
Spin symmetry breaking in the Hartree-Fock electron gas

David Gontier

CEREMADE, Université Paris-Dauphine

Solid Math
August 1, 2018

Joint work with M. Lewin.

David Gontier Spin symmetry breaking in the HF gas 1 / 18



Notation and first facts
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What this talk is about: study the effect of the spin variable for the electron gas.
What this talk is not about: spatial symmetry breaking.

States = one-body density matrix: γ̌ ∈ S(L2(Rd,C2)), 0 ≤ γ ≤ 1.

Translational-invariant states: γ̌(x,y) = γ̌(x− y).
=⇒ ργ̌ is a constant =⇒ the direct term can be dropped.

Fourier operator, γ̌ is multiplication operator in Fourier by

γ(k) =

(
γ↑↑(k) γ↑↓(k)
γ↓↑(k) γ↓↓(k)

)
, γ(k) = γ(k)∗, 0 ≤ γ(k) ≤ I2.

HF energy of this state (at T = 0)
HF energy of the translation-invariant electron gas

eHF(ρ) := min

{
EHF(γ), 0 ≤ γ = γ∗ ≤ I2,

1

(2π)d

ˆ
Rd

trC2γ = ρ

}
.

Remark:

ρ = γ̌(0) is the density of the gas. This is the only parameter of the model.

We assume in the sequel that ŵ is positive radial-decreasing (repulsive interaction).

What is the spin structure of the minimiser?
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We assume in the sequel that ŵ is positive radial-decreasing (repulsive interaction).

What is the spin structure of the minimiser?

David Gontier Spin symmetry breaking in the HF gas 3 / 18



What this talk is about: study the effect of the spin variable for the electron gas.
What this talk is not about: spatial symmetry breaking.

States = one-body density matrix: γ̌ ∈ S(L2(Rd,C2)), 0 ≤ γ ≤ 1.

Translational-invariant states: γ̌(x,y) = γ̌(x− y).
=⇒ ργ̌ is a constant =⇒ the direct term can be dropped.

Fourier operator, γ̌ is multiplication operator in Fourier by

γ(k) =

(
γ↑↑(k) γ↑↓(k)
γ↓↑(k) γ↓↓(k)

)
, γ(k) = γ(k)∗, 0 ≤ γ(k) ≤ I2.

HF energy of this state (at T = 0)

EHF(γ) :=
1

2

1

(2π)d

ˆ
Rd

k2trC2γ(k)dk−
1

2

ˆ
Rd

w(x)trC2 |γ̌(x)|2 dx.

HF energy of the translation-invariant electron gas

eHF(ρ) := min

{
EHF(γ), 0 ≤ γ = γ∗ ≤ I2,

1

(2π)d

ˆ
Rd

trC2γ = ρ

}
.

Remark:
ρ = γ̌(0) is the density of the gas. This is the only parameter of the model.
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No-spin version of the problem: ≈ replace the 2× 2 matrix γ by a real number g.

EHF
no.spin(g) :=

1

2

1

(2π)d

ˆ
Rd

k2g(k)dk−
1

2

1

(2π)2d

¨
(Rd)2

ŵ(k− k′)g(k)g(k′)dkdk′.

Corresponding problem

eHF
no.spin(ρ) := min

{
EHF
no.spin(g), 0 ≤ g ≤ 1,

1

(2π)d

ˆ
Rd

g = ρ

}
.

Remark: If γ =

(
g↑ 0
0 g↓

)
is diagonal, then

EHF(γ) = EHF
no.spin(g

↑) + EHF
no.spin(g

↓).

In particular,

EHF(ρ) ≤ min
t∈[0, 1

2
]

{
eHF
no.spin(tρ) + eHF

no.spin((1− t)ρ)
}
.
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Proposition

Assume ŵ ∈ L1(Rd) + L∞(Rd) is positive radially decreasing. Then the problems are well-posed, and the
minimisers of EHF are all of the form

γ(k) = U

(
g↑ 0
0 g↓

)
U∗ with U ∈ SU(2).

Hence,
EHF(ρ)= min

t∈[0, 1
2
]

{
eHF
no.spin(tρ) + eHF

no.spin((1− t)ρ)
}
.

Proof:
For all k, γ(k) is diagonalisable, of the form γ(k) = U(k)D(k)U∗(k);
We have trC2γ = trC2D =⇒ same density, and same kinetic energy;
For the Fock term, we use the following lemma:

Lemma

Let D1 =

(
λ1 0
0 µ1

)
and D2 =

(
λ2 0
0 µ2

)
be two diagonal matrices with λ1 ≥ µ1 and λ2 ≥ µ2.

Then, for any unitary matrix U ∈ SU(2), we have trC2 (D1UD2U∗) ≤ trC2 (D1D2).

Let J =

(
1 0
0 0

)
. We have Di = µiI2 + αiJ with αi := (λi − µi) ≥ 0. Hence,

trC2 (D1D2)− trC2 (D1UD2U
∗) = α1α2 [1− trC2 (JUJU∗)] = α1α2

[
1− |U11|2

]
≥ 0.
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It remains to study the no-spin problem.

Proposition

Assume ŵ ∈ L1(Rd) + L∞(Rd) is positive radially decreasing. Then eHF
no.spin(ρ) has a unique minimiser,

which is g∗[ρ](k) := 1(k2 ≤ CTFρ
2/d).

Remark: The minimiser does not depend on w (the exchange term).

Proof:
Let g ∈ L1(Rd) with 0 ≤ g(k) ≤ 1 and (2π)−d

´
g = ρ, consider g∗ its symmetric decreasing

rearrangement. We have

1

(2π)d

ˆ
Rd

g∗ =
1

(2π)d

ˆ
Rd

g = ρ (trivial),
ˆ
Rd

k2g∗ ≤
ˆ
Rd

k2g (bath tube principle)

−
ˆ
R
(g∗ ∗ ŵ)g∗ ≤ −

ˆ
R
(g ∗ ŵ)g (Riesz inequality).

Hence eHF
no.spin(g

∗) ≤ eHF
no.spin(g).

=⇒ restrict the minimisation to radially decreasing function between 0 and 1.

The problem is concave1 in g, hence g saturates the constraints, and g(k) ∈ {0, 1}.

The only radially decreasing function g with value in {0, 1} and (2π)−d
´
g = ρ is g∗[ρ].

1The first and longer proof was done in collaboration with M. Borji.
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Phase transitions
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We proved that

eHF
no.spin(ρ) = EHF

no.spin(g
∗[ρ]) with g∗[ρ] := 1(k2 ≤ CTFρ

2/d).

and that

EHF(ρ) = min
t∈[0, 1

2
]

{
eHF
no.spin(tρ) + eHF

no.spin((1− t)ρ)
}
.

Definition
The minimising t is called the polarisation.

If t = 0, the gas is ferromagnetic, and all minimisers are of the form γ = U

(
g∗(ρ) 0
0 0

)
U∗.

If t = 1
2
, the gas is paramagnetic, and the unique minimiser is γ = g∗( 1

2
ρ)I2.

We discuss phase transition as ρ increases.
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The case for Riesz interactions.

Proposition

Assume that w(x) =
1

|x|s
with 0 < s < d, so that ŵ(k) :=

cd,s

|k|d−s
. Then

eHF
no.spin(ρ) = κ(d)ρ1+

d
2 − λ(d, s)ρ1+

s
d .

In addition,

If 0 < s < min(2, d), then there is ρc > 0 such that the system is ferromagnetic for ρ < ρc, and is
paramagnetic for ρ > ρc (sharp transition).

If min(2, d) < s < d, then there is ρc,p > ρc,f > 0 such that the system if ferromagnetic for
ρ < ρc,f , becomes smoothly paramagnetic for ρc,f < ρ < ρc,p, and is paramagnetic for ρ > ρc,p
(smooth transition).

We recover the result for the Coulomb case (s = 1 and d = 3) found in usual textbooks.
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The sharp transition for Coulomb interaction (s = 1 and d = 3)

We plot the function t 7→ eHF
no.spin(tρ) + eHF

no.spin((1− t)ρ).
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The smooth transition for another Riesz interaction (s = 5
2

and d = 3)

We plot the function t 7→ eHF
no.spin(tρ) + eHF

no.spin((1− t)ρ).
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A non trivial transition for a sum of Riesz interactions

With w(x) =
α1

|x|s1
+

α2

|x|s2
(still positive radial decreasing).

We plot the function t 7→ eHF
no.spin(tρ) + eHF

no.spin((1− t)ρ).

David Gontier Spin symmetry breaking in the HF gas 12 / 18



Positive temperature
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We now add the entropy S(x) = x log x+ (1− x) log(1− x) (convex).

EHF(γ, T ) = EHF(γ) +
T

(2π)d

ˆ
Rd

trC2S(γ(k))dk.

We set eHF(ρ, T ), EHF
no.spin(γ, T ) and eHF

no.spin(ρ, T ) with obvious definition.

As before (same proof),

eHF(ρ, T ) = inf
t∈[0, 1

2
]

{
eHF
no.spin(tρ, T ) + eHF

no.spin((1− t)ρ, T )
}
.

Question: Does eHF
no.spin(ρ, T ) have a unique minimiser?
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Numerical results
Phase diagram of the polarisation for the 3d Coulomb gas (d = 3 and s = 1).
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Uniqueness of the minimiser?

Euler-Lagrange equations: All minimisers g of eHF
no.spin(ρ, T ) satisfy

1

2
k2 − g ∗ ŵ(k) + TS′(g(k)) = µ for some µ ∈ R.

Fixed point equation

g = Gµ,T (g) with Gµ,T (g) : k 7→
1

1 + e
1
T

( 1
2
k2−g∗ŵ(k)−µ)

.

Proposition (High temperature regime)
There is Tc > 0 such that, for all T > Tc, the map Gµ,T has a unique fixed point gµ,T for all µ ∈ R, and
the map µ 7→ ρ[µ, T ] := (2π)−d

´
gµ,T is increasing.

In particular, eHF
no.spin(ρ, T ) has a unique minimiser for all ρ > 0, the map ρ 7→ eHF

no.spin(ρ, T ) is convex,
and the system with spin is always paramagnetic.

Remark: This result cannot be true for all T > 0. Otherwise, the system would always be paramagnetic.
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Ideas of the proof

For T large enough, Gµ,T is a contraction, hence has a unique fixed point gµ.

The map g 7→ Gµ,T (g) is increasing (g1 < g2 =⇒ Gµ,T (g1) < Gµ,T (g2)). In particular,

gµ = lim
n→∞

G(n)
µ,T (0).

The map µ 7→ Gµ,T is increasing. Hence, if µ1 < µ2,

G(n)
µ1,T

(0) < G(n)
µ2,T

(0), hence g1 ≤ g2 and ρ[µ1] ≤ ρ[µ2].

We can define ρ 7→ µ[ρ, T ], and we have

∂

∂ρ
eHF
no.spin(ρ, T ) = µ[ρ, T ] hence

∂2

∂ρ2
eHF
no.spin ≥ 0.

Finally, since eHF
no.spin is convex in ρ, for all 0 ≤ t ≤ 1,

1

2
eHF
no.spin(tρ, T ) +

1

2
eHF
no.spin((1− t)ρ, T ) ≥ eHF

no.spin

(
1

2
tρ+

1

2
(1− t)ρ, T

)
= eHF

no.spin

(
1

2
ρ, T

)
.

In other words, the minimum is attained for t = 1
2

( =⇒ paramagnetism).
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Conclusions

Nice and simple problem to study phase transitions.

Not so trivial: already shows complex phase transitions.

It remains to prove uniqueness for all ρ and all T .

Still an open problem. The difficulty is that there exists ρ1 6= ρ2 with µ1 = µ2 .

Thank you for your attention.
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