Spin symmetry breaking in the Hartree-Fock electron gas

David Gontier

CEREMADE, Université Paris-Dauphine

Franco-German Workshop, Aachen September 12, 2018

Joint work with M. Lewin.

Notation and first facts

States = one-body density matrix: $\check{\gamma} \in \mathcal{S}(L^2(\mathbb{R}^d, \mathbb{C}^2)), 0 \leq \gamma \leq 1$.

Translational-invariant states: $\check{\gamma}(\mathbf{x}, \mathbf{y}) = \check{\gamma}(\mathbf{x} - \mathbf{y})$.

 $\Longrightarrow
ho_{\tilde{\gamma}}$ is a constant \Longrightarrow the direct term can be dropped.

States = one-body density matrix: $\check{\gamma} \in \mathcal{S}(L^2(\mathbb{R}^d, \mathbb{C}^2)), 0 \leq \gamma \leq 1$.

Translational-invariant states: $\check{\gamma}(\mathbf{x}, \mathbf{y}) = \check{\gamma}(\mathbf{x} - \mathbf{y})$.

 $\implies \rho_{\tilde{\gamma}}$ is a constant \implies the direct term can be dropped.

Fourier operator, $\check{\gamma}$ is multiplication operator in Fourier by

$$\gamma(\mathbf{k}) = \begin{pmatrix} \gamma^{\uparrow\uparrow}(\mathbf{k}) & \gamma^{\uparrow\downarrow}(\mathbf{k}) \\ \gamma^{\downarrow\uparrow}(\mathbf{k}) & \gamma^{\downarrow\downarrow}(\mathbf{k}) \end{pmatrix}, \quad \gamma(\mathbf{k}) = \gamma(\mathbf{k})^*, \quad 0 \le \gamma(\mathbf{k}) \le \mathbb{I}_2.$$

States = one-body density matrix: $\check{\gamma} \in \mathcal{S}(L^2(\mathbb{R}^d, \mathbb{C}^2)), 0 \leq \gamma \leq 1$.

Translational-invariant states: $\check{\gamma}(\mathbf{x}, \mathbf{y}) = \check{\gamma}(\mathbf{x} - \mathbf{y})$.

 $\Rightarrow \rho_{\tilde{\gamma}}$ is a constant \Rightarrow the direct term can be dropped.

Fourier operator, $\check{\gamma}$ is multiplication operator in Fourier by

$$\gamma(\mathbf{k}) = \begin{pmatrix} \gamma^{\uparrow\uparrow}(\mathbf{k}) & \gamma^{\uparrow\downarrow}(\mathbf{k}) \\ \gamma^{\downarrow\uparrow}(\mathbf{k}) & \gamma^{\downarrow\downarrow}(\mathbf{k}) \end{pmatrix}, \quad \gamma(\mathbf{k}) = \gamma(\mathbf{k})^*, \quad 0 \le \gamma(\mathbf{k}) \le \mathbb{I}_2.$$

HF energy of this state (at T = 0)

$$\mathcal{E}^{\mathrm{HF}}(\gamma) := \frac{1}{2} \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} k^2 \mathrm{tr}_{\mathbb{C}^2} \gamma(\mathbf{k}) \mathrm{d}\mathbf{k} - \frac{1}{2} \int_{\mathbb{R}^d} w(\mathbf{x}) \mathrm{tr}_{\mathbb{C}^2} \left| \check{\gamma}(\mathbf{x}) \right|^2 \mathrm{d}\mathbf{x}.$$

HF energy of the translation-invariant electron gas

$$e^{\mathrm{HF}}(\rho) := \min \left\{ \mathcal{E}^{\mathrm{HF}}(\gamma), \ 0 \le \gamma = \gamma^* \le \mathbb{I}_2, \ \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \mathrm{tr}_{\mathbb{C}^2} \gamma = \rho \right\}.$$

Remark:

- $\rho = \check{\gamma}(\mathbf{0})$ is the density of the gas. This is the only parameter of the model.
- We assume in the sequel that \hat{w} is positive radial-decreasing (repulsive interaction).

What is the spin structure of the minimiser?

States = one-body density matrix: $\check{\gamma} \in \mathcal{S}(L^2(\mathbb{R}^d, \mathbb{C}^2)), 0 \leq \gamma \leq 1$.

Translational-invariant states: $\check{\gamma}(\mathbf{x}, \mathbf{y}) = \check{\gamma}(\mathbf{x} - \mathbf{y})$.

 $\Rightarrow \rho_{\tilde{\gamma}}$ is a constant \Rightarrow the direct term can be dropped.

Fourier operator, $\check{\gamma}$ is multiplication operator in Fourier by

$$\gamma(\mathbf{k}) = \begin{pmatrix} \gamma^{\uparrow\uparrow}(\mathbf{k}) & \gamma^{\uparrow\downarrow}(\mathbf{k}) \\ \gamma^{\downarrow\uparrow}(\mathbf{k}) & \gamma^{\downarrow\downarrow}(\mathbf{k}) \end{pmatrix}, \quad \gamma(\mathbf{k}) = \gamma(\mathbf{k})^*, \quad 0 \leq \gamma(\mathbf{k}) \leq \mathbb{I}_2.$$

HF energy of this state (at T = 0)

$$\mathcal{E}^{\mathrm{HF}}(\gamma) := \frac{1}{2} \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} k^2 \mathrm{tr}_{\mathbb{C}^2} \gamma(\mathbf{k}) \mathrm{d}\mathbf{k} - \frac{1}{2} \frac{1}{(2\pi)^{2d}} \iint_{(\mathbb{R}^d)^2} \hat{w}(\mathbf{k} - \mathbf{k}') \mathrm{tr}_{\mathbb{C}^2} \left[\gamma(\mathbf{k}) \gamma(\mathbf{k}') \right] \mathrm{d}\mathbf{k} \, \mathrm{d}\mathbf{k}'.$$

HF energy of the translation-invariant electron gas

$$e^{\mathrm{HF}}(\rho) := \min \left\{ \mathcal{E}^{\mathrm{HF}}(\gamma), \ 0 \le \gamma = \gamma^* \le \mathbb{I}_2, \ \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \mathrm{tr}_{\mathbb{C}^2} \gamma = \rho \right\}.$$

Remark:

- $\rho = \check{\gamma}(\mathbf{0})$ is the density of the gas. This is the only parameter of the model.
- We assume in the sequel that \hat{w} is positive radial-decreasing (repulsive interaction).

What is the spin structure of the minimiser?

No-spin version of the problem: \approx replace the 2×2 matrix γ by a real number/function g.

$$\mathcal{E}_{\mathrm{no.spin}}^{\mathrm{HF}}(g) := \frac{1}{2} \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} k^2 g(\mathbf{k}) \mathrm{d}\mathbf{k} - \frac{1}{2} \frac{1}{(2\pi)^{2d}} \iint_{(\mathbb{R}^d)^2} \hat{w}(\mathbf{k} - \mathbf{k}') g(\mathbf{k}) g(\mathbf{k}') \mathrm{d}\mathbf{k} \mathrm{d}\mathbf{k}'.$$

Corresponding problem

$$e_{\text{no.spin}}^{\text{HF}}(\rho) := \min \left\{ \mathcal{E}_{\text{no.spin}}^{\text{HF}}(g), \ 0 \le g \le 1, \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} g = \rho \right\}.$$

No-spin version of the problem: \approx replace the 2×2 matrix γ by a real number/function g.

$$\mathcal{E}_{\mathrm{no.spin}}^{\mathrm{HF}}(g) := \frac{1}{2} \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} k^2 g(\mathbf{k}) \mathrm{d}\mathbf{k} - \frac{1}{2} \frac{1}{(2\pi)^{2d}} \iint_{(\mathbb{R}^d)^2} \hat{w}(\mathbf{k} - \mathbf{k}') g(\mathbf{k}) g(\mathbf{k}') \mathrm{d}\mathbf{k} \mathrm{d}\mathbf{k}'.$$

Corresponding problem

$$\boxed{ \mathbf{e}_{\text{no.spin}}^{\text{HF}}(\rho) := \min \left\{ \mathcal{E}_{\text{no.spin}}^{\text{HF}}(g), \ 0 \leq g \leq 1, \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} g = \rho \right\}. }$$

Remark: If $\gamma = \begin{pmatrix} g^{\uparrow} & 0 \\ 0 & g^{\downarrow} \end{pmatrix}$ is diagonal, then

$$\mathcal{E}^{\mathrm{HF}}(\gamma) = \mathcal{E}^{\mathrm{HF}}_{\mathrm{no.spin}}(g^{\uparrow}) + \mathcal{E}^{\mathrm{HF}}_{\mathrm{no.spin}}(g^{\downarrow}).$$

In particular,

$$E^{\mathrm{HF}}(\rho) \leq \min_{t \in [0,\frac{1}{2}]} \left\{ \mathrm{e}^{\mathrm{HF}}_{\mathrm{no.spin}}(t\rho) + \mathrm{e}^{\mathrm{HF}}_{\mathrm{no.spin}}((1-t)\rho) \right\}.$$

Proposition

Assume $\hat{w} \in L^1(\mathbb{R}^d) + L^\infty(\mathbb{R}^d)$ is positive radially decreasing. Then the problems are well-posed, and the minimisers of \mathcal{E}^{HF} are all of the form

$$\gamma(\mathbf{k}) = U \begin{pmatrix} g^{\uparrow} & 0 \\ 0 & g^{\downarrow} \end{pmatrix} U^* \quad \textit{with} \quad U \in \mathrm{SU}(2).$$

Hence,

$$E^{\mathrm{HF}}(\rho) = \min_{t \in [0, \frac{1}{2}]} \left\{ e_{\mathrm{no.spin}}^{\mathrm{HF}}(t\rho) + e_{\mathrm{no.spin}}^{\mathrm{HF}}((1-t)\rho) \right\}.$$

Proposition

Assume $\hat{w} \in L^1(\mathbb{R}^d) + L^\infty(\mathbb{R}^d)$ is positive radially decreasing. Then the problems are well-posed, and the minimisers of \mathcal{E}^{HF} are all of the form

$$\gamma(\mathbf{k}) = U \begin{pmatrix} g^{\uparrow} & 0 \\ 0 & g^{\downarrow} \end{pmatrix} U^* \quad \text{with} \quad U \in \mathrm{SU}(2).$$

Hence,

$$E^{\mathrm{HF}}(\rho) \!\!=\! \min_{t \in [0,\frac{1}{2}]} \left\{ \mathrm{e}^{\mathrm{HF}}_{\mathrm{no.spin}}(t\rho) + \mathrm{e}^{\mathrm{HF}}_{\mathrm{no.spin}}((1-t)\rho) \right\}. \label{eq:energy_energy}$$

Proof:

- For all \mathbf{k} , $\gamma(\mathbf{k})$ is diagonalisable, of the form $\gamma(\mathbf{k}) = U(\mathbf{k})D(\mathbf{k})U^*(\mathbf{k})$;
- ullet We have ${
 m tr}_{\mathbb{C}^2} \gamma = {
 m tr}_{\mathbb{C}^2} D \implies$ same density, and same kinetic energy;
- For the Fock term, we use the following lemma:

Lemma

Let
$$D_1 = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \mu_1 \end{pmatrix}$$
 and $D_2 = \begin{pmatrix} \lambda_2 & 0 \\ 0 & \mu_2 \end{pmatrix}$ be two diagonal matrices with $\lambda_1 \geq \mu_1$ and $\lambda_2 \geq \mu_2$.
Then, for any unitary matrix $U \in SU(2)$, we have $\operatorname{tr}_{\mathbb{C}^2}(D_1UD_2U^*) \leq \operatorname{tr}_{\mathbb{C}^2}(D_1D_2)$.

Proposition

Assume $\hat{w} \in L^1(\mathbb{R}^d) + L^\infty(\mathbb{R}^d)$ is positive radially decreasing. Then the problems are well-posed, and the minimisers of \mathcal{E}^{HF} are all of the form

$$\gamma(\mathbf{k}) = U \begin{pmatrix} g^{\uparrow} & 0 \\ 0 & g^{\downarrow} \end{pmatrix} U^* \quad \text{with} \quad U \in \mathrm{SU}(2).$$

Hence,

$$E^{\mathrm{HF}}(\rho) {=} \min_{t \in [0,\frac{1}{2}]} \left\{ \mathrm{e}^{\mathrm{HF}}_{\mathrm{no.spin}}(t\rho) + \mathrm{e}^{\mathrm{HF}}_{\mathrm{no.spin}}((1-t)\rho) \right\}.$$

Proof:

- For all \mathbf{k} , $\gamma(\mathbf{k})$ is diagonalisable, of the form $\gamma(\mathbf{k}) = U(\mathbf{k})D(\mathbf{k})U^*(\mathbf{k})$;
- We have $\operatorname{tr}_{\mathbb{C}^2} \gamma = \operatorname{tr}_{\mathbb{C}^2} D \Longrightarrow \text{ same density, and same kinetic energy;}$
- For the Fock term, we use the following lemma:

Lemma

Let $D_1 = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \mu_1 \end{pmatrix}$ and $D_2 = \begin{pmatrix} \lambda_2 & 0 \\ 0 & \mu_2 \end{pmatrix}$ be two diagonal matrices with $\lambda_1 \geq \mu_1$ and $\lambda_2 \geq \mu_2$. Then, for any unitary matrix $U \in SU(2)$, we have $\operatorname{tr}_{\mathbb{C}^2}(D_1UD_2U^*) \leq \operatorname{tr}_{\mathbb{C}^2}(D_1D_2)$.

Let
$$J=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
. We have $D_i=\mu_i\mathbb{I}_2+\alpha_iJ$ with $\alpha_i:=(\lambda_i-\mu_i)\geq 0$. Hence,
$$\operatorname{tr}_{\mathbb{C}^2}(D_1D_2)-\operatorname{tr}_{\mathbb{C}^2}(D_1UD_2U^*)=\alpha_1\alpha_2\left[1-\operatorname{tr}_{\mathbb{C}^2}(JUJU^*)\right]=\alpha_1\alpha_2\left[1-|U_{11}|^2\right]\geq 0.$$

It remains to study the no-spin problem.

Proposition

Assume $\hat{w} \in L^1(\mathbb{R}^d) + L^\infty(\mathbb{R}^d)$ is positive radially decreasing. Then $e_{\mathrm{no.spin}}^{\mathrm{HF}}(\rho)$ has a unique minimiser, which is $g^*[\rho](\mathbf{k}) := \mathbb{1}(k^2 \leq C_{\mathrm{TF}}\rho^{2/d})$.

Remark: The minimiser does not depend on w (the exchange term).

¹The first and longer proof was done in collaboration with M. Borji.

It remains to study the no-spin problem.

Proposition

Assume $\hat{w} \in L^1(\mathbb{R}^d) + L^\infty(\mathbb{R}^d)$ is positive radially decreasing. Then $e_{\mathrm{no.spin}}^{\mathrm{HF}}(\rho)$ has a unique minimiser, which is $g^*[\rho](\mathbf{k}) := \mathbb{1}(k^2 \leq C_{\mathrm{TF}}\rho^{2/d})$.

Remark: The minimiser does not depend on w (the exchange term).

Proof:

Let $g\in L^1(\mathbb{R}^d)$ with $0\leq g(\mathbf{k})\leq 1$ and $(2\pi)^{-d}\int g=\rho$, consider g^* its symmetric decreasing rearrangement. We have

$$\begin{split} \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} g^* &= \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} g = \rho \quad \text{(trivial)}, \quad \int_{\mathbb{R}^d} k^2 g^* \leq \int_{\mathbb{R}^d} k^2 g \quad \text{(bath tube principle)} \\ &- \int_{\mathbb{R}} (g^* * \hat{w}) g^* \leq - \int_{\mathbb{R}} (g * \hat{w}) g \quad \text{(Riesz inequality)}. \end{split}$$

Hence $e_{\text{no.spin}}^{\text{HF}}(g^*) \leq e_{\text{no.spin}}^{\text{HF}}(g)$.

 \implies restrict the minimisation to radially decreasing function between 0 and 1.

¹The first and longer proof was done in collaboration with M. Borji.

It remains to study the no-spin problem.

Proposition

Assume $\hat{w} \in L^1(\mathbb{R}^d) + L^\infty(\mathbb{R}^d)$ is positive radially decreasing. Then $e_{\mathrm{no.spin}}^{\mathrm{HF}}(\rho)$ has a unique minimiser, which is $g^*[\rho](\mathbf{k}) := \mathbb{1}(k^2 \leq C_{\mathrm{TF}}\rho^{2/d})$.

Remark: The minimiser does not depend on w (the exchange term).

Proof:

Let $g \in L^1(\mathbb{R}^d)$ with $0 \le g(\mathbf{k}) \le 1$ and $(2\pi)^{-d} \int g = \rho$, consider g^* its symmetric decreasing rearrangement. We have

$$\begin{split} \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} g^* &= \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} g = \rho \quad \text{(trivial)}, \quad \int_{\mathbb{R}^d} k^2 g^* \leq \int_{\mathbb{R}^d} k^2 g \quad \text{(bath tube principle)} \\ &- \int_{\mathbb{R}} (g^* * \hat{w}) g^* \leq - \int_{\mathbb{R}} (g * \hat{w}) g \quad \text{(Riesz inequality)}. \end{split}$$

Hence $e_{\text{no.spin}}^{\text{HF}}(g^*) \leq e_{\text{no.spin}}^{\text{HF}}(g)$.

 \implies restrict the minimisation to radially decreasing function between 0 and 1.

The problem is concave¹ in g, hence g saturates the constraints, and $g(\mathbf{k}) \in \{0, 1\}$.

The only radially decreasing function g with value in $\{0,1\}$ and $(2\pi)^{-d}\int g=\rho$ is $g^*[\rho]$.

¹The first and longer proof was done in collaboration with M. Borji.

Phase transitions

We proved that

$$\boxed{ \mathbf{e}_{\text{no.spin}}^{\text{HF}}(\rho) = \mathcal{E}_{\text{no.spin}}^{\text{HF}}(g^*[\rho]) \quad \text{with} \quad g^*[\rho] := \mathbb{1}(k^2 \leq C_{\text{TF}}\rho^{2/d}).}$$

and that

$$E^{\mathrm{HF}}(\rho) = \min_{t \in [0, \frac{1}{2}]} \left\{ e_{\mathrm{no.spin}}^{\mathrm{HF}}(t\rho) + e_{\mathrm{no.spin}}^{\mathrm{HF}}((1-t)\rho) \right\}.$$

Definition

The minimising t is called the polarisation.

- If t=0, the gas is ferromagnetic, and all minimisers are of the form $\gamma=U\begin{pmatrix}g^*(\rho)&0\\0&0\end{pmatrix}U^*$.
- If $t=\frac{1}{2}$, the gas is paramagnetic, and the unique minimiser is $\gamma=g^*(\frac{1}{2}\rho)\mathbb{I}_2$.

We discuss phase transition as ρ increases.

The case for Riesz interactions.

Proposition

Assume that
$$w(\mathbf{x}) = \frac{1}{|\mathbf{x}|^s}$$
 with $0 < s < d$, so that $\hat{w}(\mathbf{k}) := \frac{c_{d,s}}{|\mathbf{k}|^{d-s}}$. Then

$$e_{\text{no.spin}}^{\text{HF}}(\rho) = \kappa(d)\rho^{1+\frac{d}{2}} - \lambda(d,s)\rho^{1+\frac{s}{d}}.$$

In addition,

- If $0 < s < \min(2, d)$, then there is $\rho_c > 0$ such that the system is ferromagnetic for $\rho < \rho_c$, and is paramagnetic for $\rho > \rho_c$ (sharp transition).
- If $\min(2,d) < s < d$, then there is $\rho_{c,p} > \rho_{c,f} > 0$ such that the system if ferromagnetic for $\rho < \rho_{c,f}$, becomes smoothly paramagnetic for $\rho_{c,f} < \rho < \rho_{c,p}$, and is paramagnetic for $\rho > \rho_{c,p}$ (smooth transition).

We recover the result for the Coulomb case (s=1 and d=3) found in usual textbooks.

The sharp transition for Coulomb interaction ($s=1\ \mathrm{and}\ d=3$)

We plot the function $t\mapsto \mathrm{e_{no.spin}^{HF}}(t\rho)+\mathrm{e_{no.spin}^{HF}}((1-t)\rho).$

The smooth transition for another Riesz interaction ($s=\frac{5}{2}$ and d=3)

We plot the function $t\mapsto \mathrm{e_{no.spin}^{HF}}(t\rho)+\mathrm{e_{no.spin}^{HF}}((1-t)\rho).$

A NON TRIVIAL transition for a sum of Riesz interactions

With
$$w(\mathbf{x}) = \frac{\alpha_1}{|\mathbf{x}|^{s_1}} + \frac{\alpha_2}{|\mathbf{x}|^{s_2}}$$
 (still positive radial decreasing).

We plot the function
$$t\mapsto \mathrm{e_{no.spin}^{HF}}(t\rho)+\mathrm{e_{no.spin}^{HF}}((1-t)\rho).$$

Positive temperature

We now add the entropy $S(x) = x \log x + (1-x) \log(1-x)$ (convex).

$$\mathcal{E}^{\mathrm{HF}}(\gamma, \mathbf{T}) = \mathcal{E}^{\mathrm{HF}}(\gamma) + \frac{T}{(2\pi)^d} \int_{\mathbb{R}^d} \mathrm{tr}_{\mathbb{C}^2} S(\gamma(\mathbf{k})) \mathrm{d}\mathbf{k}.$$

We set $e^{HF}(\rho, T)$, $\mathcal{E}_{\text{no.spin}}^{HF}(\gamma, T)$ and $e_{\text{no.spin}}^{HF}(\rho, T)$ with obvious definition.

As before (same proof),

$$e^{\mathrm{HF}}(\rho,T) = \inf_{t \in [0,\frac{1}{2}]} \left\{ e_{\mathrm{no.spin}}^{\mathrm{HF}}(t\rho,T) + e_{\mathrm{no.spin}}^{\mathrm{HF}}((1-t)\rho,T) \right\}.$$

Question: Does $e_{\text{no.spin}}^{\text{HF}}(\rho,T)$ have a unique minimiser?

Numerical results

Phase diagram of the polarisation for the 3d Coulomb gas (d=3 and s=1).

Uniqueness of the minimiser?

Euler-Lagrange equations: All minimisers g of ${\bf e}_{
m no.spin}^{
m HF}(\rho,T)$ satisfy

$$\frac{1}{2}k^2 - g * \hat{w}(\mathbf{k}) + TS'(g(\mathbf{k})) = \mu \quad \text{for some} \quad \mu \in \mathbb{R}.$$

Uniqueness of the minimiser?

Euler-Lagrange equations: All minimisers g of $e_{\mathrm{no.spin}}^{\mathrm{HF}}(\rho,T)$ satisfy

$$\frac{1}{2}k^2 - g * \hat{w}(\mathbf{k}) + TS'(g(\mathbf{k})) = \mu \quad \text{for some} \quad \mu \in \mathbb{R}.$$

Fixed point equation

$$g = \mathcal{G}_{\mu,T}(g) \quad \text{with} \quad \mathcal{G}_{\mu,T}(g) : \mathbf{k} \mapsto \frac{1}{1 + \mathrm{e}^{\frac{1}{T}(\frac{1}{2}k^2 - g * \hat{w}(\mathbf{k}) - \mu)}}.$$

Uniqueness of the minimiser?

Euler-Lagrange equations: All minimisers g of $\mathbf{e}_{\mathrm{no.spin}}^{\mathrm{HF}}(\rho,T)$ satisfy

$$\frac{1}{2}k^2 - g * \hat{w}(\mathbf{k}) + TS'(g(\mathbf{k})) = \mu \quad \text{for some} \quad \mu \in \mathbb{R}.$$

Fixed point equation

$$g = \mathcal{G}_{\mu,T}(g) \quad \text{with} \quad \mathcal{G}_{\mu,T}(g) : \mathbf{k} \mapsto \frac{1}{1 + \mathrm{e}^{\frac{1}{T}(\frac{1}{2}k^2 - g*\hat{w}(\mathbf{k}) - \mu)}}.$$

Proposition (High temperature regime)

There is $T_c>0$ such that, for all $T>T_c$, the map $\mathcal{G}_{\mu,T}$ has a unique fixed point $g_{\mu,T}$ for all $\mu\in\mathbb{R}$, and the map $\mu\mapsto \rho[\mu,T]:=(2\pi)^{-d}\int g_{\mu,T}$ is increasing.

In particular, $e^{HF}_{\mathrm{no.spin}}(\rho,T)$ has a unique minimiser for all $\rho>0$, the map $\rho\mapsto e^{HF}_{\mathrm{no.spin}}(\rho,T)$ is convex, and the system with spin is always paramagnetic.

Remark: This result cannot be true for all T > 0. Otherwise, the system would always be paramagnetic.

Uniqueness. For T large enough, $\mathcal{G}_{\mu,T}$ is a contraction, hence has a unique fixed point g_{μ} .

Uniqueness. For T large enough, $\mathcal{G}_{\mu,T}$ is a contraction, hence has a unique fixed point g_{μ} .

Monotony. The map $g\mapsto \mathcal{G}_{\mu,T}(g)$ is increasing $(g_1< g_2\implies \mathcal{G}_{\mu,T}(g_1)<\mathcal{G}_{\mu,T}(g_2))$. In particular,

$$g_{\mu} = \lim_{n \to \infty} \mathcal{G}_{\mu,T}^{(n)}(\mathbf{0}).$$

Uniqueness. For T large enough, $\mathcal{G}_{\mu,T}$ is a contraction, hence has a unique fixed point g_{μ} .

Monotony. The map $g \mapsto \mathcal{G}_{\mu,T}(g)$ is increasing $(g_1 < g_2 \implies \mathcal{G}_{\mu,T}(g_1) < \mathcal{G}_{\mu,T}(g_2))$. In particular,

$$g_{\mu} = \lim_{n \to \infty} \mathcal{G}_{\mu,T}^{(n)}(\mathbf{0}).$$

The map $\mu \mapsto \mathcal{G}_{\mu,T}$ is increasing. Hence, if $\mu_1 < \mu_2$,

$$\mathcal{G}_{\mu_1,T}^{(n)}(\mathbf{0}) < \mathcal{G}_{\mu_2,T}^{(n)}(\mathbf{0}), \quad \text{hence} \quad g_1 \leq g_2 \quad \text{and} \quad \rho[\mu_1] \leq \rho[\mu_2].$$

Uniqueness. For T large enough, $\mathcal{G}_{\mu,T}$ is a contraction, hence has a unique fixed point g_{μ} .

Monotony. The map $g \mapsto \mathcal{G}_{\mu,T}(g)$ is increasing $(g_1 < g_2 \implies \mathcal{G}_{\mu,T}(g_1) < \mathcal{G}_{\mu,T}(g_2))$. In particular,

$$g_{\mu} = \lim_{n \to \infty} \mathcal{G}_{\mu,T}^{(n)}(\mathbf{0}).$$

The map $\mu \mapsto \mathcal{G}_{\mu,T}$ is increasing. Hence, if $\mu_1 < \mu_2$,

$$\mathcal{G}_{\mu_1,T}^{(n)}(\mathbf{0}) < \mathcal{G}_{\mu_2,T}^{(n)}(\mathbf{0}), \quad \text{hence} \quad g_1 \leq g_2 \quad \text{and} \quad \rho[\mu_1] \leq \rho[\mu_2].$$

Convexity. We can define $\rho \mapsto \mu[\rho, T]$, and we have

$$\frac{\partial}{\partial \rho} \mathrm{e}_{\mathrm{no.spin}}^{\mathrm{HF}}(\rho,T) = \mu[\rho,T] \quad \mathrm{hence} \quad \frac{\partial^2}{\partial \rho^2} \mathrm{e}_{\mathrm{no.spin}}^{\mathrm{HF}} \geq 0.$$

Uniqueness. For T large enough, $\mathcal{G}_{\mu,T}$ is a contraction, hence has a unique fixed point g_{μ} .

Monotony. The map $g \mapsto \mathcal{G}_{\mu,T}(g)$ is increasing $(g_1 < g_2 \implies \mathcal{G}_{\mu,T}(g_1) < \mathcal{G}_{\mu,T}(g_2))$. In particular,

$$g_{\mu} = \lim_{n \to \infty} \mathcal{G}_{\mu,T}^{(n)}(\mathbf{0}).$$

The map $\mu \mapsto \mathcal{G}_{\mu,T}$ is increasing. Hence, if $\mu_1 < \mu_2$,

$$\mathcal{G}_{\mu_1,T}^{(n)}(\mathbf{0})<\mathcal{G}_{\mu_2,T}^{(n)}(\mathbf{0}),\quad \text{hence}\quad g_1\leq g_2\quad \text{and}\quad \rho[\mu_1]\leq \rho[\mu_2].$$

Convexity. We can define $\rho \mapsto \mu[\rho, T]$, and we have

$$\frac{\partial}{\partial \rho} \mathrm{e}_{\mathrm{no.spin}}^{\mathrm{HF}}(\rho,T) = \mu[\rho,T] \quad \mathrm{hence} \quad \frac{\partial^2}{\partial \rho^2} \mathrm{e}_{\mathrm{no.spin}}^{\mathrm{HF}} \geq 0.$$

Paramagnetism. Finally, since $e_{\text{no.spin}}^{\text{HF}}$ is convex in ρ , for all $0 \leq t \leq 1$,

$$\frac{1}{2}\mathbf{e}_{\text{no.spin}}^{\text{HF}}(t\rho,T) + \frac{1}{2}\mathbf{e}_{\text{no.spin}}^{\text{HF}}((1-t)\rho,T) \geq \mathbf{e}_{\text{no.spin}}^{\text{HF}}\left(\frac{1}{2}t\rho + \frac{1}{2}(1-t)\rho,T\right) = \mathbf{e}_{\text{no.spin}}^{\text{HF}}\left(\frac{1}{2}\rho,T\right).$$

In other words, the minimum is attained for $t = \frac{1}{2}$ (\Longrightarrow paramagnetism).

Conjecture

For all $w \in L^1 + L^\infty$, all T > 0 and all $\rho > 0$, there is always a unique pair (μ, g) solution to

$$g=\mathcal{G}_{\mu,T}(g)\quad \text{and}\quad \frac{1}{(2\pi)^d}\int_{\mathbb{R}^d}g=\rho.$$

The map $g \mapsto \mathcal{G}_{\mu,T}(g)$ is increasing, and $0 \le g \le 1$. We can define

$$g_{\min}[\mu,T] := \lim_{n \to \infty} \mathcal{G}_{\mu,T}^{(n)}(\mathbf{0}) \quad \text{and} \quad g_{\max}[\mu,T] := \lim_{n \to \infty} \mathcal{G}_{\mu,T}^{(n)}(\mathbf{1}).$$

The map $\mathcal{G}_{\mu,T}$ has a unique fixed point iff $g_{\min}=g_{\max}$.

Conjecture

For all $w \in L^1 + L^\infty$, all T > 0 and all $\rho > 0$, there is always a unique pair (μ, g) solution to

$$g=\mathcal{G}_{\mu,T}(g)\quad \text{and}\quad \frac{1}{(2\pi)^d}\int_{\mathbb{R}^d}g=\rho.$$

The map $g\mapsto \mathcal{G}_{\mu,T}(g)$ is increasing, and $0\leq g\leq 1.$ We can define

$$g_{\min}[\mu,T] := \lim_{n \to \infty} \mathcal{G}_{\mu,T}^{(n)}(\mathbf{0}) \quad \text{and} \quad g_{\max}[\mu,T] := \lim_{n \to \infty} \mathcal{G}_{\mu,T}^{(n)}(\mathbf{1}).$$

The map $\mathcal{G}_{\mu,T}$ has a unique fixed point iff $g_{\min}=g_{\max}$.

Remark: The middle g (green) is not so simple to find. Here, we use a *string method*, and compute

$$C := (g_t)_{t \in [0,1]}, \quad g_0 = g_{\min}, \ g_1 = g_{\max}, \quad \mathcal{G}_{\mu,T}(C) = C.$$

Conjecture

For all $w\in L^1+L^\infty$, all T>0 and all $\rho>0$, there is always a unique pair (μ,g) solution to

$$g=\mathcal{G}_{\mu,T}(g)\quad \text{and}\quad \frac{1}{(2\pi)^d}\int_{\mathbb{R}^d}g=\rho.$$

The map $g\mapsto \mathcal{G}_{\mu,T}(g)$ is increasing, and $0\leq g\leq 1.$ We can define

$$g_{\min}[\mu,T] := \lim_{n \to \infty} \mathcal{G}_{\mu,T}^{(n)}(\mathbf{0}) \quad \text{and} \quad g_{\max}[\mu,T] := \lim_{n \to \infty} \mathcal{G}_{\mu,T}^{(n)}(\mathbf{1}).$$

The map $\mathcal{G}_{\mu,T}$ has a unique fixed point iff $g_{\min}=g_{\max}$.

Remark: The middle g (green) is not so simple to find. Here, we use a *string method*, and compute

$$C := (g_t)_{t \in [0,1]}, \quad g_0 = g_{\min}, \ g_1 = g_{\max}, \quad \mathcal{G}_{\mu,T}(C) = C.$$

Conclusions

- Nice and simple problem to study phase transitions.
- Not so trivial: already shows complex phase transitions.
- ullet It remains to prove uniqueness for all ho and all T.

Thank you for your attention.