnetic DFT July 10" 2013 15 / 26



Some -useful- ideas of the proof
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NECESSARY AND SUFFICIENT CONDITIONS

To check that some matrix R is indeed in Cn, we use the following result.

Lemma

+
R = (p* ;) is in Cn if and only if

g

pt >0, plpt—|of* >0, /p“r/pi:N,
Vit e HY(R?), o,Vdet € W/3(R?),
IVol?p™t € LY(RY),

|V Vaet(R)| ot € LR,

@ We will assume this lemma, and the fact that Jn(Mn) C Cn.
@ We now prove the converse, i.e. Cn C In(Mn).
o Recall that Jn(Mn) is convex.
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Proor

Lemma

4
If R = <5* ;) € Cy satisfies det(R) = 0 and pT < 2pi a.e., then R is pure state

representable.

Proof : similar to the original proof by Harriman.

Introduce @1 = o/+/pt, &+ = \/p* and

1 ¢T> .
Op(r) = — .exp(2iwkf(r)),
k(r) W((ﬁi p(2imkf(r))
where again, f is chosen to ensure orthogonality of {®1,..., dpy}.

It is easy to check that I = [W)(W| with W = (N!)*/2 det(¢;i(r;)) satisfies Rr = R.

We check that &, € H*(R? C?). It is enough to check that ¢!+ € H*(R?).
Let us do for instance ¢':

2

|V¢T|2 _ ‘ \//;VO' 10V\/,DT
p
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Proor

Then,
2
Vo Vo — T
Vo' = ‘ PVT = OVVPT (e ot B < 20af? + 21bP)
P
Vol? ol?
<olVol 2(|p¢')z VP (use |of” = p'p")
2 1 4 T
< 2@% + Z%IV\/W (use p < 2p%)
|VO’|2 2 . .
< 60— +4|V/pt| (use characterization of Cy)
p
€ L'(R?)
Remark:

o The condition p' < 2p* is essentiall | do not know whether we can remove this

condition, and still ensure pure state representability...

@ For the rest of the proof, we use the convexity of Jn(Mp).
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PROOF: SPACE DECOMPOSITION

Lemma

4
IfR = (g* ;) € Cn satisfies det(R) = 0 a.e., then R is mixed state representable.

Proof: space decomposition
Let x € C*°(R) such that x(x) = {

Introduce

0 if x<3i,
1 if x>2. -

. T . 0
Ry = X2 ('%) R and R, = (1 — X2 (%)) R.
p p
Let t = N7 [trea(Ri(x)) d®x € [0,1], and finally Ry = t 'Ry and Ry = (1 — t) *Re.

Then,
R =tR:1 + (1 — t)R>,

and Ri, R> satisfy the hypothesis of the previous lemma, so are pure-state representable.

R € In(Mn), Rz In(Mn) and JIn(Mp) is convex = R € Jn(Mn)
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PROOF: SPACE DECOMPOSITION

Lemma

4
If R = <p* [i) € Cn, then R is mixed state representable.
o

Proof: rank-1 decomposition

Let us note
rmos (r"?2 +s? s(rT + ri)
VR= ( ri) o that k= (s*(rT ) () |s|2>

We introduce this time
= ((r")? st = (s st
R1 = (S*I’T ‘5|2 and R2 = s*ri (r¢)2 .
Let t = N7 [trea(Ri(x)) d®x € [0,1], and finally Ry = t 'Ry and Ry = (1 — t) *Re.
Then,
R=tRi + (1 - t)R..
Because R € Cy, then r', r* and s are in H*(R®). Moreover, det(R;2) = 0 a.e., so that

R 2 satisfy the conditions of the previous lemma, and therefore are representable.

We conclude as before.
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One application of this result
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EXCHANGE CORRELATION TERM

In the polarized case, we write

F(R):==_min RTr(Hor) = E{F(R) +/ m(f'x Ay + Exe(R)

rex,r— rixrs X =Yl

and find approximations for Eic(R).

Local approximation: Exc is a local functional.
In particular, if U(r) is a field of unitary matrices, it holds

Ex(R) = Ex(U*RU).

Therefore, ~
E«(R) = Exc(p",07)

where p™ and p~ are the eigenvalues of R.

What is the functional space for (p™,p~) ?
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EIGENVALUES OF R

Lemma
If R € In(Mn), then \/pt/— € HY(R?). J

Proof
+
e /p*t/— are the eigenvalues of VR := (2* i) € Moaxo (Hl(R3)).

o \/pt/— are the roots of x — x* — (r' + r)x + (r'rt —|s?).
o The discriminant is A := (r" 4+ r*) — 4(rTrt — |s]?) = (rT — r)? + 45
o The functional ||V+/"||?2 is convex, so VA € H*(R?).

_rT+r¢:I:\/Z

1 3
5 € HY(R).

e Finally, p*/~:
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CONCLUSION

Conclusion
@ We have extended the representability result in the non-collinear spin-polarized case
@ The result only holds in the mixed state setting

Future work

o With the recent work of Lieb in CDFT, we can probably find the representability
conditions in CSDFT: representability of (p,j, m)

o Study mathematically some models used in physics (well-posedness of LSDA...)

@ Study some non-collinear spin effects (magnons, frustrated solid)
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