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Notation and first facts




What this talk is about: study the effect of the spin variable for the electron gas.
What this talk is NOT about: spatial symmetry breaking.
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States = one-body density matrix: ¥ € S(L?(R%,C?)),0 < v < 1.

Translational-invariant states: J(x,y) = J(x — y).
= py isaconstant = the direct term can be dropped.
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What this talk is about: study the effect of the spin variable for the electron gas.
What this talk is NOT about: spatial symmetry breaking.

States = one-body density matrix: ¥ € S(L?(R%,C?)),0 < v < 1.

Translational-invariant states: J(x,y) = J(x — y).
= py isaconstant = the direct term can be dropped.

Fourier operator, 7 is multiplication operator in Fourier by

"
100 = (1409 TL0) . 100 =409 02909 <,
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What this talk is about: study the effect of the spin variable for the electron gas.
What this talk is NOoT about: spatial symmetry breaking.
States = one-body density matrix: ¥ € S(L?(R%,C?)),0 <~y < 1.

Translational-invariant states: ¥(x,y) = J(x — y).
= py isaconstant = the direct term can be dropped.

Fourier operator, 7 is multiplication operator in Fourier by

™M(k Nk N
109 = (T34 709) . 200 =a007 0209 <t
HF energy of this state (at T = 0)

HF 1 1 / 2 1 / < 2
= = k“t k)dk — — .
EX(y) 5 @n) Jea re2y(k)d 2 Joa w(x)tre2 [5(x)] dx

HF energy of the translation-invariant electron gas

1
HF . . HF * _
eHF () -——mm{s (1), 0<y=7" <Iy, —(Qﬂ)d/wtrm—p}.

Remark:
@ p = 4(0) is the density of the gas. This is the only parameter of the model.
@ We assume in the sequel that w is positive radial-decreasing (repulsive interaction).

What is the spin structure of the minimiser?
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What this talk is about: study the effect of the spin variable for the electron gas.
What this talk is NOT about: spatial symmetry breaking.
States = one-body density matrix: ¥ € S(L2(R%,C?)),0 < v < 1.

Translational-invariant states: J(x,y) = J(x — y).
= py isaconstant == the direct term can be dropped.

Fourier operator, 7 is multiplication operator in Fourier by

109 = (T34 709) . 2001007 0209 <t

HF energy of this state (at T = 0)

EUF (4) := % (Qi)d /Rd k2 treey(k)dk — %ﬁ //(Rd)2 Wk — kK )tree [v(k)v(k')] dkdk’.

HF energy of the translation-invariant electron gas

1
HF . . HF * _
eHF () .——mm{s (1), 0<y=7" <Iy, —(%)d/mdtrm—p}.

Remark:
@ p = %(0) is the density of the gas. This is the only parameter of the model.
@ We assume in the sequel that w is positive radial-decreasing (repulsive interaction).

What is the spin structure of the minimiser?
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No-spin version of the problem: = replace the 2 X 2 matrix 7y by a real number g.

1 1 1 1 .
el in(0) 1= 5 aya [, 0000k — iy [t~ g g ke

2 (2m)d 2 (2m)2d

Corresponding problem

. 1
egc?.spin(p) (= 1min {glljob.jspin(g)) 0< g <1, W /l‘{d 9= p} .
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No-spin version of the problem: = replace the 2 X 2 matrix 7y by a real number g.

1 1 1 1 .
el in(0) 1= 5 aya [, 0000k — iy [t~ g g ke

2 (2m)d 2 (2m)2d

Corresponding problem

. 1
egc?.spin(p) (= 1min {glljob.jspin(g)) 0< g <1, W /l‘{d 9= p} .

gT 0y\. ..
Remark: If v = 0 gi is diagonal, then

EHF(’Y) = SrIA{OI?spin (gT) + SE:)F.‘spin (gl)

In particular,

EHF(p) S tern[Olnl] {egonspin(tp) + eggspin((l - t)p)} .
'2
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Proposition

Assume 1 € L' (R?) + L>®(R?) is positive radially decreasing. Then the problems are well-posed, and the
minimisers of EAF are all of the form

R
y(k) = U (90 g‘{) U* with U € SU(Q2).

Hence,

EMF(p)= min {eHF_ . (tp) + eHF i (1= )0) }
2
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Proposition

Assume 1 € L' (R?) + L>®(R?) is positive radially decreasing. Then the problems are well-posed, and the
minimisers of EAF are all of the form

R
y(k) = U (90 gﬂ) U* with U € SU(Q2).

Hence,

EMF(p)= min {eHF_ . (tp) + eHF i (1= )0) }
2

Proof:
@ For all k, v(k) is diagonalisable, of the form v(k) = U(k)D(k)U* (k);
@ We have trp2y = trg2 D = same density, and same kinetic energy;
@ For the Fock term, we use the following lemma:

Let D1 = ()\1 v ) and Dy = ()\2 1402) be two diagonal matrices with A1 > 1 and Ag > po.

0 m 0
Then, for any unitary matrix U € SU(2), we have trg2 (D1UD2U*) < trgz (D1 Dg).
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Proposition

Assume 1 € L' (R?) + L>®(R?) is positive radially decreasing. Then the problems are well-posed, and the
minimisers of EAF are all of the form

gT 0 . .
vk)=U 0 gt U* with U e SU(2).
Hence,
EMF(p)= min {eHF_ . (tp) + eHF i (1= )0) }
t€[0,1]
V.
Proof:

@ For all k, v(k) is diagonalisable, of the form v(k) = U(k)D(k)U* (k);
@ We have trp2y = trg2 D = same density, and same kinetic energy;
@ For the Fock term, we use the following lemma:

Let D1 = ()\1 v ) and Dy = ()‘2 v ) be two diagonal matrices with A1 > 1 and Ag > po.

0 0 p2
Then, for any unitary matrix U € SU(2), we have trg2 (D1UD2U*) < trgz (D1 Dg).

Let J = ((1) 8) We have D; = p;lla + a;J with a;; := (A; — p;) > 0. Hence,

tree (D1D2) — tree (D1UD2U*) = aras [1 — trea (JUJU®)] = araz [1 — |Un1|*] > 0.
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It remains to study the no-spin problem.

Proposition

Assume 1 € L' (R?) + L (R?) is positive radially decreasing. Then eggspin (p) has a unique minimiser,
which is g*[p] (k) := 1(k? < Cppp?/9).

Remark: The minimiser does not depend on w (the exchange term).

"The first and longer proof was done in collaboration with M. Borji.
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It remains to study the no-spin problem.

Proposition

Assume 1 € L' (R?) + L (R?) is positive radially decreasing. Then eggspin (p) has a unique minimiser,
which is g*[p] (k) := 1(k? < Cppp?/9).

Remark: The minimiser does not depend on w (the exchange term).

Proof:
Let g € L' (R?) with 0 < g(k) < 1 and (2m)~¢ [ g = p, consider g* its symmetric decreasing
rearrangement. We have

71 — 71 — Vi 2 _* 2 L
(2m)d /]Rdg = (2m)d /Rdg—p (trivial), /de g < /de g (bath tube principle)

- / (g" x)g" < — /(g* w)g (Riesz inequality).
Jr Jr

HF HF
Hence eno.spin(g*) S eno.spin(g)‘
= restrict the minimisation to radially decreasing function between 0 and 1.

"The first and longer proof was done in collaboration with M. Borji.
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It remains to study the no-spin problem.

Proposition

HF

ho.spin (P) has a unique minimiser,

Assume 1 € L' (R?) + L (R®) is positive radially decreasing. Then e
which is g*[p] (k) := 1(k? < Cppp?/9).

Remark: The minimiser does not depend on w (the exchange term).

Proof:
Let g € L' (R?) with 0 < g(k) < 1 and (2m)~¢ [ g = p, consider g* its symmetric decreasing
rearrangement. We have

71 — 71 — Vi 2 _* 2 L
(2m)d /]Rdg = (2m)d /Rdg—p (trivial), /de g < /de g (bath tube principle)

- / (g" x)g" < — /(g* w)g (Riesz inequality).
Jr Jr

HF HF
Hence eno.spin(g*) S eno.spin(g)‘
= restrict the minimisation to radially decreasing function between 0 and 1.

The problem is concave! in g, hence g saturates the constraints, and g(k) € {0,1}.

The only radially decreasing function g with value in {0,1} and (27)~¢ [ g = pis g*[p].

"The first and longer proof was done in collaboration with M. Borji.
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Phase transitions
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We proved that

e oin(p) = EMF i (g%[p])  with  g*[p] := 1(k* < Crpp®/9). ‘

and that

EHF(p) = tGIn[Oinl] {egoF.‘spin(tp) + erllljspin (1 - t)p)} .
'2

Definition

The minimising ¢ is called the polarisation.

"
o If t = 0, the gas is ferromagnetic, and all minimisers are of the form v = U (g (()p) 8) U*.

o Ift = %, the gas is paramagnetic, and the unique minimiser is v = g*(%p)ﬂz.

We discuss phase transition as p increases.

David Gontier
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The case for Riesz interactions.

1
Assume that w(x) = —— with0 < s < d, so that w(k) := ds _ Then
[ [k|4=s

HF_n(p) = m(d)p'tE — A(d,5)p i

no.spin

In addition,
e If0 < s < min(2,d), then there is pc > 0 such that the system is ferromagnetic for p < pc, and is
paramagnetic for p > pc (sharp transition).
e Ifmin(2,d) < s < d, then there is pc,p > pc,§ > 0 such that the system if ferromagnetic for

p < pe,t, becomes smoothly paramagnetic for p. ¢ < p < pc,p, and is paramagnetic for p > pc.p
(smooth transition).

We recover the result for the Coulomb case (s = 1 and d = 3) found in usual textbooks.
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The sHARP transition for Coulomb interaction (s = 1 and d = 3)

We plot the function ¢t — eflF Spm(tp) + eflF Spm((l —t)p).

0.00 025 050

(=)
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The smMo0OTH transition for another Riesz interaction (s = 3 and d = 3)

We plot the function ¢t — eflF Spm(tp) + eflF Spm((l —t)p).

000 025 050

(=)o)
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A NON TRIVIAL transition for a sum of Riesz interactions

! !
With w(x) = Lo 22 till positive radial decreasing).

BRI S
We plot the function ¢t — eggspin(tp) + egfspin((l —1)p).

(=)
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Positive temperature
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We now add the entropy S(z) = zlogz + (1 — z) log(1 — z) (convex).

EMF (v, T) = EMF (v) + % /R ) tree S(y(k))dk.

We set efiF (p, 1), €HF . (4, 7) and elF spin (P, T') with obvious definition.

no.spin

As before (same proof),

M (p, T) =

inf
tef0, 1]

eggspin(tp/r) +e €no. Spln((l - t)p’ T)}

fon: HF
Question: Does e " ;.

David Gontier

p,T) have a unique minimiser?
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Numerical results
Phase diagram of the polarisation for the 3d Coulomb gas (d = 3 and s = 1).
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Uniqueness of the minimiser?

. . . . HF .
Euler-Lagrange equations: All minimisers g of eno'spin(p, T) satisfy

1
51:2 —gxw(k) + TS (g(k)) = p forsome p€R.
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Uniqueness of the minimiser?

. . . . HF .
Euler-Lagrange equations: All minimisers g of eno'spin(p, T) satisfy

1
51:2 —gxw(k) + TS (g(k)) = p forsome p€R.

Fixed point equation

1
1+ et (3k2—gr(k)—p)

9=Gur(9) with G, r(9) k—
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Uniqueness of the minimiser?

Euler-Lagrange equations: All minimisers g of el 5pm(p, T) satisfy
1 2 ~ /
ik —g*xwk)+TS(g(k)) =p forsome peR.

Fixed point equation

1
1+ et (3k2—gr(k)—p)

9=Gur(9) with G, r(9) k—

Proposition (High temperature regime)

There is T > 0 such that, for all T > T, the map G,, T has a unique fixed point g,, T for all p € R, and
the map pu = plp, T := (2m) ¢ [ g, is increasing.

p,T) is convex,

In particular, eno Szm (p, T) has a unique minimiser for all p > 0, the map p — eno spm(

and the system with spin is a[ways paramagnetic.

Remark: This result cannot be true for all " > 0. Otherwise, the system would always be paramagnetic.
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Ideas of the proof

For T large enough, G, T is a contraction, hence has a unique fixed point g,,.
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Ideas of the proof
For T large enough, G, T is a contraction, hence has a unique fixed point g,,.
The map g — G, 7(g) is increasing (91 < g2 = G, 7(91) < Gu,7(g2)). In particular,

n)

gu = lim_ 6" (0).
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Ideas of the proof
For T large enough, G, T is a contraction, hence has a unique fixed point g,,.
The map g — G, 7(g) is increasing (91 < g2 = G, 7(91) < Gu,7(g2)). In particular,

— 5 (n)
Ip = n1i>moo gf"’T(O).
The map p +— G, 7 is increasing. Hence, if u1 < pa,

G 1(0) <G (0), hence g1 <ga and plum] < plua).
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Ideas of the proof
For T large enough, G, T is a contraction, hence has a unique fixed point g,,.
The map g — G, 7(g) is increasing (91 < g2 = G, 7(91) < Gu,7(g2)). In particular,

— 5 (n)
Ip = n1i>moo gf"’T(O).
The map p +— G, 7 is increasing. Hence, if u1 < pa,

G 1(0) <G (0), hence g1 <ga and plum] < plua).

We can define p — p[p, T], and we have
2

0 0
gpegg.‘spin(p7 T) = ;L[p, T} hence Terggjspin > 0.

David Gontier Spin symmetry breaking in the HF gas



Ideas of the proof
For T large enough, G, T is a contraction, hence has a unique fixed point g,,.

The map g — G, 7(g) is increasing (91 < g2 = G, 7(91) < Gu,7(g2)). In particular,
gu = hm g( 7(0).
The map p +— G, 7 is increasing. Hence, if u1 < pa,

Q(")T(O) < g(n) (0), hence g1 <ga and plui] < plua].

We can define p — p[p, T], and we have

2

0 0
8p eEoFspin(p7 T) = ;L[p, T} hence Terggjspin > 0.

} . HF
Finally, since €ho.spin

is convex in p, forall 0 <t < 1,

1 1 1 1 1
2egfsp1n(tp7T) + iegﬁspin((l - t)p7T) Z eEoF,spin (itp + 5(1 - t)P,T) = eEOF_spin (ip’ T) .

In other words, the minimum is attained for t = % (= paramagnetism).
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Conclusions

@ Nice and simple problem to study phase transitions.
@ Not so trivial: already shows complex phase transitions.

@ It remains to prove uniqueness for all p and all T'.

still an open problem. The difficulty is that there exists p1 7% pg with = po.

Thank you for your attention.

Spin symm
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