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Why does coffee wake you up?

Caffeine molecule Adenosine molecule
(blocks the production of adrenaline)

Can we predict the structure of the caffeine molecule?
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Geometry optimization problem (within the Born-Oppenheimer approximation):

What is the configuration of the atoms that minimizes the energy of the system?

What is the energy of a given configuration?

System of M nuclei and N electrons

Let Rk ∈ R3 be the position of the k-th nucleus, and zk ∈ N∗ be its charge.

The energy of the system is well approximated by the quantity

Esys(R1, z1; · · · ; RM , zM) :=
∑

1≤k<l≤M

zkzl
|Rk − Rl |︸ ︷︷ ︸

nucleus pair Coulomb repulsion

+ Eel(R1, z1; · · · ; RM , zN)︸ ︷︷ ︸
quantum energy of the electrons

,

where Eel is given by a minimization problem over the set of wave functions.
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Quantum representation of N-electrons
N electrons are represented by a wave function Ψ(r1, . . . , rN).
|Ψ(r1, . . . , rN)|2 is the probability density of observing electron 1 at r1, electron 2 at r2, ...

Pauli principle for fermions: ∀p ∈ SN , Ψ(rp(1), . . . , rp(N)) = ε(p)Ψ(r1, . . . , rN). (PP)

WN :=
{

Ψ ∈ L2(R3N), ‖Ψ‖L2 = 1, ‖∇Ψ‖L2 <∞, Ψ satisfies (PP)
}
.

Energy of the electronic configuration Ψ:

Eel(Ψ) =

〈
Ψ

∣∣∣∣∣
(
− 1

2

N∑
i=1

∆ri +
∑

1≤i<j≤N

1
|ri − rj |

+
N∑
i=1

M∑
k=1

−zk
|ri − Rk |

)
︸ ︷︷ ︸

HN

Ψ

〉
L2(R3N )

.

Ground state energy

Eel = E 0
N := inf {Eel(Ψ), Ψ ∈ WN} = inf {〈Ψ|HNΨ〉, Ψ ∈ WN} .
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Zhislin’s theorem (G.M. Zhislin. Trudy Moskov. Mat. Obsc., 9, 1960)

If N ≤ Z :=
M∑

k=1
zk , then σ(HN) is as follows:

R
ΣN

E 0
N E 1

N E 2
N · · · σess

Ground state: Ψ0
N ∈ WN such that HNΨ0

N = E 0
NΨ0

N .

Problem: WN ⊂ L2(R3N) is a huge space. (Curse of dimensionality)

H2 (N = 2) H2O (N = 10) C8H10N4O2 (N = 102)

=⇒ Several approximations were proposed in the last decades.

The purpose of my thesis was to study mathematically some of these approximations.
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Outline of my thesis

Spin Density Functional Theory
N-Representability in noncollinear spin-polarized density-functional theory
(published in Phys. Rev. Lett. 111 (2013), p. 153001).

Pure-state N-representability in current-spin-density-functional theory
(accepted in CMS, (2015)).

Existence of minimizers for Kohn–Sham within the local spin density approximation
(published in Nonlinearity 28.1 (2015), pp. 57–76).

The GW method for finite systems
(with Éric Cancès and Gabriel Stoltz) A mathematical analysis of the GW0 method for
computing electronic excited energies of molecules (arXiv 1506.01737).

Numerical simulation of perfect crystals
(with Salma Lahbabi) Convergence rates of supercell calculations in the reduced
Hartree-Fock model (arXiv 1507.00316).

(with Éric Cancès, Virginie Ehrlacher, Antoine Levitt and Damiano Lombardi) Fast
numerical methods for Brillouin-zone integration (in preparation).
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The GW method (L. Hedin. Phys. Rev. 1965)

To calculate the electronic excitation energies of a system =⇒ quantities of the form

E 0
N − E k

N+1 (gain of an electron)

and E 0
N − E k

N−1 (loss of an electron).

Inverse photoemission spectroscopy (IPES)

System with N electrons

Ekin

hν

System with N + 1 electrons

ΣNE 0
N

ΣN+1E 0
N+1 E 1

N+1

(HVZ theorem)

electronic excitation
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Definition of the Particle Green’s function in the time domain
Fock space

F :=
+∞⊕
N=0

HN , H0 = C, H1 = L2(R3,C), HN =
N∧
H1.

Annihilation and creation operators

a ∈ B(H1,B(F)), a† ∈ B(H1,B(F)),

∀φ ∈ H1, a(φ) : HN → HN−1, a†(φ) : HN → HN+1, a†(φ) = (a(φ))∗,

∀Ψ ∈ HN , (a(φ)Ψ)(r1, . . . , rN−1) =
√
N

∫
R3
φ(r) Ψ(r, r1, . . . , rN−1) dr.

One-body particle Green’s function (in the time domain)

∀τ ∈ R, ∀f , g ∈ H1, 〈g |Gp(τ)|f 〉 = −iΘ(τ)
〈

Ψ0
N

∣∣∣a(g)e−iτ(HN+1−E0
N )a†(f )

∣∣∣Ψ0
N

〉
.

Annihilation and creation operators (bis)

A∗+ ∈ B(H1,HN+1) : f 7→ a†(f )|Ψ0
N〉, A+ = (A∗+)

∗ ∈ B(HN+1,H1).

One-body particle Green’s function (in the time domain) (bis)

∀τ ∈ R, Gp(τ) = −iΘ(τ)A+e−iτ(HN+1−E0
N )A∗+.
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Definition of the Particle Green’s function in the frequency domain

∀τ ∈ R, Gp(τ) = −iΘ(τ)A+e−iτ(HN+1−E0
N )A∗+.

Normalization convention for the time-Fourier transform

∀f ∈ L1(Rτ ,X ), X Banach space, [FT f ] (ω) = f̂ (ω) =

∫ +∞

−∞
f (τ) eiωτ dτ.

Fourier representation of the one-body particle Green’s function

Ĝp(ω) = (FTGp) (ω), Ĝp ∈ H−1(Rω,B(H1)).

Key point

The support of the distribution Im
(
Ĝp

)
is contained in the particle electronic excitation

set Sp := σ(HN+1 − E 0
N).

Particle electronic excited energies can be recovered from Ĝp,

Ĝp is highly irregular.
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Laplace transform of the Green’s function For z ∈ U = {z ∈ C, Im (z) > 0}, define

G̃p(z) :=

∫ ∞
0

Gp(τ)eizτdτ.

Remark

G̃p is an analytical continuation of Ĝp on U (Titchmarsh’s theory),

This continuation can be extended to C \ Sp.

∀z ∈ C \ Sp, G̃p(z) = A+

(
1

z − (HN+1 − E 0
N)

)
A∗+.

0 σess(HN+1 − E 0
N)E 0

N+1 − E 0
N

ω 7→ Ĝp(ω)

analytic continuation
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Definition of the one-body hole Green’s function

Annihilation and creation operators (ter)

A− ∈ B(H1,HN−1) : f 7→ a(f )|Ψ0
N〉, A∗− ∈ B(HN−1,H1).

In the time domain

∀τ ∈ R, Gh(τ) = iΘ(−τ)A∗−eiτ(HN−1−E0
N )A−.

Properties
From the hole Green’s function, we can recover the following quantities:

One-body electronic ground-state density matrix: γ0
N = −iGh(0−) = A∗−A−

γ0
N(r, r′) = N

∫
R3(N−1)

Ψ0
N(r, r2, · · · , rN) Ψ0

N(r′, r2, · · · , rN) dr2 · · ·drN ,

Electronic ground state density

ρ0
N(r) = N

∫
R3(N−1)

|Ψ0
N(r, r2, · · · , rN)|2 dr2 · · ·drN ,

Ground state energy (Galiskii-Migdal formula)
V.M. Galitskii and A.B. Midgal. Sov. Phys. JETP, 139, 1958.

E 0
N =

1
2
TrH1

[(
d

dτ
− i
(
−1
2

∆ + vext

))
Gh(τ)

∣∣∣
τ=0−

]
.
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The hole Green’s function in the frequency domain

Ĝh(ω) = (FTGh) (ω), Ĝh ∈ H−1(Rω,B(H1)).

Key point

The support of the distribution Im
(
Ĝh

)
is contained in the hole electronic excitation

set Sh := σ(E 0
N − H0

N−1).

In the complex frequency domain

∀z ∈ C \ Sh, G̃h(z) = A∗−

(
1

z − (E 0
N − HN−1)

)
A−.

0

E 0
N − E 0

N−1ω 7→ Ĝh(ω)

analytic continuation
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Definition of the total Green’s function

Assumption: Stability condition

2E 0
N < E 0

N+1 + E 0
N−1.

Chemical potential µ

E 0
N − E 0

N−1 < µ < E 0
N+1 − E 0

N .

NelE 0
Nel N − 1 N N + 1

E 0
N−1

E 0
N

E 0
N+1

One-body total Green’s function in the complex frequency domain

∀z ∈ C \ (Sh ∪ Sp) , G̃(z) = G̃h(z) + G̃p(z).

σ(E 0
N − HN−1)

σ(HN+1 − E 0
N)

E 0
N − E 0

N−1

E 0
N+1 − E 0

N

µ+ iR
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Green’s function for non-interacting systems

System of non-interacting electrons subjected to an effective potential V

H0,N =
N∑
i=1

(
−1
2

∆ri + V (ri )
)

on HN , h1 = −1
2

∆ + V on H1.

Assumptions
h1 has at least N negative eigenvalues ε1 ≤ ε2 ≤ · · · ≤ εN ,
Stability condition: it holds εN < εN+1.

Chemical potential of the non-interacting system µ0

εN < µ0 < εN+1.

Ground state of the non-interacting system

Φ0
N = φ1 ∧ · · · ∧ φN , γ0

0,N = 1(−∞,µ0)(h1) =
N∑
i=1

|φi 〉〈φi |.

Green’s function of the non-interaction system

G̃0,h(z) = γ0
0,N(z − h1)−1, G̃0,p(z) = (1− γ0

0,N)(z − h1)−1, G̃0(z) = (z − h1)−1.
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Dynamical Hamiltonian and self-energy

Dynamical Hamiltonian
Non-interacting system: G̃0(z) = (z − h1)−1.
Interacting system: G̃(z) = (z − H̃(z))−1, H̃(z): dynamical Hamiltonian.

Eigenvalues = quasi-energies,
Eigenfunctions = quasi-particles.

Lemma

For all z ∈ C \ (Sh ∪ Sp), H̃(z) = z − G(z)−1 is a well-defined closed operator on H1,
with dense domain D̃(z) such that D̃(z) ⊂ H2(R3).

Assumption
The chemical potential of the interacting system and of the non-interacting system
can be chosen equal:

µ = µ0.

Self-energy

∀z ∈ U∪L∪ (µ−a, µ+b), Σ̃(z) = H̃(z)−h1 = G̃0(z)−1− G̃(z)−1 (Dyson equation).

H̃(z) = h1 + Σ̃(z).
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Dyson equation on the imaginary axis µ+ iR

∀ω ∈ Rω, Σ̃(µ+ iω) = G̃0(µ+ iω)−1 − G̃(µ+ iω)−1

Road map

Construct a good non-interacting model for G̃0(µ+ iω)
Hartree Hamiltonian (in the original paper)
Kohn-Sham Hamiltonian (DFT)

Use an approximation of the self-energy Σ̃ ≈ Σ̃GW on the axis µ+ iR.

Define G̃GW(µ+ iω) from the Dyson equation with Σ̃GW(µ+ iω)

G̃(µ+iω) =
(
G̃0(µ+ iω)−1 − Σ̃GW(µ+ iω)

)−1
=
(
µ+ iω − h1 − Σ̃GW(µ+ iω)

)−1
.
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Choice of
(

Σ̃GW, G̃GW
)
? The Hedin’s equations (L. Hedin. Phys. Rev., 139, 1965.)

Kernel of a space-time operator A

A(12) = A(r1, t1; r2, t2) = [A(t1 − t2)] (r1, r2).

The Hedin’s equations
Dyson equation

G(12) = G0(12) +

∫
d(34)G0(13)Σ(34)G(42),

Self-energy

Σ(12) = i
∫

d(34)G(13)W (41)Γ(32; 4),

Screened interaction

W (12) = vc(12) +

∫
d(34)vc(13)P(34)W (42),

Irreducible polarization

P(12) = −i
∫

d(34)G(13)G(41)Γ(34; 2),

Vertex function

Γ(12; 3) = δ(12)δ(13) +

∫
d(4567)

δΣ(12)

δG(45)
G(46)G(75)Γ(67; 3).
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The GW equations
Find

(
ΣGW,GGW) such that

Dyson equation

GGW(12) = G0(12) +

∫
d(34)G0(13)ΣGW(34)GGW(42),

Self-energy
ΣGW(12) = iGGW(12)WGW(21),

Screened interaction

WGW(12) = vc(12) +

∫
d(34)vc(13)PGW(34)WGW(42),

Irreducible polarization

PGW(12) = −iGGW(12)GGW(21).

Flow chart of the self-consistent GW scheme

G0 G k=0
G k=0 = G0

Initialization
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The GW0 equations:

Fix W k = W 0.

Numerically faster,
Accuracy similar to the full GW method.

Find
(

ΣGW0
,GGW0

)
such that

Dyson equation

GGW0
(12) = G0(12) +

∫
d(34)G0(13)Σ(34)GGW0

(42),

Self-energy
ΣGW0

(12) = iGGW0
(12)W 0(21).

Flow chart of the self-consistent GW0 scheme

G0 G k=0 W 0

P0

G k=0 = G0

Initialization
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The GW0 equations:

Fix W k = W 0.

Numerically faster,

Accuracy similar to the full GW method.

Find
(

ΣGW0
,GGW0

)
such that

Dyson equation

GGW0
(12) = G0(12) +

∫
d(34)G0(13)Σ(34)GGW0

(42),

Self-energy
ΣGW0

(12) = iGGW0
(12)W 0(21).

Next step: give a sense to these equations

Define the multiplication A(12)B(21),

Study the operators W and W 0,

Transform the GW0 equations on the time axis Rτ into formally equivalent GW0

equations on the imaginary frequency axis µ+ iRω.
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The kernel product (infinite dimensional Hadamard product)
How to define an operator C such that C(r, r′) = A(r, r′)B(r′, r)?

Associated quadratic form

∀f , g ∈ H1, 〈f |C |g〉H1 =

∫∫
R2

f (r)C(r, r′)g(r′)drdr′

=

∫∫
R2

A(r, r′)g(r′)B(r′, r)f (r)drdr′ = TrH1

(
AgBf

)
.

Definition
The kernel-product of A and B is the operator A� B, defined by the quadratic form

∀f , g ∈ H1, 〈f |A� B|g〉 = TrH1

(
AgBf

)
.

Lemma
If A ∈ B(H1) and B is such that,

∀f , g ∈ H1, gBf ∈ S1(H1) with
∥∥gBf

∥∥
S1

. ‖f ‖H1‖g‖H1 ,

then A� B is a well-defined bounded operator on H1.
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The dynamically screened operator W

The Coulomb operator
In the vacuum, a time-dependent charge δρ(r, t) creates a potential

δV (r′, t) =

∫
R3

1
|r − r′|δρ(r, t)dr, or δV = δ0(t)vc (δρ) .

vc(r, r′) =
1

|r − r′| Coulomb operator.

The dynamically screened operator
In a molecule, a time-dependent charge δρ(r, t) creates a potential

δV (r′, t) =

∫
R3

∫ t

−∞
W (rt, r′t′)δρ(r, t′)drdt′

= δ0(t)vc (δρ) +

∫
R3

∫ t

−∞
Wc(rt, r′t′)δρ(r, t′)drdt′.

Screening effect

+ =
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The dynamically screened operator W 0

Calculated from the Hartree Hamiltonian:

W 0(τ) = δ0(τ)vc + W 0
c (τ).

GW0 approximation of the self-energy

Σapp(12) = iGapp(12)W 0(21).

Σapp(r, r′; τ) = iδ0(τ)Gapp
h (r, r′; 0−)vc(r, r′) + iGapp(r, r′; τ)W 0

c (r′, r;−τ)

= −
γapp
N (r, r′)
|r − r′| δ0(τ)︸ ︷︷ ︸
Fock term

+ iGapp(r, r′; τ)W 0
c (r′, r;−τ).

In practice

Σapp(τ) = Kxδ0(τ) + iGapp(τ)�W 0
c (−τ), with Kx(r, r′) := −

γ0
0,N(r, r′)
|r − r′| .
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Analytical continuation method
Equation

∀τ ∈ Rτ , Σapp(τ) := Kxδ0(τ) + iGapp(τ)�W 0
c (−τ)

is formally equivalent to

Σ̃app(µ0 + iω) = Kx −
1
2π

∫ +∞

−∞
G̃app

(
µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω′.

The GW0 equations in the imaginary frequency axis
Find GGW0

∈ L∞(Rω,B(H1)) solution to the system

(GW0)


Σ̃GW0(µ0 + iω) = Kx −

1
2π

∫ +∞

−∞
G̃GW0(µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω′,

G̃GW0(µ0 + iω) =

[
µ0 + iω −

(
h1 + Σ̃GW0(µ0 + iω)

)]−1

,

with

Kx(r, r′) = −
γ0

0,N(r, r′)
|r − r′| .
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(GW0)


Σ̃GW0(µ0 + iω) = Kx −

1
2π

∫ +∞

−∞
G̃GW0(µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω′,

G̃GW0(µ0 + iω) =

[
µ0 + iω −

(
h1 + Σ̃GW0(µ0 + iω)

)]−1

Lemma

For all G̃app(µ0 + i·) ∈ L2(Rω,B(H1)) and all ω ∈ Rω, the operator

Σ̃app
c (µ0 + iω) = − 1

2π

∫ +∞

−∞
G̃app

(
µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω′

is a well-defined bounded operator on H1.

Problem
For G̃app(µ0 + i·) close to G̃0(µ0 + i·) in L∞(Rω,B(H1)), is the operator

µ0 + iω −
(
h1 + Σ̃app(µ0 + iω)

)
invertible?
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The GW0 approximation in a perturbative regime

(GW0
λ)


Σ̃GW0

λ(µ0 + iω) = Kx −
1
2π

∫ +∞

−∞
G̃GW0

λ

(
µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω′,

G̃GW0
λ(µ0 + iω) =

[
µ0 + iω −

(
h1 + λΣ̃GW0

λ(µ0 + iω)

)]−1

.

Theorem (Éric Cancès, DG, Gabriel Stoltz)

There exists λ∗ > 0 such that, for all 0 ≤ λ ≤ λ∗, there exists a unique solution

G̃GW0
λ to the problem (GW0

λ) which is close to G̃0.

Moreover, the self-consistent procedure starting from G̃0 converges geometrically

fast toward G̃GW0
λ in L2(Rω,B(H1)).
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Outline of my thesis

Spin Density Functional Theory
N-Representability in noncollinear spin-polarized density-functional theory
(published in Phys. Rev. Lett. 111 (2013), p. 153001).

Pure-state N-representability in current-spin-density-functional theory
(accepted in CMS, (2015)).

Existence of minimizers for Kohn–Sham within the local spin density approximation
(published in Nonlinearity 28.1 (2015), pp. 57–76).

The GW method for finite systems
(with Éric Cancès and Gabriel Stoltz) A mathematical analysis of the GW0 method for
computing electronic excited energies of molecules (arXiv 1506.01737).

Numerical simulation of perfect crystals
(with Salma Lahbabi) Convergence rates of supercell calculations in the reduced
Hartree-Fock model (arXiv 1507.00316).

(with Éric Cancès, Virginie Ehrlacher, Antoine Levitt and Damiano Lombardi) Fast
numerical methods for Brillouin-zone integration (in preparation).
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Periodic Hamiltonian Consider Vper a real-valued Z3-periodic function.

Hper = −1
2

∆ + Vper acting on L2(R3).

Bloch theory

σ(Hper) =
⋃

q∈[−π,π)3
σ(Hq) with Hq :=

1
2
|−i∇per+q|2+Vper acting on L2

per([0, 1)3).

Band diagram of the silicon q ∈ [−π, π)3

λn,q (eV)

εF

N

Energy per unit volume

E =

∫
[−π,π)3

(
N∑

n=1

λn,q

)
︸ ︷︷ ︸

e(q)

dq.

How to calculate E
efficiently?
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Energy per unit volume for the periodic supercell model. Introduce for L ∈ N∗

EL :=
1
L3

∑
Q=[−L/2,L/2)3

e

(
2π
L

Q
)

(Riemann sum).

=⇒ corresponds to the energy per unit cell for the periodic supercell model.

Theorem (DG, Salma Lahbabi)

The function q 7→ e(q) is analytic on a strip R3 + i[−A,A]3 with A > 0.

There exists C ∈ R and α > 0 such that, for all L ∈ N∗, it holds |E − EL| ≤ Ce−αL.
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Future work
The GW method

Perform the same work for periodic systems.
with Éric Cancès and Gabriel Stoltz

Study the speed of convergence with respect to numerical parameters.

Understand the Bethe-Salpeter equations.

Numerical simulation of crystals
Study the speed of convergence of crystals with a local defect.

with Salma Lahbabi

Design new algorithms to calculate the energy for metallic systems.
with Éric Cancès, Virginie Ehrlacher, Antoine Levitt and Damiano Lombardi

David Gontier PhD Defense 29 / 29


