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Goal: compute the electronic excitation energies of a finite electronic system (molecule).

Nuclear configuration (Born-Oppenheimer approximation): {Rk}1≤k≤N :

vext(r) :=
M∑

k=1

−zk
|r − Rk |

.

Electronic problem with N-electrons

HNΨ :=

−1
2

N∑
i=1

∆ri +
∑

1≤i<j≤N

1
|ri − rj |

+
N∑
i=1

vext(ri )

Ψ(r1, . . . , rN) = EΨ(r1, . . . rN).

|Ψ(r1, . . . rN)|2 is the probability density of observing electron 1 at r1, electron 2 at r2, ...

Pauli principle for fermions: ∀p ∈ SN , Ψ(rp(1), . . . rp(N)) = ε(p)Ψ(r1, . . . rN).

State space

Ψ ∈ HN :=
N∧
H1, H1 = L2(R3,C).
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Zhislin’s theorem (G.M. Zhislin. Trudy Moskov. Mat. Obsc., 9, 1960)

If N ≤ Z :=
M∑

k=1
zk , then σ(HN) is as follows:

R
ΣN

E 0
N E 1

N E 2
N · · · σess

Ground state: Ψ0
N ∈ HN such that

∥∥Ψ0
N

∥∥ = 1 and HNΨ0
N = E 0

NΨ0
N .

Problem: HN ⊂ L2(R3N) is a huge space. (Curse of dimensionality)

H2 (N = 2) H2O (N = 10) C8H10N4O2 (N = 102)

=⇒ Several approximations were proposed in the last decades.

Density functional theory (DFT): for ground state properties only

Quantum Monte Carlo methods: idem

Wavefunction methods: scales from N6
b (CISD) to Nb! (full CI)

Time-dependent DFT (TDDFT): does not work well for extended systems

Green’s function method: in this talk, GW.

David Gontier The GW0 method 3 / 22



The GW method (L. Hedin. Phys. Rev. 1965)

To calculate the electronic excitation energies of a system =⇒ quantities of the form

E 0
N − E k

N+1 (gain of an electron)

and E 0
N − E k

N−1 (loss of an electron).

Inverse photoemission spectroscopy (IPES)

System with N electrons

Ekin

hν

System with N + 1 electrons

ΣNE 0
N

ΣN+1E 0
N+1 E 1

N+1

(HVZ theorem)

electronic excitation
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The GW method (L. Hedin. Phys. Rev. 1965)

To calculate the electronic excitation energies of a system =⇒ quantities of the form

E 0
N − E k

N+1 (gain of an electron) and E 0
N − E k

N−1 (loss of an electron).

Photoemission spectroscopy (PES)

System with N electrons

hν

Ekin

System with N − 1 electrons

ΣNE 0
N

ΣN−1E 0
N−1 E 1

N−1

(HVZ theorem)

electronic excitation
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Definition of the Particle Green’s function in the time domain
Fock space

F :=
+∞⊕
N=0

HN , H0 = C, H1 = L2(R3,C), HN =
N∧
H1.

Annihilation and creation operators

a ∈ B(H1,B(F)), a† ∈ B(H1,B(F)),

∀φ ∈ H1, a(φ) : HN → HN−1, a†(φ) : HN → HN+1, a†(φ) = (a(φ))∗,

∀Ψ ∈ HN , (a(φ)Ψ)(r1, . . . , rN−1) =
√
N

∫
R3
φ(r) Ψ(r, r1, . . . , rN−1) dr.

One-body particle Green’s function (in the time domain)

∀τ ∈ R, ∀f , g ∈ H1, 〈g |Gp(τ)|f 〉 = −iΘ(τ)
〈

Ψ0
N

∣∣∣a(g)e−iτ(HN+1−E0
N )a†(f )

∣∣∣Ψ0
N

〉
.

Annihilation and creation operators (bis)

A∗+ ∈ B(H1,HN+1) : f 7→ a†(f )|Ψ0
N〉, A+ = (A∗+)

∗ ∈ B(HN+1,H1).

One-body particle Green’s function (in the time domain) (bis)

∀τ ∈ R, Gp(τ) = −iΘ(τ)A+e−iτ(HN+1−E0
N )A∗+.
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Definition of the Particle Green’s function in the frequency domain

∀τ ∈ R, Gp(τ) = −iΘ(τ)A+e−iτ(HN+1−E0
N )A∗+.

Normalization convention for the time-Fourier transform

∀f ∈ L1(Rτ ,X ), X Banach space, [FT f ] (ω) = f̂ (ω) =

∫ +∞

−∞
f (τ) eiωτ dτ.

Fourier representation of the one-body particle Green’s function

Ĝp(ω) = (FTGp) (ω), Ĝp ∈ H−1(Rω,B(H1)).

Key point

The support of the distribution Im
(
Ĝp

)
is contained in the particle electronic excitation

set Sp := σ(HN+1 − E 0
N).

Particle electronic excited energies can be recovered from Ĝp,

Ĝp is highly irregular.
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Laplace transform of the Green’s function For z ∈ U = {z ∈ C, Im (z) > 0}, define

G̃p(z) :=

∫ ∞
0

Gp(τ)eizτdτ.

Remark

G̃p is an analytical continuation of Ĝp on U (Titchmarsh’s theory),

This continuation can be extended to C \ Sp.

∀z ∈ C \ Sp, G̃p(z) = A+

(
1

z − (HN+1 − E 0
N)

)
A∗+.

0 σess(HN+1 − E 0
N)E 0

N+1 − E 0
N

ω 7→ Ĝp(ω)

analytic continuation
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Definition of the one-body hole Green’s function

Annihilation and creation operators (ter)

A− ∈ B(H1,HN−1) : f 7→ a(f )|Ψ0
N〉, A∗− ∈ B(HN−1,H1).

In the time domain

∀τ ∈ R, Gh(τ) = iΘ(−τ)A∗−eiτ(HN−1−E0
N )A−.

Properties
From the hole Green’s function, we can recover the following quantities:

One-body electronic ground-state density matrix: γ0
N = −iGh(0−) = A∗−A−

γ0
N(r, r′) = N

∫
R3(N−1)

Ψ0
N(r, r2, · · · , rN) Ψ0

N(r′, r2, · · · , rN) dr2 · · ·drN ,

Electronic ground state density

ρ0
N(r) = N

∫
R3(N−1)

|Ψ0
N(r, r2, · · · , rN)|2 dr2 · · ·drN ,

Ground state energy (Galiskii-Migdal formula)
V.M. Galitskii and A.B. Midgal. Sov. Phys. JETP, 139, 1958.

E 0
N =

1
2
TrH1

[(
d

dτ
− i
(
−1
2

∆ + vext

))
Gh(τ)

∣∣∣
τ=0−

]
.
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The hole Green’s function in the frequency domain

Ĝh(ω) = (FTGh) (ω), Ĝh ∈ H−1(Rω,B(H1)).

Key point

The support of the distribution Im
(
Ĝh

)
is contained in the hole electronic excitation

set Sh := σ(E 0
N − H0

N−1).

In the complex frequency domain

∀z ∈ C \ Sh, G̃h(z) = A∗−

(
1

z − (E 0
N − HN−1)

)
A−.

0

E 0
N − E 0

N−1ω 7→ Ĝh(ω)

analytic continuation
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Definition of the total Green’s function

Assumption: Stability condition

2E 0
N < E 0

N+1 + E 0
N−1.

Chemical potential µ

E 0
N − E 0

N−1 < µ < E 0
N+1 − E 0

N .

NelE 0
Nel N − 1 N N + 1

E 0
N−1

E 0
N

E 0
N+1

One-body total Green’s function in the complex frequency domain

∀z ∈ C \ (Sh ∪ Sp) , G̃(z) = G̃h(z) + G̃p(z).

σ(E 0
N − HN−1)

σ(HN+1 − E 0
N)

E 0
N − E 0

N−1

E 0
N+1 − E 0

N

µ+ iR
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Green’s function for non-interacting systems

System of non-interacting electrons subjected to an effective potential V

H0,N =
N∑
i=1

(
−1
2

∆ri + V (ri )
)

on HN , h1 = −1
2

∆ + V on H1.

Assumptions
h1 has at least N negative eigenvalues ε1 ≤ ε2 ≤ · · · ≤ εN ,
Stability condition: it holds εN < εN+1.

Chemical potential of the non-interacting system µ0

εN < µ0 < εN+1.

Ground state of the non-interacting system

Φ0
N = φ1 ∧ · · · ∧ φN , γ0

0,N = 1(−∞,µ0)(h1) =
N∑
i=1

|φi 〉〈φi |.

Green’s function of the non-interaction system

G̃0,h(z) = γ0
0,N(z − h1)−1, G̃0,p(z) = (1− γ0

0,N)(z − h1)−1, G̃0(z) = (z − h1)−1.
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Dynamical Hamiltonian and self-energy

Dynamical Hamiltonian
Non-interacting system: G̃0(z) = (z − h1)−1.
Interacting system: G̃(z) = (z − H̃(z))−1, H̃(z): dynamical Hamiltonian.

Eigenvalues = quasi-energies,
Eigenfunctions = quasi-particles.

Lemma

For all z ∈ C \ (Sh ∪ Sp), H̃(z) = z − G(z)−1 is a well-defined closed operator on H1,
with dense domain D̃(z) such that D̃(z) ⊂ H2(R3).

Assumption
The chemical potential of the interacting system and of the non-interacting system
can be chosen equal:

µ = µ0.

Self-energy

∀z ∈ U∪L∪ (µ−a, µ+b), Σ̃(z) = H̃(z)−h1 = G̃0(z)−1− G̃(z)−1 (Dyson equation).

H̃(z) = h1 + Σ̃(z).
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Dyson equation on the imaginary axis µ+ iR

∀ω ∈ Rω, Σ̃(µ+ iω) = G̃0(µ+ iω)−1 − G̃(µ+ iω)−1

Road map

Construct a good non-interacting model for G̃0(µ+ iω)
Hartree Hamiltonian (in the original paper)
Kohn-Sham Hamiltonian (DFT)

Use an approximation of the self-energy Σ̃ ≈ Σ̃GW on the axis µ+ iR.

Define G̃GW(µ+ iω) from the Dyson equation with Σ̃GW(µ+ iω)

G̃GW(µ+iω) =
(
G̃0(µ+ iω)−1 − Σ̃GW(µ+ iω)

)−1
=
(
µ+ iω − h1 − Σ̃GW(µ+ iω)

)−1
.
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Choice of
(

Σ̃GW, G̃GW
)
? The Hedin’s equations (L. Hedin. Phys. Rev., 139, 1965.)

Kernel of a space-time operator A

A(12) = A(r1, t1; r2, t2) = [A(t1 − t2)] (r1, r2).

The Hedin’s equations
Dyson equation

G(12) = G0(12) +

∫
d(34)G0(13)Σ(34)G(42),

Self-energy

Σ(12) = i
∫

d(34)G(13)W (41)Γ(32; 4),

Screened interaction

W (12) = vc(12) +

∫
d(34)vc(13)P(34)W (42),

Irreducible polarization

P(12) = −i
∫

d(34)G(13)G(41)Γ(34; 2),

Vertex function

Γ(12; 3) = δ(12)δ(13) +

∫
d(4567)

δΣ(12)

δG(45)
G(46)G(75)Γ(67; 3).
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The GW0 equations:
Find

(
ΣGW0

,GGW0
)
such that

Dyson equation

GGW0
(12) = G0(12) +

∫
d(34)G0(13)ΣGW0

(34)GGW0
(42),

Self-energy
ΣGW0

(12) = iGGW0
(12)W 0(21).

W 0 is the (GW0 approximation of the) dynamically screened operator.

Flow chart of the self-consistent GW0 scheme

G0 G k=0 W 0
G k=0 = G0

Initialization
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The GW0 equations:
Find

(
ΣGW0

,GGW0
)
such that

Dyson equation

GGW0
(12) = G0(12) +

∫
d(34)G0(13)ΣGW0

(34)GGW0
(42),

Self-energy
ΣGW0

(12) = iGGW0
(12)W 0(21).

W 0 is the (GW0 approximation of the) dynamically screened operator.

Flow chart of the self-consistent GW0 scheme

G0 G k W 0

Σk

Iteration k, step 1
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The GW0 equations:
Find

(
ΣGW0

,GGW0
)
such that

Dyson equation

GGW0
(12) = G0(12) +

∫
d(34)G0(13)ΣGW0

(34)GGW0
(42),

Self-energy
ΣGW0

(12) = iGGW0
(12)W 0(21).

W 0 is the (GW0 approximation of the) dynamically screened operator.

Flow chart of the self-consistent GW0 scheme

G0 G k+1

Σk

Iteration k, step 2

Dyson equation
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The GW0 equations:
Find

(
ΣGW0

,GGW0
)
such that

Dyson equation

GGW0
(12) = G0(12) +

∫
d(34)G0(13)ΣGW0

(34)GGW0
(42),

Self-energy
ΣGW0

(12) = iGGW0
(12)W 0(21).

W 0 is the (GW0 approximation of the) dynamically screened operator.

Next step: give a sense to these equations

Define the multiplication A(12)B(21),

Study the operator W 0,

Transform the GW0 equations on the time axis Rτ into formally equivalent GW0

equations on the imaginary frequency axis µ+ iRω.
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The kernel product (infinite dimensional Hadamard product)
How to define an operator C such that C(r, r′) = A(r, r′)B(r′, r)?

Associated quadratic form

∀f , g ∈ H1, 〈f |C |g〉H1 =

∫∫
R2

f (r)C(r, r′)g(r′)drdr′

=

∫∫
R2

A(r, r′)g(r′)B(r′, r)f (r)drdr′ = TrH1

(
AgBf

)
.

Definition
The kernel-product of A and B is the operator A� B, defined by the quadratic form

∀f , g ∈ H1, 〈f |A� B|g〉 = TrH1

(
AgBf

)
.

Lemma
If A ∈ B(H1) and B is such that,

∀f , g ∈ H1, gBf ∈ S1(H1) with
∥∥gBf

∥∥
S1

. ‖f ‖H1‖g‖H1 ,

then A� B is a well-defined bounded operator on H1.
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The dynamically screened operator W

The Coulomb operator
In the vacuum, a time-dependent charge δρ(r, t) creates a potential

δV (r′, t) =

∫
R3

1
|r − r′|δρ(r, t)dr, or δV = δ0(t)vc (δρ) .

vc(r, r′) =
1

|r − r′| Coulomb operator.

The dynamically screened operator
In a molecule, a time-dependent charge δρ(r, t) creates a potential

δV (r′, t) =

∫
R3

∫ t

−∞
W (rt, r′t′)δρ(r, t′)drdt′

= δ0(t)vc (δρ) +

∫
R3

∫ t

−∞
Wc(rt, r′t′)δρ(r, t′)drdt′.

Screening effect

+ =
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The dynamically screened operator W 0

Calculated from the Hartree Hamiltonian:

W 0(τ) = δ0(τ)vc + W 0
c (τ).

GW0 approximation of the self-energy

Σapp(12) = iGapp(12)W 0(21).

Σapp(r, r′; τ) = iδ0(τ)Gapp
h (r, r′; 0−)vc(r, r′) + iGapp(r, r′; τ)W 0

c (r′, r;−τ)

= −
γapp
N (r, r′)
|r − r′| δ0(τ)︸ ︷︷ ︸
Fock term

+ iGapp(r, r′; τ)W 0
c (r′, r;−τ).

In practice

Σapp(τ) = Kxδ0(τ) + iGapp(τ)�W 0
c (−τ), with Kx(r, r′) := −

γ0
0,N(r, r′)
|r − r′| .
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Analytical continuation method
Equation

∀τ ∈ Rτ , Σapp(τ) := Kxδ0(τ) + iGapp(τ)�W 0
c (−τ)

is formally equivalent to

Σ̃app(µ0 + iω) = Kx −
1
2π

∫ +∞

−∞
G̃app

(
µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω′.

The GW0 equations in the imaginary frequency axis
Find GGW0

∈ L∞(Rω,B(H1)) solution to the system

(GW0)


Σ̃GW0(µ0 + iω) = Kx −

1
2π

∫ +∞

−∞
G̃GW0(µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω′,

G̃GW0(µ0 + iω) =

[
µ0 + iω −

(
h1 + Σ̃GW0(µ0 + iω)

)]−1

,

with

Kx(r, r′) = −
γ0

0,N(r, r′)
|r − r′| .
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(GW0)


Σ̃GW0(µ0 + iω) = Kx −

1
2π

∫ +∞

−∞
G̃GW0(µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω′,

G̃GW0(µ0 + iω) =

[
µ0 + iω −

(
h1 + Σ̃GW0(µ0 + iω)

)]−1

Lemma

For all G̃app(µ0 + i·) ∈ L2(Rω,B(H1)) and all ω ∈ Rω, the operator

Σ̃app
c (µ0 + iω) = − 1

2π

∫ +∞

−∞
G̃app

(
µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω′

is a well-defined bounded operator on H1.

Problem
For G̃app(µ0 + i·) close to G̃0(µ0 + i·) in L∞(Rω,B(H1)), is the operator

µ0 + iω −
(
h1 + Σ̃app(µ0 + iω)

)
invertible?
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The GW0 approximation in a perturbative regime

(GW0
λ)


Σ̃GW0

λ(µ0 + iω) = Kx −
1
2π

∫ +∞

−∞
G̃GW0

λ

(
µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω′,

G̃GW0
λ(µ0 + iω) =

[
µ0 + iω −

(
h1 + λΣ̃GW0

λ(µ0 + iω)

)]−1

.

Theorem (Éric Cancès, DG, Gabriel Stoltz)

There exists λ∗ > 0 such that, for all 0 ≤ λ ≤ λ∗, there exists a unique solution

G̃GW0
λ to the problem (GW0

λ) which is close to G̃0.

Moreover, the self-consistent procedure starting from G̃0 converges toward G̃GW0
λ in

L2(Rω,B(H1)).
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Current results
The fundamental objects (G ,G0,Σ,W0) involved in GW0 formalism are
mathematically well-defined.

Some of their properties have been rigorously proved.

The GW0 equations are well-posed in a perturbative regime.

Future work
Perform the same work for periodic systems.

with Éric Cancès and Gabriel Stoltz

Study the speed of convergence with respect to numerical parameters.

Understand the Bethe-Salpeter equations.

Reference
Éric Cancès, DG and Gabriel Stoltz, A mathematical analysis of the GW0 method
for computing electronic excited energies of molecules (arXiv 1506.01737).
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