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1Note: The name "GW" does not stand for anything
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Motivation

We consider a very big electronic system (N ≈ ∞), with Hamiltonian

HN := −1
2

N∑
i=1

∆i +
∑

1≤i<j≤N

1
|xi − xj |

+
N∑

i=1

V (xi )

acting on HN :=
N∧

i=1
H, with H = L2(R3).

We would like to understand the optical properties of such a system.

hν

System with N particles

Ekin

System with N − 1 particles

It holds hν + E 0
N = Ekin + E k

N−1, from which we deduce the gap E k
N−1 − E 0

N .
There is a dynamical response due to the loss of a particle.
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Motivation

In the limit N →∞, we expect to recover the correct band gap of crystals.

(a) Band gaps for LDA and GW.
(b) Band structure of Si for LDA, and GW.

A GW calculation gives better results with respect to band gaps.2

The GW method is based on Green’s functions.

2M. van Schilfgaarde, T. Kotani and S. Faleev, Phys. Rev. Let. 96 (2006)
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Outline

Definition of the Green’s functions
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Second quantization

Let us fix some notations

We work with fermions, in spin-unpolarized systems.

The 1-particle Hilbert space is H = L2(R3).

The N-particle fermionic Hilbert space is HN =
∧N

i=1 L
2(R3).

The fermionic Fock space is F = C⊕H⊕H2 ⊕ . . .
The Hamiltonian can be written in second quantization as

H =

∫
R3

h(x)Ψ†(x)Ψ(x)dx +

∫∫
R3×R3

v(x, y)Ψ†(x)Ψ†(y)Ψ(y)Ψ(x)dxdy,

where we separate the 1-body part of the Hamiltonian h(x) ≈ −1
2

∆ + V (x), and the

2-body part v(x, y) = |x− y|−1.
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Green’s functions: definition

We define the particle Green’s function (here, Θ is the heavyside function):

Gp(x, t, x′, t′) = −iΘ(t − t′)〈Ψ0
N |Ψ(x)e−i(t−t′)(HN+1−E0

N )Ψ†(x′)|Ψ0
N〉.

Interpretation:

start from the ground state

create a particle at x ′

let the system evolves with its extra particle between t′ and t (t − t′ > 0)

annihilate a particle at x

compare the new state with the ground state

"Describes the amplitude that a particle added at (x, t) will be released at (x′, t′)".

We also define the hole Green’s function

Gh(x, t, x′, t′) = iΘ(t′ − t)〈Ψ0
N |Ψ†(x′)ei(t−t′)(HN−1−E0

N )Ψ(x)|Ψ0
N〉.

"Describes the amplitude that a hole added at (x′, t′) will be released at (x, t)".
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The time-ordered Green’s function

We finally define the time-ordered Green’s function

G(x, t, x′, t′) = −i〈Ψ0
N |T

{
ΨH(x, t)Ψ†H(x′, t′)

}
|Ψ0

N〉

= Gp(x, t, x′, t′) + Gh(x, t, x′, t′),

where T is the fermionic time-ordering operator.
Note that G contains all the information of Gp and Gh.
Finally, note that Gp, Gh and G only depends on τ := t − t′.

The time-ordered Green’s function has some interesting properties. We can recover:

the 1-body density matrix from G :

−iG(x, x′; 0−) = γ0
N(x, x′) :=

∫
R3(N−1)

Ψ0
N(x, x2, . . . xN)Ψ0

N(x′, x2, . . . xN)dx2 . . .dxN .

the electronic density ρ0
N(x) = γ0

N(x, x) = −iG(x, x, 0−).

the ground-state energy (Galitskii-Migdal formula3).

some information about the optical properties of the system, like E k
N−1 − E 0

N .

3V. M. Galitskii and A. B. Migdal, Sov. Phys.-JETP 7, 96 (1958).
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The GW Approximation

Question: How to calculate the time-ordered Green’s function?

The GW approximation: Start with the Hedin’s equations4

G(12) = G0(12) +

∫
d34G0(13)Σ(34)G(42) (Dyson equation)

Σ(12) = i
∫

d34G(13)W (41)Γ(423) (Self-energy)

Γ(123) = δ(12)δ(13) +

∫
d4567

∂Σ(12)

∂G(45)
G(46)G(57)Γ(673) (Vertex function)

W (12) =

∫
d3ε−1(13)v(32) (Screening)

ε(12) = δ(12)−
∫

d3v(13)P(32) (Dielectric)

P(12) = −i
∫

d34G(13)G(41)Γ(342) (Irreducible polarizability)

The GW approximation consists into setting

∂Σ(12)

∂G(45)
= 0, or equivalently Γ(123) = δ(12)δ(13) (GW approximation),

4L. Hedin, Phys. Rev. 139, 3A (1965).
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The GW Approximation

We obtain the GW equations

G(12) = G0(12) +

∫
d34G0(13)Σ(34)G(42) (Dyson equation)

Σ(12) = iG(12)W (21) (Self-energy)

W (12) =

∫
d3ε−1(13)v(32) (Screening)

ε(12) = δ(12)−
∫

d3v(13)P(32) (Dielectric)

P(12) = −iG(12)G(21) (Irreducible polarizability)

Those equations are usually solved with a self-consistent method.

G

P

εW

Σ
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Outline

I will not explain all this set of equations, but focus on the last one...

The irreducible polarizability:
P(x, x′, τ) = −iG (x, x′, τ)G (x′, x,−τ)
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The multiplication of kernels.

P(x, x′, τ) = −iG(x, x′, τ)G(x′, x,−τ)

We multiply the kernels of the operators ( 6= operator multiplication).

Formally, for f , g ∈ H×H,

〈f |P(τ)|g〉 =

∫∫
f (x)P(x, x′, τ)g(x′)dxdx′ = −i

∫∫
f (x)G(x, x′, τ)g(x′)G(x′, x,−τ)dxdx′

= −iTr
(
f G(τ)gG(−τ)

)
This last expression does not involve the kernels

Lemma

For all τ ∈ R, the quadratic form (f , g) 7→ −iTr
(
f G(τ)gG(−τ)

)
is bounded. As a

result, P(τ) is a well-defined bounded operator.

Idea of the proof: Either G(τ) or G(−τ) is the hole Green’s function, which is compact.
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In a mean-field model

In a mean-field model (for instance Kohn-Sham model), we can write

HN =
N∑

i=1

h(xi ) with h = −1
2

∆ + V + VKS.

The (time-Fourier transform of the) Green’s function is simply the resolvent of h:

Ĝ(ω) = (ω − h)−1.

If we suppose that h is compact resolvent (no dissipation): h =
∑∞

k=1 εk |uk〉〈uk |,
then, the (time-Fourier transform of the) irreducible polarizability operator is

P̂(ω) =
N∑

n=1

∞∑
m=N+1

2(εm − εn)

ω2 − (εm − εn)2 |unum〉〈umun|.
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Properties of P in the mean-field model

P̂(ω) =
N∑

n=1

∞∑
m=N+1

2(εm − εn)

ω2 − (εm − εn)2 |unum〉〈umun|.

If g := εN+1 − εN > 0 (insulator), then

P̂(ω) is well-defined for ω ∈ (−g , g), and is a negative operator.

εN−1 εN εN+1

g
poles of Ĝ

2g
poles of P̂

There is a widening of gap.

It holds (Johnson f-sum rule5):

∀f , g ∈ C∞0 × C∞0 , lim
t→∞

t2〈f |P̂(it)|g〉 = −
∫
ρ∇f · ∇g

where ρ is the electronic density (here ρ(x) =
∑N

k=1 |uk |2(x)).
5D.Johnson. Phys. Rev. B, 9,10 (1974).
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In the general case

That was for the mean-field model (with no dissipation). In the general case P = −iGG ,
we do not have an explicit formula for P. We can still prove

Lemma

Suppose Ĝ has a gap of size g > 0 (here, g = 2E 0
N − E 0

N+1 − E 0
N−1). Then,

Then, for all ω ∈ (−g , g), P̂(ω) is a well-defined bounded negative operator.

The Johnson f-sum rule holds true.

The proof relies on the analytic continuation of the operators on the complex plane, and
the use of the so-called Plemelj formulae (or Kramers-Krönig formulae).

Remark:

The Johnson f-sum rule is important when designing approximation of P.
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Conclusion

Conclusion

We gave a (very rapid) presentation of the GW method.

We investigated the kernel product P(x, x′, τ) = −iG(x, x′, τ)G(x′, x, τ).
In particular, we proved that P is a well-defined operator, which satisfies

The widening of gap phenomenon
The Johnson f-sum rule.

Future Work

Do a similar work for the self-energy Σ(x, x′, τ) = iG(x, x′, τ)W (x′, x, τ).

Give a mathematical framework for the whole GW method.

Perform a similar study for the Bethe-Salpeter equation6 (≈ first order

approximation for
∂Σ(12)

∂G(34)
).

Thank you for your attention!

6H. Bethe, E. Salpeter, Phys. Rev. 84, 6(1951)
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