Spin symmetry breaking in the Hartree-Fock electron gas

David Gontier
CEREMADE, Université Paris-Dauphine
Franco-German Workshop, Aachen

September 12, 2018

Joint work with M. Lewin.

Notation and first facts

What this talk is about: study the effect of the spin variable for the electron gas.
What this talk is NOT about: spatial symmetry breaking.

What this talk is about: study the effect of the spin variable for the electron gas.
What this talk is not about: spatial symmetry breaking.
States = one-body density matrix: $\check{\gamma} \in \mathcal{S}\left(L^{2}\left(\mathbb{R}^{d}, \mathbb{C}^{2}\right)\right), 0 \leq \gamma \leq 1$.
Translational-invariant states: $\check{\gamma}(\mathbf{x}, \mathbf{y})=\check{\gamma}(\mathbf{x}-\mathbf{y})$.
$\Longrightarrow \rho_{\check{\gamma}}$ is a constant \Longrightarrow the direct term can be dropped.

What this talk is about: study the effect of the spin variable for the electron gas.
What this talk is nOT about: spatial symmetry breaking.
States = one-body density matrix: $\check{\gamma} \in \mathcal{S}\left(L^{2}\left(\mathbb{R}^{d}, \mathbb{C}^{2}\right)\right), 0 \leq \gamma \leq 1$.
Translational-invariant states: $\check{\gamma}(\mathbf{x}, \mathbf{y})=\check{\gamma}(\mathbf{x}-\mathbf{y})$.
$\Longrightarrow \rho_{\check{\gamma}}$ is a constant \Longrightarrow the direct term can be dropped.
Fourier operator, $\check{\gamma}$ is multiplication operator in Fourier by

$$
\gamma(\mathbf{k})=\left(\begin{array}{ll}
\gamma^{\uparrow \uparrow(\mathbf{k})} & \gamma^{\uparrow \downarrow}(\mathbf{k}) \\
\gamma^{\downarrow \uparrow(\mathbf{k})} & \gamma^{\downarrow \downarrow}(\mathbf{k})
\end{array}\right), \quad \gamma(\mathbf{k})=\gamma(\mathbf{k})^{*}, \quad 0 \leq \gamma(\mathbf{k}) \leq \mathbb{I}_{2} .
$$

What this talk is about: study the effect of the spin variable for the electron gas. What this talk is NOT about: spatial symmetry breaking.

States = one-body density matrix: $\check{\gamma} \in \mathcal{S}\left(L^{2}\left(\mathbb{R}^{d}, \mathbb{C}^{2}\right)\right), 0 \leq \gamma \leq 1$.
Translational-invariant states: $\check{\gamma}(\mathbf{x}, \mathbf{y})=\check{\gamma}(\mathbf{x}-\mathbf{y})$.
$\Longrightarrow \rho_{\check{\gamma}}$ is a constant \Longrightarrow the direct term can be dropped.
Fourier operator, $\check{\gamma}$ is multiplication operator in Fourier by

$$
\gamma(\mathbf{k})=\left(\begin{array}{ll}
\gamma^{\uparrow \uparrow(\mathbf{k})} & \gamma^{\uparrow \downarrow}(\mathbf{k}) \\
\gamma^{\downarrow \uparrow(\mathbf{k})} & \gamma^{\downarrow \downarrow}(\mathbf{k})
\end{array}\right), \quad \gamma(\mathbf{k})=\gamma(\mathbf{k})^{*}, \quad 0 \leq \gamma(\mathbf{k}) \leq \mathbb{I}_{2} .
$$

HF energy of this state (at $\mathrm{T}=0$)

$$
\mathcal{E}^{\mathrm{HF}}(\gamma):=\frac{1}{2} \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} k^{2} \operatorname{tr}_{\mathbb{C}^{2}} \gamma(\mathbf{k}) \mathrm{d} \mathbf{k}-\frac{1}{2} \int_{\mathbb{R}^{d}} w(\mathbf{x}) \operatorname{tr}_{\mathbb{C}^{2}}|\check{\gamma}(\mathbf{x})|^{2} \mathrm{~d} \mathbf{x} .
$$

HF energy of the translation-invariant electron gas

$$
\mathrm{e}^{\mathrm{HF}}(\rho):=\min \left\{\mathcal{E}^{\mathrm{HF}}(\gamma), 0 \leq \gamma=\gamma^{*} \leq \mathbb{I}_{2}, \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \operatorname{tr}_{\mathbb{C}^{2}} \gamma=\rho\right\}
$$

Remark:

- $\rho=\check{\gamma}(\mathbf{0})$ is the density of the gas. This is the only parameter of the model.
- We assume in the sequel that \hat{w} is positive radial-decreasing (repulsive interaction).

> What is the spin structure of the minimiser?

What this talk is about: study the effect of the spin variable for the electron gas. What this talk is Not about: spatial symmetry breaking.

States = one-body density matrix: $\check{\gamma} \in \mathcal{S}\left(L^{2}\left(\mathbb{R}^{d}, \mathbb{C}^{2}\right)\right), 0 \leq \gamma \leq 1$.
Translational-invariant states: $\check{\gamma}(\mathbf{x}, \mathbf{y})=\check{\gamma}(\mathbf{x}-\mathbf{y})$.
$\Longrightarrow \rho_{\check{\gamma}}$ is a constant \Longrightarrow the direct term can be dropped.
Fourier operator, $\check{\gamma}$ is multiplication operator in Fourier by

$$
\gamma(\mathbf{k})=\left(\begin{array}{ll}
\gamma^{\uparrow \uparrow}(\mathbf{k}) & \gamma^{\uparrow \downarrow}(\mathbf{k}) \\
\gamma^{\downarrow \uparrow}(\mathbf{k}) & \gamma^{\downarrow \downarrow}(\mathbf{k})
\end{array}\right), \quad \gamma(\mathbf{k})=\gamma(\mathbf{k})^{*}, \quad 0 \leq \gamma(\mathbf{k}) \leq \mathbb{I}_{2} .
$$

HF energy of this state (at $\mathrm{T}=0$)

$$
\mathcal{E}^{\mathrm{HF}}(\gamma):=\frac{1}{2} \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} k^{2} \operatorname{tr}_{\mathbb{C}^{2}} \gamma(\mathbf{k}) \mathrm{d} \mathbf{k}-\frac{1}{2} \frac{1}{(2 \pi)^{2 d}} \iint_{\left(\mathbb{R}^{d}\right)^{2}} \hat{w}\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \operatorname{tr}_{\mathbb{C}^{2}}\left[\gamma(\mathbf{k}) \gamma\left(\mathbf{k}^{\prime}\right)\right] \mathrm{d} \mathbf{k} \mathrm{~d} \mathbf{k}^{\prime} .
$$

HF energy of the translation-invariant electron gas

$$
\mathrm{e}^{\mathrm{HF}}(\rho):=\min \left\{\mathcal{E}^{\mathrm{HF}}(\gamma), 0 \leq \gamma=\gamma^{*} \leq \mathbb{I}_{2}, \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \operatorname{tr}_{\mathbb{C}^{2}} \gamma=\rho\right\}
$$

Remark:

- $\rho=\check{\gamma}(\mathbf{0})$ is the density of the gas. This is the only parameter of the model.
- We assume in the sequel that \hat{w} is positive radial-decreasing (repulsive interaction).

> What is the spin structure of the minimiser?

No-spin version of the problem: \approx replace the 2×2 matrix γ by a real number/function g.

$$
\mathcal{E}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}}(g):=\frac{1}{2} \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} k^{2} g(\mathbf{k}) \mathrm{d} \mathbf{k}-\frac{1}{2} \frac{1}{(2 \pi)^{2 d}} \iint_{\left(\mathbb{R}^{d}\right)^{2}} \hat{w}\left(\mathbf{k}-\mathbf{k}^{\prime}\right) g(\mathbf{k}) g\left(\mathbf{k}^{\prime}\right) \mathrm{d} \mathbf{k} \mathrm{~d} \mathbf{k}^{\prime}
$$

Corresponding problem

$$
\mathrm{e}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}}(\rho):=\min \left\{\mathcal{E}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}}(g), 0 \leq g \leq 1, \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} g=\rho\right\}
$$

No-spin version of the problem: \approx replace the 2×2 matrix γ by a real number/function g.

$$
\mathcal{E}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}}(g):=\frac{1}{2} \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} k^{2} g(\mathbf{k}) \mathrm{d} \mathbf{k}-\frac{1}{2} \frac{1}{(2 \pi)^{2 d}} \iint_{\left(\mathbb{R}^{d}\right)^{2}} \hat{w}\left(\mathbf{k}-\mathbf{k}^{\prime}\right) g(\mathbf{k}) g\left(\mathbf{k}^{\prime}\right) \mathrm{d} \mathbf{k} \mathrm{~d} \mathbf{k}^{\prime} .
$$

Corresponding problem

$$
\mathrm{e}_{\mathrm{no} \text {.spin }}^{\mathrm{HF}}(\rho):=\min \left\{\mathcal{E}_{\mathrm{no} \text {.spin }}^{\mathrm{HF}}(g), 0 \leq g \leq 1, \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} g=\rho\right\} .
$$

Remark: If $\gamma=\left(\begin{array}{cc}g^{\uparrow} & 0 \\ 0 & g^{\downarrow}\end{array}\right)$ is diagonal, then

$$
\mathcal{E}^{\mathrm{HF}}(\gamma)=\mathcal{E}_{\text {no.spin }}^{\mathrm{HF}}\left(g^{\uparrow}\right)+\mathcal{E}_{\text {no.spin }}^{\mathrm{HF}}\left(g^{\downarrow}\right)
$$

In particular,

$$
E^{\mathrm{HF}}(\rho) \leq \min _{t \in\left[0, \frac{1}{2}\right]}\left\{\mathrm{e}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}}(t \rho)+\mathrm{e}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}}((1-t) \rho)\right\} .
$$

Proposition

Assume $\hat{w} \in L^{1}\left(\mathbb{R}^{d}\right)+L^{\infty}\left(\mathbb{R}^{d}\right)$ is positive radially decreasing. Then the problems are well-posed, and the minimisers of $\mathcal{E}^{\mathrm{HF}}$ are all of the form

$$
\gamma(\mathbf{k})=U\left(\begin{array}{cc}
g^{\uparrow} & 0 \\
0 & g^{\downarrow}
\end{array}\right) U^{*} \quad \text { with } \quad U \in \mathrm{SU}(2) .
$$

Hence,

$$
E^{\mathrm{HF}}(\rho)=\min _{t \in\left[0, \frac{1}{2}\right]}\left\{\mathrm{e}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}}(t \rho)+\mathrm{e}_{\mathrm{no} \text {.spin }}^{\mathrm{HF}}((1-t) \rho)\right\} .
$$

Proposition

Assume $\hat{w} \in L^{1}\left(\mathbb{R}^{d}\right)+L^{\infty}\left(\mathbb{R}^{d}\right)$ is positive radially decreasing. Then the problems are well-posed, and the minimisers of $\mathcal{E}^{\mathrm{HF}}$ are all of the form

$$
\gamma(\mathbf{k})=U\left(\begin{array}{cc}
g^{\uparrow} & 0 \\
0 & g^{\downarrow}
\end{array}\right) U^{*} \quad \text { with } \quad U \in \mathrm{SU}(2) .
$$

Hence,

$$
E^{\mathrm{HF}}(\rho)=\min _{t \in\left[0, \frac{1}{2}\right]}\left\{\mathrm{e}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}}(t \rho)+\mathrm{e}_{\mathrm{no} \text {.spin }}^{\mathrm{HF}}((1-t) \rho)\right\} .
$$

Proof:

- For all $\mathbf{k}, \gamma(\mathbf{k})$ is diagonalisable, of the form $\gamma(\mathbf{k})=U(\mathbf{k}) D(\mathbf{k}) U^{*}(\mathbf{k})$;
- We have $\operatorname{tr}_{\mathbb{C}^{2}} \gamma=\operatorname{tr}_{\mathbb{C}^{2}} D \Longrightarrow$ same density, and same kinetic energy;
- For the Fock term, we use the following lemma:

Lemma

Let $D_{1}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \mu_{1}\end{array}\right)$ and $D_{2}=\left(\begin{array}{cc}\lambda_{2} & 0 \\ 0 & \mu_{2}\end{array}\right)$ be two diagonal matrices with $\lambda_{1} \geq \mu_{1}$ and $\lambda_{2} \geq \mu_{2}$.
Then, for any unitary matrix $U \in \mathrm{SU}(2)$, we have $\operatorname{tr}_{\mathbb{C}^{2}}\left(D_{1} U D_{2} U^{*}\right) \leq \operatorname{tr}_{\mathbb{C}^{2}}\left(D_{1} D_{2}\right)$.

Proposition

Assume $\hat{w} \in L^{1}\left(\mathbb{R}^{d}\right)+L^{\infty}\left(\mathbb{R}^{d}\right)$ is positive radially decreasing. Then the problems are well-posed, and the minimisers of $\mathcal{E}^{\mathrm{HF}}$ are all of the form

$$
\gamma(\mathbf{k})=U\left(\begin{array}{cc}
g^{\uparrow} & 0 \\
0 & g^{\downarrow}
\end{array}\right) U^{*} \quad \text { with } \quad U \in \mathrm{SU}(2) .
$$

Hence,

$$
E^{\mathrm{HF}}(\rho)=\min _{t \in\left[0, \frac{1}{2}\right]}\left\{\mathrm{e}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}}(t \rho)+\mathrm{e}_{\text {no.spin }}^{\mathrm{HF}}((1-t) \rho)\right\} .
$$

Proof:

- For all $\mathbf{k}, \gamma(\mathbf{k})$ is diagonalisable, of the form $\gamma(\mathbf{k})=U(\mathbf{k}) D(\mathbf{k}) U^{*}(\mathbf{k})$;
- We have $\operatorname{tr}_{\mathbb{C}^{2}} \gamma=\operatorname{tr}_{\mathbb{C}^{2}} D \Longrightarrow$ same density, and same kinetic energy;
- For the Fock term, we use the following lemma:

Lemma

Let $D_{1}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \mu_{1}\end{array}\right)$ and $D_{2}=\left(\begin{array}{cc}\lambda_{2} & 0 \\ 0 & \mu_{2}\end{array}\right)$ be two diagonal matrices with $\lambda_{1} \geq \mu_{1}$ and $\lambda_{2} \geq \mu_{2}$.
Then, for any unitary matrix $U \in \mathrm{SU}(2)$, we have $\operatorname{tr}_{\mathbb{C}^{2}}\left(D_{1} U D_{2} U^{*}\right) \leq \operatorname{tr}_{\mathbb{C}^{2}}\left(D_{1} D_{2}\right)$.
Let $J=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. We have $D_{i}=\mu_{i} \mathbb{I}_{2}+\alpha_{i} J$ with $\alpha_{i}:=\left(\lambda_{i}-\mu_{i}\right) \geq 0$. Hence,

$$
\operatorname{tr}_{\mathbb{C}^{2}}\left(D_{1} D_{2}\right)-\operatorname{tr}_{\mathbb{C}^{2}}\left(D_{1} U D_{2} U^{*}\right)=\alpha_{1} \alpha_{2}\left[1-\operatorname{tr}_{\mathbb{C}^{2}}\left(J U J U^{*}\right)\right]=\alpha_{1} \alpha_{2}\left[1-\left|U_{11}\right|^{2}\right] \geq 0 .
$$

It remains to study the no-spin problem.

Proposition

Assume $\hat{w} \in L^{1}\left(\mathbb{R}^{d}\right)+L^{\infty}\left(\mathbb{R}^{d}\right)$ is positive radially decreasing. Then $\mathrm{e}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}}(\rho)$ has a unique minimiser, which is $g^{*}[\rho](\mathbf{k}):=\mathbb{1}\left(k^{2} \leq C_{\mathrm{TF}} \rho^{2 / d}\right)$.

Remark: The minimiser does not depend on w (the exchange term).

[^0]It remains to study the no-spin problem.

Proposition

Assume $\hat{w} \in L^{1}\left(\mathbb{R}^{d}\right)+L^{\infty}\left(\mathbb{R}^{d}\right)$ is positive radially decreasing. Then $\mathrm{e}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}}(\rho)$ has a unique minimiser, which is $g^{*}[\rho](\mathbf{k}):=\mathbb{1}\left(k^{2} \leq C_{\mathrm{TF}} \rho^{2 / d}\right)$.

Remark: The minimiser does not depend on w (the exchange term).

Proof:

Let $g \in L^{1}\left(\mathbb{R}^{d}\right)$ with $0 \leq g(\mathbf{k}) \leq 1$ and $(2 \pi)^{-d} \int g=\rho$, consider g^{*} its symmetric decreasing rearrangement. We have

$$
\begin{gathered}
\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} g^{*}=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} g=\rho \quad \text { (trivial), } \quad \int_{\mathbb{R}^{d}} k^{2} g^{*} \leq \int_{\mathbb{R}^{d}} k^{2} g \quad \text { (bath tube principle) } \\
-\int_{\mathbb{R}}\left(g^{*} * \hat{w}\right) g^{*} \leq-\int_{\mathbb{R}}(g * \hat{w}) g \quad \text { (Riesz inequality) }
\end{gathered}
$$

Hence $\mathrm{e}_{\text {no.spin }}^{\mathrm{HF}}\left(g^{*}\right) \leq \mathrm{e}_{\text {no.spin }}^{\mathrm{HF}}(g)$.
\Longrightarrow restrict the minimisation to radially decreasing function between 0 and 1 .

[^1]It remains to study the no-spin problem.

Proposition

Assume $\hat{w} \in L^{1}\left(\mathbb{R}^{d}\right)+L^{\infty}\left(\mathbb{R}^{d}\right)$ is positive radially decreasing. Then $\mathrm{e}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}}(\rho)$ has a unique minimiser, which is $g^{*}[\rho](\mathbf{k}):=\mathbb{1}\left(k^{2} \leq C_{\mathrm{TF}} \rho^{2 / d}\right)$.

Remark: The minimiser does not depend on w (the exchange term).

Proof:

Let $g \in L^{1}\left(\mathbb{R}^{d}\right)$ with $0 \leq g(\mathbf{k}) \leq 1$ and $(2 \pi)^{-d} \int g=\rho$, consider g^{*} its symmetric decreasing rearrangement. We have

$$
\begin{aligned}
\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} g^{*}= & \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} g=\rho \quad \text { (trivial), } \quad \int_{\mathbb{R}^{d}} k^{2} g^{*} \leq \int_{\mathbb{R}^{d}} k^{2} g \quad \text { (bath tube principle) } \\
& -\int_{\mathbb{R}}\left(g^{*} * \hat{w}\right) g^{*} \leq-\int_{\mathbb{R}}(g * \hat{w}) g \quad \text { (Riesz inequality) }
\end{aligned}
$$

Hence $\mathrm{e}_{\text {no.spin }}^{\mathrm{HF}}\left(g^{*}\right) \leq \mathrm{e}_{\text {no.spin }}^{\mathrm{HF}}(g)$.
\Longrightarrow restrict the minimisation to radially decreasing function between 0 and 1 .
The problem is concave ${ }^{1}$ in g, hence g saturates the constraints, and $g(\mathbf{k}) \in\{0,1\}$.
The only radially decreasing function g with value in $\{0,1\}$ and $(2 \pi)^{-d} \int g=\rho$ is $g^{*}[\rho]$.

[^2]
Phase transitions

We proved that

$$
\mathrm{e}_{\mathrm{no} \text {.spin }}^{\mathrm{HF}}(\rho)=\mathcal{E}_{\mathrm{no} \text {.spin }}^{\mathrm{HF}}\left(g^{*}[\rho]\right) \quad \text { with } \quad g^{*}[\rho]:=\mathbb{1}\left(k^{2} \leq C_{\mathrm{TF}} \rho^{2 / d}\right)
$$

and that

$$
E^{\mathrm{HF}}(\rho)=\min _{t \in\left[0, \frac{1}{2}\right]}\left\{\mathrm{e}_{\text {no.spin }}^{\mathrm{HF}}(t \rho)+\mathrm{e}_{\text {no.spin }}^{\mathrm{HF}}((1-t) \rho)\right\}
$$

Definition

The minimising t is called the polarisation.

- If $t=0$, the gas is ferromagnetic, and all minimisers are of the form $\gamma=U\left(\begin{array}{cc}g^{*}(\rho) & 0 \\ 0 & 0\end{array}\right) U^{*}$.
- If $t=\frac{1}{2}$, the gas is paramagnetic, and the unique minimiser is $\gamma=g^{*}\left(\frac{1}{2} \rho\right) \mathbb{I}_{2}$.

We discuss phase transition as ρ increases.

The case for Riesz interactions.

Proposition

Assume that $w(\mathbf{x})=\frac{1}{|\mathbf{x}|^{s}}$ with $0<s<d$, so that $\hat{w}(\mathbf{k}):=\frac{c_{d, s}}{|\mathbf{k}|^{d-s}}$. Then

$$
\mathrm{e}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}}(\rho)=\kappa(d) \rho^{1+\frac{d}{2}}-\lambda(d, s) \rho^{1+\frac{s}{d}} .
$$

In addition,

- If $0<s<\min (2, d)$, then there is $\rho_{c}>0$ such that the system is ferromagnetic for $\rho<\rho_{c}$, and is paramagnetic for $\rho>\rho_{c}$ (sharp transition).
- If $\min (2, d)<s<d$, then there is $\rho_{c, p}>\rho_{c, f}>0$ such that the system if ferromagnetic for $\rho<\rho_{c, f}$, becomes smoothly paramagnetic for $\rho_{c, f}<\rho<\rho_{c, p}$, and is paramagnetic for $\rho>\rho_{c, p}$ (smooth transition).

We recover the result for the Coulomb case ($s=1$ and $d=3$) found in usual textbooks.

The sharp transition for Coulomb interaction $(s=1$ and $d=3$)
We plot the function $t \mapsto \mathrm{e}_{\text {no.spin }}^{\mathrm{HF}}(t \rho)+\mathrm{e}_{\text {no.spin }}^{\mathrm{HF}}((1-t) \rho)$.

The sмоотн transition for another Riesz interaction $\left(s=\frac{5}{2}\right.$ and $d=3$)
We plot the function $t \mapsto \mathrm{e}_{\text {no.spin }}^{\mathrm{HF}}(t \rho)+\mathrm{e}_{\text {no.spin }}^{\mathrm{HF}}((1-t) \rho)$.

A non trivial transition for a sum of Riesz interactions

With $w(\mathbf{x})=\frac{\alpha_{1}}{|\mathbf{x}|^{s_{1}}}+\frac{\alpha_{2}}{|\mathbf{x}|^{s_{2}}}$ (still positive radial decreasing).
We plot the function $t \mapsto \mathrm{e}_{\text {no.spin }}^{\mathrm{HF}}(t \rho)+\mathrm{e}_{\text {no.spin }}^{\mathrm{HF}}((1-t) \rho)$.

Positive temperature

We now add the entropy $S(x)=x \log x+(1-x) \log (1-x)$ (convex).

$$
\mathcal{E}^{\mathrm{HF}}(\gamma, T)=\mathcal{E}^{\mathrm{HF}}(\gamma)+\frac{T}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \operatorname{tr}_{\mathbb{C}^{2}} S(\gamma(\mathbf{k})) \mathrm{d} \mathbf{k}
$$

We set $\mathrm{e}^{\mathrm{HF}}(\rho, T), \mathcal{E}_{\text {no.spin }}^{\mathrm{HF}}(\gamma, T)$ and $\mathrm{e}_{\text {no.spin }}^{\mathrm{HF}}(\rho, T)$ with obvious definition. As before (same proof),

$$
\mathrm{e}^{\mathrm{HF}}(\rho, T)=\inf _{t \in\left[0, \frac{1}{2}\right]}\left\{\mathrm{e}_{\mathrm{no} \text {. } \mathrm{spin}}^{\mathrm{HF}}(t \rho, T)+\mathrm{e}_{\text {no. spin }}^{\mathrm{HF}}((1-t) \rho, T)\right\} .
$$

Question: Does $\mathrm{e}_{\mathrm{no} \text {.spin }}^{\mathrm{HF}}(\rho, T)$ have a unique minimiser?

Numerical results
Phase diagram of the polarisation for the 3d Coulomb gas $(d=3$ and $s=1)$.

Uniqueness of the minimiser?
Euler-Lagrange equations: All minimisers g of $\mathrm{e}_{\text {no.spin }}^{\mathrm{HF}}(\rho, T)$ satisfy

$$
\frac{1}{2} k^{2}-g * \hat{w}(\mathbf{k})+T S^{\prime}(g(\mathbf{k}))=\mu \quad \text { for some } \quad \mu \in \mathbb{R}
$$

Uniqueness of the minimiser?
Euler-Lagrange equations: All minimisers g of $\mathrm{e}_{\text {no.spin }}^{\mathrm{HF}}(\rho, T)$ satisfy

$$
\frac{1}{2} k^{2}-g * \hat{w}(\mathbf{k})+T S^{\prime}(g(\mathbf{k}))=\mu \quad \text { for some } \quad \mu \in \mathbb{R}
$$

Fixed point equation

$$
g=\mathcal{G}_{\mu, T}(g) \quad \text { with } \quad \mathcal{G}_{\mu, T}(g): \mathbf{k} \mapsto \frac{1}{1+\mathrm{e}^{\frac{1}{T}\left(\frac{1}{2} k^{2}-g * \hat{w}(\mathbf{k})-\mu\right)}}
$$

Uniqueness of the minimiser?

Euler-Lagrange equations: All minimisers g of $\mathrm{e}_{\text {no.spin }}^{\mathrm{HF}}(\rho, T)$ satisfy

$$
\frac{1}{2} k^{2}-g * \hat{w}(\mathbf{k})+T S^{\prime}(g(\mathbf{k}))=\mu \quad \text { for some } \quad \mu \in \mathbb{R}
$$

Fixed point equation

$$
g=\mathcal{G}_{\mu, T}(g) \quad \text { with } \quad \mathcal{G}_{\mu, T}(g): \mathbf{k} \mapsto \frac{1}{1+\mathrm{e}^{\frac{1}{T}\left(\frac{1}{2} k^{2}-g * \hat{w}(\mathbf{k})-\mu\right)}}
$$

Proposition (High temperature regime)

There is $T_{c}>0$ such that, for all $T>T_{c}$, the map $\mathcal{G}_{\mu, T}$ has a unique fixed point $g_{\mu, T}$ for all $\mu \in \mathbb{R}$, and the map $\mu \mapsto \rho[\mu, T]:=(2 \pi)^{-d} \int g_{\mu, T}$ is increasing. In particular, $\mathrm{e}_{\mathrm{no} \text {.spin }}^{\mathrm{HF}}(\rho, T)$ has a unique minimiser for all $\rho>0$, the map $\rho \mapsto \mathrm{e}_{\mathrm{no} \text {.spin }}^{\mathrm{HF}}(\rho, T)$ is convex, and the system with spin is always paramagnetic.

Remark: This result cannot be true for all $T>0$. Otherwise, the system would always be paramagnetic.

Uniqueness. For T large enough, $\mathcal{G}_{\mu, T}$ is a contraction, hence has a unique fixed point g_{μ}.

Ideas of the proof
Uniqueness. For T large enough, $\mathcal{G}_{\mu, T}$ is a contraction, hence has a unique fixed point g_{μ}. Monotony. The map $g \mapsto \mathcal{G}_{\mu, T}(g)$ is increasing $\left(g_{1}<g_{2} \Longrightarrow \mathcal{G}_{\mu, T}\left(g_{1}\right)<\mathcal{G}_{\mu, T}\left(g_{2}\right)\right)$. In particular,

$$
g_{\mu}=\lim _{n \rightarrow \infty} \mathcal{G}_{\mu, T}^{(n)}(\mathbf{0})
$$

Ideas of the proof

Uniqueness. For T large enough, $\mathcal{G}_{\mu, T}$ is a contraction, hence has a unique fixed point g_{μ}.
Monotony. The map $g \mapsto \mathcal{G}_{\mu, T}(g)$ is increasing $\left(g_{1}<g_{2} \Longrightarrow \mathcal{G}_{\mu, T}\left(g_{1}\right)<\mathcal{G}_{\mu, T}\left(g_{2}\right)\right)$. In particular,

$$
g_{\mu}=\lim _{n \rightarrow \infty} \mathcal{G}_{\mu, T}^{(n)}(\mathbf{0}) .
$$

The map $\mu \mapsto \mathcal{G}_{\mu, T}$ is increasing. Hence, if $\mu_{1}<\mu_{2}$,

$$
\mathcal{G}_{\mu_{1}, T}^{(n)}(\mathbf{0})<\mathcal{G}_{\mu_{2}, T}^{(n)}(\mathbf{0}), \quad \text { hence } \quad g_{1} \leq g_{2} \quad \text { and } \quad \rho\left[\mu_{1}\right] \leq \rho\left[\mu_{2}\right]
$$

Ideas of the proof

Uniqueness. For T large enough, $\mathcal{G}_{\mu, T}$ is a contraction, hence has a unique fixed point g_{μ}.
Monotony. The map $g \mapsto \mathcal{G}_{\mu, T}(g)$ is increasing $\left(g_{1}<g_{2} \Longrightarrow \mathcal{G}_{\mu, T}\left(g_{1}\right)<\mathcal{G}_{\mu, T}\left(g_{2}\right)\right)$. In particular,

$$
g_{\mu}=\lim _{n \rightarrow \infty} \mathcal{G}_{\mu, T}^{(n)}(\mathbf{0})
$$

The map $\mu \mapsto \mathcal{G}_{\mu, T}$ is increasing. Hence, if $\mu_{1}<\mu_{2}$,

$$
\mathcal{G}_{\mu_{1}, T}^{(n)}(\mathbf{0})<\mathcal{G}_{\mu_{2}, T}^{(n)}(\mathbf{0}), \quad \text { hence } \quad g_{1} \leq g_{2} \quad \text { and } \quad \rho\left[\mu_{1}\right] \leq \rho\left[\mu_{2}\right]
$$

Convexity. We can define $\rho \mapsto \mu[\rho, T]$, and we have

$$
\frac{\partial}{\partial \rho} \mathrm{e}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}}(\rho, T)=\mu[\rho, T] \quad \text { hence } \quad \frac{\partial^{2}}{\partial \rho^{2}} \mathrm{e}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}} \geq 0
$$

Ideas of the proof

Uniqueness. For T large enough, $\mathcal{G}_{\mu, T}$ is a contraction, hence has a unique fixed point g_{μ}.
Monotony. The map $g \mapsto \mathcal{G}_{\mu, T}(g)$ is increasing $\left(g_{1}<g_{2} \Longrightarrow \mathcal{G}_{\mu, T}\left(g_{1}\right)<\mathcal{G}_{\mu, T}\left(g_{2}\right)\right)$. In particular,

$$
g_{\mu}=\lim _{n \rightarrow \infty} \mathcal{G}_{\mu, T}^{(n)}(\mathbf{0})
$$

The map $\mu \mapsto \mathcal{G}_{\mu, T}$ is increasing. Hence, if $\mu_{1}<\mu_{2}$,

$$
\mathcal{G}_{\mu_{1}, T}^{(n)}(\mathbf{0})<\mathcal{G}_{\mu_{2}, T}^{(n)}(\mathbf{0}), \quad \text { hence } \quad g_{1} \leq g_{2} \quad \text { and } \quad \rho\left[\mu_{1}\right] \leq \rho\left[\mu_{2}\right]
$$

Convexity. We can define $\rho \mapsto \mu[\rho, T]$, and we have

$$
\frac{\partial}{\partial \rho} \mathrm{e}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}}(\rho, T)=\mu[\rho, T] \quad \text { hence } \quad \frac{\partial^{2}}{\partial \rho^{2}} \mathrm{e}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}} \geq 0
$$

Paramagnetism. Finally, since $\mathrm{e}_{\text {no. }}^{\mathrm{HF}} \mathrm{spin}$ is convex in ρ, for all $0 \leq t \leq 1$,
$\frac{1}{2} \mathrm{e}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}}(t \rho, T)+\frac{1}{2} \mathrm{e}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}}((1-t) \rho, T) \geq \mathrm{e}_{\mathrm{no} . \operatorname{spin}}^{\mathrm{HF}}\left(\frac{1}{2} t \rho+\frac{1}{2}(1-t) \rho, T\right)=\mathrm{e}_{\mathrm{no} . \mathrm{spin}}^{\mathrm{HF}}\left(\frac{1}{2} \rho, T\right)$. In other words, the minimum is attained for $t=\frac{1}{2}(\Longrightarrow$ paramagnetism $)$.

Conjecture

For all $w \in L^{1}+L^{\infty}$, all $T>0$ and all $\rho>0$, there is always a unique pair (μ, g) solution to

$$
g=\mathcal{G}_{\mu, T}(g) \quad \text { and } \quad \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} g=\rho
$$

The map $g \mapsto \mathcal{G}_{\mu, T}(g)$ is increasing, and $0 \leq g \leq 1$. We can define

$$
g_{\min }[\mu, T]:=\lim _{n \rightarrow \infty} \mathcal{G}_{\mu, T}^{(n)}(\mathbf{0}) \quad \text { and } \quad g_{\max }[\mu, T]:=\lim _{n \rightarrow \infty} \mathcal{G}_{\mu, T}^{(n)}(\mathbf{1})
$$

The map $\mathcal{G}_{\mu, T}$ has a unique fixed point iff $g_{\min }=g_{\max }$.

Conjecture

For all $w \in L^{1}+L^{\infty}$, all $T>0$ and all $\rho>0$, there is always a unique pair (μ, g) solution to

$$
g=\mathcal{G}_{\mu, T}(g) \quad \text { and } \quad \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} g=\rho .
$$

The map $g \mapsto \mathcal{G}_{\mu, T}(g)$ is increasing, and $0 \leq g \leq 1$. We can define

$$
g_{\min }[\mu, T]:=\lim _{n \rightarrow \infty} \mathcal{G}_{\mu, T}^{(n)}(\mathbf{0}) \quad \text { and } \quad g_{\max }[\mu, T]:=\lim _{n \rightarrow \infty} \mathcal{G}_{\mu, T}^{(n)}(\mathbf{1}) .
$$

The map $\mathcal{G}_{\mu, T}$ has a unique fixed point iff $g_{\text {min }}=g_{\text {max }}$.

Remark: The middle g (green) is not so simple to find. Here, we use a string method, and compute

$$
\mathcal{C}:=\left(g_{t}\right)_{t \in[0,1]}, \quad g_{0}=g_{\min }, g_{1}=g_{\max }, \quad \mathcal{G}_{\mu, T}(\mathcal{C})=\mathcal{C}
$$

Conjecture

For all $w \in L^{1}+L^{\infty}$, all $T>0$ and all $\rho>0$, there is always a unique pair (μ, g) solution to

$$
g=\mathcal{G}_{\mu, T}(g) \quad \text { and } \quad \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} g=\rho .
$$

The map $g \mapsto \mathcal{G}_{\mu, T}(g)$ is increasing, and $0 \leq g \leq 1$. We can define

$$
g_{\min }[\mu, T]:=\lim _{n \rightarrow \infty} \mathcal{G}_{\mu, T}^{(n)}(\mathbf{0}) \quad \text { and } \quad g_{\max }[\mu, T]:=\lim _{n \rightarrow \infty} \mathcal{G}_{\mu, T}^{(n)}(\mathbf{1}) .
$$

The map $\mathcal{G}_{\mu, T}$ has a unique fixed point iff $g_{\text {min }}=g_{\text {max }}$.

Remark: The middle g (green) is not so simple to find. Here, we use a string method, and compute

$$
\mathcal{C}:=\left(g_{t}\right)_{t \in[0,1]}, \quad g_{0}=g_{\min }, g_{1}=g_{\max }, \quad \mathcal{G}_{\mu, T}(\mathcal{C})=\mathcal{C}
$$

Conclusions

- Nice and simple problem to study phase transitions.
- Not so trivial: already shows complex phase transitions.
- It remains to prove uniqueness for all ρ and all T.

Thank you for your attention.

[^0]: ${ }^{1}$ The first and longer proof was done in collaboration with M. Borji.

[^1]: ${ }^{1}$ The first and longer proof was done in collaboration with M. Borji.

[^2]: ${ }^{1}$ The first and longer proof was done in collaboration with M. Borji.

