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Why does coffee wake you up?

Caffeine molecule Adenosine molecule
(blocks the production of adrenaline)

Can we predict the structure of the caffeine molecule?
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Geometry optimization problem (within the Born-Oppenheimer approximation):

What is the configuration of the atoms that minimizes the energy of the system?

AE =Bond Energy

Energy

H-H Bond Length
What is the energy of a given configuration?
@ System of M nuclei and N electrons
o Let Ry € R® be the position of the k-th nucleus, and z, € N* be its charge.
The energy of the system is well approximated by the quantity
Z ﬁ + Ea(Ri,z1;--- ;Rm, zn)

1<k<I<M
— _ quantum energy of the electrons

Esys(R1,z1; -+ ;Rm, zm) :=
nucleus pair Coulomb repulsion

where E is given by a minimization problem over the set of wave functions.
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Quantum representation of N-electrons
N electrons are represented by a wave function W(rq,...,ry).
|W(ry,...,rn)|? is the probability density of observing electron 1 at r1, electron 2 at ra, ...

Pauli principle for fermions: Vp € &y, W(rya),...,rpmw)) = €(p)¥(r1,...,rv). (PP)

- {w € 2(R), W2 =1, [VV],2 < oo, W satisfies (PP)}.

Energy of the electronic configuration W:

L2(R3N)

l
Ground state energy

1<,<,<N i=1 k=1

Hy

Eo = E := inf {Ea(W), W € Wy} = inf {(W|HN W), W € Wi},
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Zhislin's theorem (G.M. Zhislin. Trudy Moskov. Mat. Obsc., 9, 1960)

M
If N < Z:= 5" z, then o(Hy) is as follows:
k=1

Ground state: W9 € Wy such that HyW$ = EJWS,.

Problem: Wy C L?(R3") is a huge space. (Curse of dimensionality)
H» (N=2) H,O0 (N=10) CsHioNaO> (N =102)
— Several approximations were proposed in the last decades.

The purpose of my thesis was to study mathematically some of these approximations.
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Outline of my thesis

@ Spin Density Functional Theory

o N-Representability in noncollinear spin-polarized density-functional theory
(published in Phys. Rev. Lett. 111 (2013), p. 153001).

o Pure-state N-representability in current-spin-density-functional theory
(accepted in CMS, (2015)).

o Existence of minimizers for Kohn—Sham within the local spin density approximation
(published in Nonlinearity 28.1 (2015), pp. 57-76).

@ The GW method for finite systems

o (with Eric Cancés and Gabriel Stoltz) A mathematical analysis of the GWO method for
computing electronic excited energies of molecules (arXiv 1506.01737).

@ Numerical simulation of perfect crystals

o (with Salma Lahbabi) Convergence rates of supercell calculations in the reduced
Hartree-Fock model (arXiv 1507.00316).

o (with Eric Cancés, Virginie Ehrlacher, Antoine Levitt and Damiano Lombardi) Fast
numerical methods for Brillouin-zone integration (in preparation).
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The GW method (L. Hedin. Phys. Rev. 1965)

To calculate the electronic excitation energies of a system — quantities of the form

EN — Ex.1 (gain of an electron)

Inverse photoemission spectroscopy (IPES)
[+

E in
B E°

PN

—————

System with N electrons (HVZ theorem)

e~

-

System with N + 1 electrons E,‘\),+1 E,%,+1 YNt
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The GW method (L. Hedin. Phys. Rev. 1965)
To calculate the electronic excitation energies of a system = quantities of the form

EN — E,’\‘,H (gain of an electron) and ES— EN 4 (loss of an electron).

Photoemission spectroscopy (PES)

hv
\ ES Y

System with N electrons (HVZ theorem)

Ekin o

e

electronic excitation

System with N — 1 electrons EY  EX 4 Tn-1
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Definition of the Particle Green's function in the time domain
Fock space

+oo N
F:=@Hn, Ho=C, Hi=L*RC), Hyv=/ M.
N=0

Annihilation and creation operators
a€ B(MH1,B(F)),  a' € B(H1, B(F)),
VoeHy,  a(9):Hw o Hnoa,  al(@):iHy = Hun,  al(¢) = (a(6)",
YWV € Hy, (a(p)W)(re, ..., rn—1) = m/B G(r)V(r,r,... ry_1)dr.

One-body particle Green's function (in the time domaﬂi{n)

Vr €R, Vf,g € Hi, (g|Gpo(7)|F) = —iO(7) <w‘,’v ‘a(g)e*'*(”NH*Eﬂ)aT(f)] w?v> .
Annihilation and creation operators (bis)

AL € B(H1, Hya) : F e a (F)|WR), Al = (AL)" € B(Hni1, Ha).

One-body particle Green's function (in the time domain) (bis)

Vr€R, Gp(r) = —iO(r)A e TN —ED o7
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Definition of the Particle Green's function in the frequency domain

VrER, Gp(r) = —iO(r)Ape T —ER) g%

Normalization convention for the time-Fourier transform
Vf € L*(R,,X), X Banach space, [Frf](w)=f(w)= / f(r) ™" dr.

Fourier representation of the one-body particle Green's function

Go(w) = (FrGp) (w), Gp € H *(Ru, B(H1)).

Key point

The support of the distribution Im (a\p) is contained in the particle electronic excitation

set S, := o(Hni1 — EY).

o Particle electronic excited energies can be recovered from G,

° 6; is highly irregular.
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Laplace transform of the Green's function For z € U = {z € C,Im (z) > 0}, define

Go(2) = /0 - Gp(7)e dr.

Remark

e G, is an analytical continuation of G, on U (Titchmarsh’s theory),

@ This continuation can be extended to C\ S;,.

— 1 .
VZG(C\SP, GP(Z)IA+ (—_EO)) A+.
N

analytic continuation

T T oo T 1T
/— I | —’WHGP(M)

[ E/(\)/+1 - E/(\)/ 0 Tess(Hn+1 — E/(\)/)
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Definition of the one-body hole Green's function

Annihilation and creation operators (ter)
A_ € B(Hi, Hn-1) : f — a(?)|\ll(,)\,), A* € B(Hn-1,H1).

In the time domain

VT €R, Gu(r)= i@(—T)AieiT(H"’—rE’?’)A,.

Properties
From the hole Green's function, we can recover the following quantities:

@ One-body electronic ground-state density matrix: vy = —iG,(07) = A* A_

7/?/("7 I',) = N/ W?V(r7r27 T arN) \U?V(rlvrQy o ,I'N) drp - 'dl’N,

R3(N-1)

@ Electronic ground state density
pR,(r): N/ |\IJ(,)\,(r,r2,--- 7r,\/)|2dr2---dr/\/7
R3(N—1)

@ Ground state energy (Galiskii-Migdal formula)
V.M. Galitskii and A.B. Midgal. Sov. Phys. JETP, 139, 1958.

o_1 a4 (L
Ey = 2TI"H1 |:(d’7' 1( 2A+vext)) Gh(T)’TZOJ.
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The hole Green's function in the frequency domain

Gn(w) = (FrGh) (w), Gn € H Y(Ry, B(H1)).

Key point

The support of the distribution Im (6;) is contained in the hole electronic excitation
set Sy := o(Ef — Hy_1).

In the complex frequency domain

— * 1
¥z €C\Sh,  Gu(z) = AL (m) i

- 0_ po
w — Gp(w) En— Ena ]
_—4

TN |
R

analytic continuation
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Definition of the total Green's function

Assumption: Stability condition ES ON-1 N N+l
el —

2EN < Eniq+ EN_1.

EN-1

Chemical potential u
EN
EN — En—1 < pu < Eyy — ER. ERi1

One-body total Green's function in the complex frequency domain

VzeC\ (S USy), G(2) = Gu(z) + Gp(2).

w+iR l
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Green's function for non-interacting systems

System of non-interacting electrons subjected to an effective potential V

N
HO,N = Z (—5

i=1

Assumptions

@ hi has at least N negative eigenvalues €1 < &2

o Stability condition: it holds ey < eny1.

Chemical potential of the non-interacting system pio

en < po < EN41-

Ground state of the non-interacting system

®° =¢1 A AP,

Green's function of the non-interaction system

Gon(2) = Yo n(z — b)),

David Gontier

Gop(z) = (1 —n)(z — )7,

PhD Defense

< Zew

Afi + V(r;)> on HN; hy = —%A + V on H;.

N
Yo = L(—oopo)(b) = D |6} (-

Go(z) = (z— ).
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DyNAMICAL HAMILTONIAN AND SELF-ENERGY

Dynamical Hamiltonian

Non-interacting system: 50(2) =(z—hm)™"

Interacting system: G(z) = (z — H(z))™*, H(z): dynamical Hamiltonian.
o Eigenvalues = quasi-energies,
o Eigenfunctions = quasi-particles.

Lemma

Forallz € C\ (SnUSp), H(z) = z— G(z)7! is a well-defined closed operator on Hy,
with dense domain D(z) such that D(z) C H*(R?).

Assumption
@ The chemical potential of the interacting system and of the non-interacting system
can be chosen equal:
1= Ho-
Self-energy

Vz € UULU(p—a,u+b), X(z)=H(z)—h = ’G\g(z)f1 —G(z)™* (Dyson equation).

(Az) = m +5(2). |
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Dyson equation on the imaginary axis p + iR

Vw € Ry, S+ iw) = /Gvo(u +iw) ™t = G+ iw)

Road map

o Construct a good non-interacting model for a(u + iw)

o Hartree Hamiltonian (in the original paper)
o Kohn-Sham Hamiltonian (DFT)

@ Use an approximation of the self-energy T ~ TGW on the axis w+iR.
o Define C/JE*_V/V(N + iw) from the Dyson equation with fa_"/v(,u + iw)

-1

é(;Hriw) = (a;(u +iw) "t — f@VV(u + iw)>_1 = (u +iw — hy — Z,‘SVV(,LL + iw))
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Choice of ():GW., GGW>? The Hedin's equations (L. Hedin. Phys. Rev., 139, 1965.)

Kernel of a space-time operator A
A(12) :A(rl,tl;r27t2) = [A(tl — tz)] (rl,rz).

The Hedin's equations
@ Dyson equation

G(12) = Go(12) +/d(34)Go(13)Z(34)G(42),
o Self-cnergy
Y(12) = i / d(34) G(13) W(41) (32 4),
@ Screened interaction
W(12) = v.(12) +/d(34)vc(13)P(34)W(42),
o Irreducible polarization
P(12) = —i / d(34)G(13)G(41)1 (34 2),
o Vertex function

r(12;3) = 5(12)6(13)+/d(4567) 03 (12)

5G(45)

G(46)G(75)I(67; 3).
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The GW equations
Find (Z°W, G°W) such that
o Dyson equation

GV (12) = Go(12) + / d(34)Go(13)=°V(34) GV (42),

o Self-energy
¥ W(12) =iV (12) WSV (21),

@ Screened interaction
WEWY(12) = w.(12) +/d(34)vc(13)PGW(34)WGW(42),

@ Irreducible polarization
PEWY(12) = —iG“WY(12) GV (21).

Flow chart of the self-consistent GW scheme

G =Go
Go———— G0

Initialization
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The GW equations
Find (Z°W, G°W) such that
o Dyson equation
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The GW equations
Find (Z°W, G°W) such that
o Dyson equation
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@ Screened interaction
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Flow chart of the self-consistent GW scheme
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Dyson equation \

Zk
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The GW? equations:

o Numerically faster,

@ Accuracy similar to the full GW method.
Find (ZGWO, GGWO) such that
@ Dyson equation
¢SV (12) = Go(12)+/d(34)Go(13)Z(34)GGW°(42),

o Self-energy
YW (12) =16V (12) WP(21).

Flow chart of the self-consistent GW® scheme

PO
szo — G / \
Gp ———— Gk w?°
Initialization
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The GW? equations:

o Numerically faster,

@ Accuracy similar to the full GW method.

Find (ZGWO, GGWO) such that

@ Dyson equation
¢SV (12) = Go(12)+/d(34)Go(13)Z(34)GGW°(42),
o Self-energy

TV (12) = 169V (12)WO(21).

Flow chart of the self-consistent GW® scheme

Go Gk Iteration k, step 1 w?°

zk
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The GW? equations:

@ Numerically faster,
@ Accuracy similar to the full GW method.

Find (ZGWO, GGWO) such that

@ Dyson equation

GV (12) = Go(12) + / d(34) Go(13)5(34) GV° (42),

o Self-energy
0 0
YW (12) = iGSV (12)WO(21).
Next step: give a sense to these equations
o Define the multiplication A(12)B(21),
@ Study the operators W and W°,
@ Transform the GW? equations on the time axis R, into formally equivalent GW°
equations on the imaginary frequency axis p + iR,,.
19 / 29

David Gontier PhD Defense



The kernel product (infinite dimensional Hadamard product)
How to define an operator C such that C(r,r') = A(r,r')B(r',r)?

Associated quadratic form
Vf,g € Hi, (f|Clg)n // r)C(r,r)g(r')drdr’
// A(r, v )g(r')B(r', r)f(r)drdr’ = Try, (AgBF).
Definition

The kernel-product of A and B is the operator A ® B, defined by the quadratic form

Vf,g € Hi, (f|A® Blg) =Tru, (AgBf).

Lemma
If A € B(#H1) and B is such that,

Vf,g € Hi, gBFf € G1(Ha) with ||gBF||g, S IIfll7allgllos,

then A® B is a well-defined bounded operator on H.
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The dynamically screened operator W

The Coulomb operator
In the vacuum, a time-dependent charge dp(r, t) creates a potential

6V(r',t):/ L sp(r,t)dr, or 8V = Go(t)ve (3p).-

Coulomb operator.

1
=]
The dynamically screened operator
In a molecule, a time-dependent charge dp(r, t) creates a potential

SV(r't) / / W(rt,r't")op(r, t')drdt’

:50(t)vc(5p)+// We(rt, v’ t)op(r, t')drdt’.
R3 J -0

Screening effect
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The dynamically screened operator W°
Calculated from the Hartree Hamiltonian:

WO(7) = o(r)ve + W2 (7).
GW? approximation of the self-energy
YPP(12) = iG*PP(12) WP (21).

YPP(r v ) = i60(T) GPPP (1, v 07 )ve(r, ¥) + iGHPP(r, v T)W2(F v —7)

o) . , 0,
=2 5(T) +1GPP(r,r s )WL (F ks —7).

=
Fock term
In practice
0 /
YPP(7) = Kebo(T) +1G™PP(1) © W2(—7), with Ki(r,r') := —%
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Analytical continuation method

Equation

V1

ER,, I*P(71):= Kido(r) +iG*P(1) © W2(—7)

is formally equivalent to

1 too

fa\P;’(,uo +iw) = Kx — — GaPP (po + i(w + w')) © ,V\V?(iw') dw’.

21 J_ o

The GWP equations in the imaginary frequency axis
Find GSW° L*(Ry,, B(#1)) solution to the system

+oo .
TOWO (1o + iw) = Ky — % GOW (po +i(w +w')) ® W2(iw') dw'’,
0 — 00
(GWT) o o 1
GGWe° (,u,o =+ iw) = |:Iu,0 +iw — <h1 + yGwe (uo + iw))} R
with

David Gontier
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(GW?)

-1
GG'VV0 (,LLO =+ 1w) = |:,I.L0 —+ iUJ — <h1 + XGWO (/,Lo + lw)>:|

/
W,

+o00 .
YOEWO (1o + iw) = Ky — % / GOW (po +i(w +w')) ® W2(iw') d

Lemma
For all E;f’?’(,uo +i) € L*(Rw, B(H1)) and all w € Ry, the operator

—_—

e~ +oo ——
Y PP (po +iw) = —% / GaPP (po + i(w + w')) © WR(iw') dw’

is a well-defined bounded operator on H1.

Problem .
For GaPP(pg + i) close to Go(po + 1) in L% (R, B(H1)), is the operator

o + iw — (h1 + f‘;;’(,uo + iw))
invertible?
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The GW? approximation in a perturbative regime

— +o0 ——~—r o
YOV (o + iw) = K — % GOV (o +i(w +w")) ©® WO(iw') dw’,
(GW2) -

—1
GEWS (po + iw) = {uo + iw — <h1 4+ AXEWS (o + iw))} .

Theorem (Eric Cancés, DG, Gabriel Stoltz)
@ There exists M\« > 0 such that, for all 0 < \ < )\, there exists a unique solution
GSW2 to the problem (GW$) which is close to Go.
@ Moreover, thf_ie//f—consistent procedure starting from & converges geometrically

fast toward GEWS in L2(R.,, B(H1)).
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Periodic Hamiltonian Consider V,e, a real-valued Z3-periodic function. gz
1 ﬁﬁ"%%;
Hper = _EA + Vper actingon  L[*(R?). =
Bloch theory
1
o(Hper)= | J o(Ha) with Hq:= E|—ivper+q|2+vper acting on  L2..([0,1)*).
q€[—m,m)3
5 Ang (eV)
20} / .
Energy per unit volume
F—p3j : ” : : : : : : 7] [=m,m) n=1
— 7— e(a)
N 5F 4
How to c.alculite E
0\ / | efficiently?
Band diagram of the silicon | q € [7,7)?
- G X W G u X
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Energy per unit volume for the periodic supercell model. Introduce for L € N*

e (%Q) (Riemann sum).

1
E[_Zzﬁ Z

Q=[-L/2,L/2)3

— corresponds to the energy per unit cell for the periodic supercell model.

Theorem (DG, Salma Lahbabi)

e The function q — e(q) is analytic on a strip R® 4 i[—A, A]® with A > 0.

@ There exists C € R and a > 0 such that, for all L € N*, it holds |E — E;| < Ce™**.

log(error)

— log(BE—E,;)
=20t — y=-0.78x + 0.38

- log(le—prls)
-~ y=-0.15x+ 0.00

=25
[ 5 10

David Gontier
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Future work
@ The GW method

o Perform the same work for periodic systems.
with Eric Cancés and Gabriel Stoltz

o Study the speed of convergence with respect to numerical parameters.

o Understand the Bethe-Salpeter equations.

@ Numerical simulation of crystals

e Study the speed of convergence of crystals with a local defect.
with Salma Lahbabi

o Design new algorithms to calculate the energy for metallic systems.
with Eric Cances, Virginie Ehrlacher, Antoine Levitt and Damiano Lombardi
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