Edge states in ordinary differential equations for dislocations

David Gontier

CEREMADE, Université Paris-Dauphine

Séminaire POEMS April 30th 2020

Dauphine | PSL CEREMADE

Some historical remarks.

May 20, 2019: New definition of the kg by the Bureau International des Poids et Mesures (BIPM)¹ : "Le kilogramme, symbole kg, est l'unité de masse du SI. Il est défini en prenant la valeur numérique fixée de la constante de Planck, h, égale à $6,62607015 \times 10^{-34}$ J.s."

Question: How do you measure *h*? How do you measure *h* with 10^{-9} accuracy?

Comments by von Klitzing²: "The discovery of the QHE led to a new type of electrical resistor [...]. This resistor is universal for all 2D electron systems in strong magnetic fields with an uncertainty of less than one part in 10^{10} ."

QHE = Quantum Hall Effect³ (von Klitzing got Nobel prize in 1985 for discovery of Quantum Hall Effect).

¹https://www.bipm.org/fr/measurement-units/

²von Klitzing, Nature Physics 13, 2017

³K. von Klitzing; G. Dorda; M. Pepper, Phys. Rev. Lett. 45 (6): 494-497, 1980.

David Gontier

Modern interpretation: The plateaus correspond to different *topological phases of matter*⁴, and the QHE is a manifestation of *bulk-edge correspondence:*

"For some systems, one can associate an edge index $I^{\sharp} \in \mathbb{Z}$, and a bulk index $I \in \mathbb{Z}$, and one has

 $I^{\sharp} = I$ (bulk-edge correspondence).

These indices are «topological», hence are stable with respect to temperature, noise, deformation, ..." The Planck constant h is related to I, while the electrical resistor by von Klitzing measures I^{\sharp} .

The Rossby Waves (wind) might be a manifestation of bulk-edge correspondence (Tauber/Delplace/Venaille, J. Fluid Mech. Vol 868 (2019).) In this talk: not about QH/2d. Here, a simple 1d model where bulk-edge correspondence happens.

⁴D.J. Thouless, F.D.M. Haldane and J.M. Kosterlitz got Nobel prize in 2016 for the discovery of topological phases of matter

Goal: (simple) introduction to *bulk-edge correspondence*.

Motivation

Let $V : \mathbb{R} \to \mathbb{R}$ be a 1-periodic smooth potential, and let $V_t(x) := V(x-t)$. We consider

• The periodic (bulk) operator

$$H(t) := -\partial_{xx}^2 + V_t.$$

• The dislocated operator

$$H_{\chi}^{\sharp}(t) := -\partial_{xx}^{2} + [V_{0}\chi + V_{t}(1-\chi)],$$

where χ is a cut-off with $\chi(x) = 1$ if x < -L and $\chi(x) = 0$ if x > L.

$$V = \frac{t}{\sqrt{\sqrt{1-\chi}}} V_0 \chi + V_t (1-\chi)$$

Question: How does the spectrum of $H^{\sharp}_{\chi}(t)$ vary with t? Remark: Everything is 1-periodic in t.

Figure: Spectrum of $H_{\chi}^{\sharp}(t)$ for $t \in [0, 1]$.

Theorem (Korotyaev 2000, Hempel Kohlmann 2011, DG 2020)

In the n-th essential gap, there is a flow of n eigenvalues going downwards as t goes from 0 to 1. In addition, these eigenvalues are simple, and their associated eigenvectors are exponentially localised.

= edge states

We provide here a simple topological proof, which will prove bulk-edge correspondence in this case.

E. Korotyaev, Commun. Math. Phys., 213(2):471-489, 2000.

R. Hempel and M. Kohlmann., J. Math. Anal. Appl., 381(1):166-178, 2011.

David Gontier

Periodic operators

Preliminaries.

Potential: Let $V \in C^1(\mathbb{R}, \mathbb{R})$ be any potential (not necessarily 1-periodic).

 $\begin{array}{ll} \mbox{Hamiltonian:} & H:=-\partial_{xx}^2+V \mbox{ as an operator on } L^2(\mathbb{R}).\\ \mbox{Associated ODE:} & -u''+V(x)u=Eu, \mbox{ on } \mathbb{R}.\\ \mbox{Vector space of solutions: Let } \mathcal{L}_V(E) \mbox{ denote the vectorial space of solutions of the ODE.}\\ \mbox{Since it is a second order ODE, } \dim \mathcal{L}_V(E)=2, \mbox{ and } \end{array}$

$$\mathcal{L}_{V}(E) = \operatorname{Ran} \left\{ c_{E}, s_{E} \right\}, \quad \begin{cases} -c_{E}'' + Vc_{E} = Ec_{E} \\ c_{E}(0) = 1, \ c_{E}'(0) = 0 \end{cases}, \quad \begin{cases} -s_{E}'' + Vs_{E} = Es_{E} \\ s_{E}(0) = 0, \ s_{E}'(0) = 1 \end{cases}$$

Lemma (definition?)

 $E \in \mathbb{R}$ is an eigenvalue of H iff $\mathcal{L}_V(E) \cap L^2 \neq \emptyset$.

Transfer matrix

$$T_E(x) := \begin{pmatrix} c_E(x) & c'_E(x) \\ s_E(x) & s'_E(x) \end{pmatrix}.$$

Lemma

For all $x \in \mathbb{R}$, we have $\det T_E(x) = 1$

Indeed, det T_E is the Wronskian of the ODE. At x = 0, we have $T_E(0) = \mathbb{I}_2$, and

$$(\det T_E)' = (c_E s'_E - s_E c'_E)' = c_E s''_E - s_E c''_E = c_E (V - E) s_E - s_E (V - E) c_E = 0.$$

David Gontier

Case of periodic potentials.

We now assume that V is 1-periodic.

If u(x) is solution to the ODE, then so is $u(\cdot + 1)$. In particular there are constants $\alpha, \beta, \gamma, \delta$ such that

$$\begin{cases} c_E(x+1) = \alpha c_E(x) + \beta s_E(x) \\ s_E(x+1) = \gamma c_E(x) + \delta s_E(x). \end{cases} \quad \text{or equivalently} \quad T_E(x+1) = \begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix} T_E(x). \end{cases}$$

At x = 0, we recognise $T_E(x = 1)$, so $T_E(x + 1) = T_E(1)T_E(x)$

So for any solution $u \in \mathcal{L}_E$, we have

$$\begin{pmatrix} u(x+n)\\ u'(x+n) \end{pmatrix} = \left[T_E(1)\right]^n \begin{pmatrix} u(x)\\ u'(x) \end{pmatrix}.$$

 \implies The behaviour of solutions at infinity is given by the singular values of $T_E(1)$.

Recall that if λ_1 and λ_2 are the singular values of $T_E(1)$, then $\lambda_1\lambda_2 = \det T_E(1) = 1$. Also, $\lambda_1 + \lambda_2 = \operatorname{Tr}(T_E) \in \mathbb{R}$. Two cases.

• if
$$|\lambda_1| > 1$$
, then $|\lambda_2| < 1$. Then $\lambda_1, \lambda_2 \in \mathbb{R}$ and $|\operatorname{Tr}(T_E)| > 2$.

There is one mode exponentially increasing at $+\infty$ and exponentially decreasing at $-\infty$. There is one mode exponentially increasing at $-\infty$ and exponentially decreasing at $+\infty$. The elements of \mathcal{L}_E cannot be approximated in L^2 , which implies $E \notin \sigma(H)$.

• if
$$|\lambda_1| = 1$$
, the $|\lambda_2| = 1$. Then $|\lambda_1| = 1$, $\lambda_2 = \overline{\lambda_1}$ and $|\operatorname{Tr}(T_E)| \leq 2$.
All solutions in \mathcal{L}_E are bounded (quasi-periodic).
All solutions in \mathcal{L}_E can be approximated in L^2 , which implies $E \in \sigma_{ess}(H)$.

The spectrum of H can be read from the (continuous) map $E \mapsto Tr(T_E)$.

Example: for $V(x) := 50 \cdot \cos(2\pi x) + 10 \cdot \cos(4\pi x)$,

Theorem (Spectrum of 1-dimensional periodic operators)

If V is 1-periodic, the spectrum $H := -\partial_{xx}^2 + V(x)$ is purely essential (no eigenvalues). It is composed of bands:

$$\sigma(H) = \sigma_{\mathrm{ess}}(H) = \bigcup_{n \ge 1} [E_n^-, E_n^+].$$

Essential gap: The interval $g_n := (E_n^+, E_{n+1}^-)$ is called the n-th essential gap of the operator H.

Physical interpretation:

- If $E \in \sigma(H)$, waves with energy E can travel through the medium (quasi-periodic solutions);
- If E ∉ σ(H), waves cannot propagate: they are exponentially attenuated in the medium. In scattering theory, we would say that the wave is totally reflected.

Example: If V = 0, then $H = -\partial_{xx}^2$. We have -u'' = Eu if $u = \alpha e^{i\sqrt{E}} + \beta e^{-i\sqrt{E}}$.

- If $E \ge 0$, $\sqrt{E} \in \mathbb{R}$, and we have *travelling waves*;
- If $E < 0, \sqrt{E} \in i\mathbb{R}$, and we have *exponential waves*.
- The spectrum of $-\partial_{xx}^2$ is $[0,\infty)$.

Bulk index

A basic remark

If $-\partial_{xx}^2 u + (V - E)u = 0$ is a non null *real-valued* solution, then u(x) and u'(x) cannot vanish at the same time (Cauchy-Lipschitz).

We can therefore define the discrete set $\mathcal{Z}[u] := u^{-1}(\{0\})$, and the map

$$x\mapsto {\pmb heta}[{\pmb u},{\pmb x}]:= {u'(x)-{
m i} u(x)\over u'(x)+{
m i} u(x)} \quad {
m from}\ {\mathbb R}\ {
m to}\ {\mathbb S}^1:=\{z\in {\mathbb C}, |z|=1\}.$$

Lemma

 $\mathcal{Z}[u]$ and $\theta[u, x]$ only depends on $\operatorname{Vect}\{u\}: \theta[u, x_0] = \theta[v, x_0]$ iff $u = \lambda v$.

In the sequel, we fix x_0 , consider a periodic family of solutions u_t for H_t , and compute the winding number of $t \mapsto \theta[u_t, x_0]$.

The Maslov⁵ bulk index.

Translated Hamiltonian: We now fix $V \in C^1$ a 1-periodic potential, and we set:

$$V_t(x) := V(x-t), \quad \mathcal{L}_t(E) := \mathcal{L}_{V_t}(E), \quad \text{and} \quad H_t := -\partial_{xx}^2 + V_t.$$

Translations: If $\tau_t f(x) := f(x - t)$, we have $H_t = \tau_t H_0 \tau_t^*$, so H_t is unitary equivalent to H_0 . $\implies \sigma(H_t) = \sigma(H)$. In particular, the gaps g_n are independent of $t \in \mathbb{R}$.

We fix $E \in g_n$ in a common open gap.

Splitting of $\mathcal{L}_V(E)$. Since $E \notin \sigma(H_t)$, there is a natural splitting $\mathcal{L}_t(E) = \mathcal{L}_t^+(E) \oplus \mathcal{L}_t^-(E)$, where $\mathcal{L}_t^{\pm}(E) = \operatorname{Vect}\{ \text{modes exp. decreasing at } \pm \infty \}, \quad \dim \mathcal{L}_t^{\pm}(E) = 1, \quad \mathcal{L}_t^+(E) \cap \mathcal{L}_t^-(E) = \{ \mathbf{0} \}.$

Remark: The map $t \mapsto \mathcal{L}_t^{\pm}(E)$ is 1-periodic, so the map $t \mapsto \theta \left[\mathcal{L}_t^{\pm}(E), x \right]$ is also 1-periodic on \mathbb{S}^1 . Winding number: We denote by \mathcal{M}^{\pm} the corresponding winding numbers. By continuity, they are independent of $E \in g_n$ and of $x \in \mathbb{R}$.

Lemma

 $\mathcal{M}^+ = \mathcal{M}^-$. The common number is our bulk index (it is a Maslov index).

Proof. Since $\mathcal{L}^+ \neq \mathcal{L}^-$, we have $\theta_t^+ \neq \theta_t^-$, so $\frac{\theta_t^+}{\theta_t^-} \in \mathbb{S}^1$ never touches 1, hence has null winding number. This gives $\mathcal{M}^+ - \mathcal{M}^- = 0$.

⁵ Maslov, Théorie des perturbations et méthodes asymptotiques. 1972

Lemma

\mathcal{M} counts the flow of the discrete set \mathcal{Z}_t across any $x_0 \in \mathbb{R}$.

Proof. Fix $x_0 \in \mathbb{R}$.

Step 1. We can compute the winding number of $\theta_t(x_0) := \theta[\mathcal{L}_t^+(x_0)]$ by counting the number of times it crosses the value $1 \in \mathbb{S}^1$ (with orientation).

Step 2. We have $\theta_{t^*}(x_0) = 1$ iff $u(t^*, x_0) = 0$ iff $x_0 \in \mathbb{Z}_{t^*}$. Let $x(t) \in \mathbb{Z}_t$ be the branch of zeros of $u(t, \cdot)$ such that $x(t^*) = x_0$, that is u(t, x(t)) = 0. By the implicit theorem,

$$x'(t^*) = -\frac{\partial_t u(t^*, x_0)}{\partial_x u(t^*, x_0)}.$$

On the other hand, a computation shows that

$$\partial_t \theta(t^*, x_0) = -2\mathrm{i} \frac{\partial_t u(t^*, x_0)}{\partial_x u(t^*, x_0)} = 2\mathrm{i} x'(t^*).$$

At $t = t^*$, $\theta(t, x_0)$ is locally turning positively iff $x'(t^*)$ is crossing x_0 from the left to the right!

Bonus, in the dislocated case.

Lemma

In the case $V_t(x) := V(x-t)$, we have $\mathcal{M} = n$ in the *n*-th gap.

Proof.

Step 1. In this case, we have $Z_t := Z_0 + t$. By periodicity, we have $Z_1 = Z_0 + 1 = Z_0$. If $x_0 \in Z_0$, then $x_0 + 1 \in Z_0$. In particular, $(E, u_{t=0}|_{[x_0, x_0+1]})$ is an eigenpair of the Dirichlet problem

$$\begin{cases} \left(-\partial_{xx}^2 + V(x) \right) u = Eu, & \text{on} \quad (x_0, x_0 + 1) \\ u(x_0) = u(x_0 + 1) = 0. \end{cases}$$

The flow \mathcal{M} corresponds to the number of zeros of u in the interval $[x_0, x_0 + 1)$.

Step 2 (deformation). For $0 \le s \le 1$, we introduce $(E(s), \widetilde{u_s})$ the Dirichlet eigenpair of

$$\begin{cases} \left(-\partial_{xx}^2 + sV(x)\right)\widetilde{u_s} = E_s\widetilde{u_s}, & \text{on} \quad (x_0, x_0 + 1)\\ \widetilde{u_s}(x_0) = \widetilde{u_s}(x_0 + 1) = 0. \end{cases}$$

which is a continuation of (E, u) at s = 1, and by \mathcal{M}_s the number of zeros of $\widetilde{u_s}$ in the interval $[x_0, x_0 + 1)$.

By continuity, E(s) cannot cross the essential spectrum, so E(s) is always in the *n*-th gap. By Cauchy-Lipschitz, two zeros cannot merge, so \mathcal{M}_s is independent of s, and $\mathcal{M} = \mathcal{M}_{s=1}$. At s = 0, we recover the usual Laplacian.

We deduce that E(s) is the branch of *n*-th eigenvalues, and that $\mathcal{M} = n$.

Edge index and edge modes

The half-line Dirichlet Hamiltonian.

 $\boxed{H_D^{\sharp}(t):=-\partial_{xx}^2+V(x-t),}\quad \text{on }\mathbb{R}^+\quad \text{with Dirichlet boundary conditions at }x=0.$

Essential spectrum: We have $\sigma_{ess}(H_D^{\sharp}(t)) = \sigma_{ess}(H_0)$ independent of t. So g_n is well-defined. Key remark: E is an eigenvalue of $H_D^{\sharp}(t)$ iff $0 \in \mathcal{Z}_t^+(E)$.

Lemma

If $E \in g_n$ is in the n-th gap, there are exactly n values $0 \le t_1 < t_2 \cdots < t_n < 1$ such that E is an eigenvalue of $H^{\sharp}_D(t_k)$. The corresponding eigenfunctions (= edge modes) are exponentially localised near x = 0.

Corollary: spectral pollution

If one numerically studies the periodic Hamiltonian H(0) on a large box with Dirichlet boundary conditions, spurious eigenvalues will appear.

On a box [t, L + t] with L large, there will be flows of spurious eigenvalues in all essential gaps, corresponding to the localised edge modes near the boundaries t and L + t.

Figure: Spectrum of $H_D^{\sharp}(t)$ as a function of t (the dotted lines represent resonances).

Theorem (Bulk-edge correspondence)

The branches of eigenvalues are decreasing function of t. In particular, in the n-th gap, the decreasing spectral flow of $H_D^{\sharp}(\cdot)$ is $\mathcal{S}_{D,n}^{\sharp} = n$. Idea of the proof.

If $(\tilde{E}(t), \tilde{u}(t))$ is a branch of eigenpair for H(t) with $\|\tilde{u}_t\|^2 = 1$. We have $H(t)\tilde{u}(t) = \tilde{E}(t)$, and $\tilde{E}(t) = \langle \tilde{u}(t), H(t)\tilde{u}(t) \rangle$. Differentiating in t gives (Hellman-Feynman argument)

$$\begin{split} \widetilde{E}'(t) &= \langle \widetilde{u}_t, \partial_t H_t \widetilde{u}_t \rangle + \langle \partial_t \widetilde{u}_t, H_t \widetilde{u}_t \rangle + \langle \widetilde{u}_t, H_t \partial_t \widetilde{u}_t \rangle \\ &= \langle \widetilde{u}_t, (\partial_t V_t) \, \widetilde{u}_t \rangle + \widetilde{E}(t) \underbrace{(\langle \partial_t \widetilde{u}_t, \widetilde{u}_t \rangle + \langle \widetilde{u}_t, \partial_t \widetilde{u}_t \rangle)}_{=\partial_t \| \| \widetilde{u}_t \|^2 = 0} = \int_0^\infty \left(\partial_t V_t \right) |\widetilde{u}_t|^2 \mathrm{d}x. \end{split}$$

On the other hand, if u(t) is a branch of functions in $\mathcal{L}_t^+(E)$ (E is fixed now), then

$$(-\partial_{xx}^2 + V_t - E)u_t = 0.$$

These functions do not satisfy Dirichlet in general! Differentiating in t gives

$$(-\partial_{xx}^2 + V_t - E)\partial_t u_t + (\partial_t V_t) u_t = 0.$$

We multiply by u_t and integrate on \mathbb{R}^+ . We integrate by part and obtain (now we have boundary terms)

$$\int_0^\infty \left(\partial_t V_t\right) |u_t|^2 = \partial_x u_t(0) \partial_t u_t(0).$$

Of course, at the point t, we have $u_t = \widetilde{u_t}$. In the special case where $V_t(x) = V(x-t)$ so that $u_t(x) = u(x-t)$, we obtain

$$\widetilde{E}'(t) = -|\partial_t u_t|^2(0) < 0.$$

The proof relies on integration by parts. In some sense, this is a form of *bulk-edge correspondence*.

David Gontier

The case of dislocation.

$$H_{\chi}^{\sharp}(t) := -\partial_{xx}^{2} + \chi(x)V_{0}(x) + [1 - \chi(x)]V_{t}(x) =: -\partial_{xx}^{2} + V_{\chi}^{\sharp}(t).$$

Here, χ is a *switch function*: $\chi(x) = 1$ if x < -L and $\chi(x) = 0$ if x > L.

- **Remarks:** At t = 0, we recover H_0 , which has purely essential spectrum.
 - $\bullet \quad t\mapsto H(t) \text{ is } 1\text{-periodic in } t.$
- Fact: $\sigma_{ess}\left(H_{\chi}^{\sharp}(t)\right)$ is independent of t, so the essential gaps g_n are well-defined.

Theorem

The decreasing spectral flow of $H_{\chi}^{\sharp}(\cdot)$ is $S_{\chi,n}^{\sharp} = n$ in the *n*-th gap g_n . It is independent of the switch function χ .

Idea of the proof.

Let $\mathcal{L}_{t}^{\sharp,\pm}(E)$ be the vectorial space of solutions which are square integrable at $\pm\infty$. Key remark: E is an eigenvalue for $H_{\chi}^{\sharp}(t)$ iff $\mathcal{L}_{t}^{\sharp,+}(E) \cap \mathcal{L}_{t}^{\sharp,-}(E) \neq \{\mathbf{0}\}$, iff $\theta^{\sharp,+}(x_{0},t) = \theta^{\sharp,-}(x_{0},t)$. Looking at $x \gg L$, we see that $\mathcal{L}_{t}^{\sharp,+}(E) \approx \mathcal{L}_{t}^{+}(E)$, so $\mathcal{M}^{\sharp,+} = \mathcal{M}^{+}$. Looking at $x \ll L$, we see that $\mathcal{L}_{t}^{\sharp,-}(E) \approx \mathcal{L}_{0}^{-}(E)$, so $\mathcal{M}^{\sharp,-} = 0$ (independent of t).

We deduce that the winding is $\frac{\theta^{\sharp,+}(x_0,t)}{\theta^{\sharp,-}(x_0,t)}$ is

$$\mathcal{M}^{\sharp,+} - \mathcal{M}^{\sharp,-} = \mathcal{M}^+ - 0 = n.$$

Hence it crosses the value $1\in\mathbb{S}^1$ exactly n times (with orientation).

Remark: The spectral flow is independent of χ , but the form of the eigenvalue branches depends on χ .

Extensions

The Dirac case.

The Dirac equation is an ODE with values in \mathbb{C}^2 (spins), of the form

$$\mathbf{i} \begin{pmatrix} \psi^{\uparrow} \\ -\psi^{\downarrow} \end{pmatrix}' = \begin{pmatrix} 0 & V(x) \\ V(x) & 0 \end{pmatrix} \begin{pmatrix} \psi^{\uparrow} \\ \psi^{\downarrow} \end{pmatrix} + E \begin{pmatrix} \psi^{\uparrow} \\ \psi^{\downarrow} \end{pmatrix}.$$

Lemma (Fefferman/Lee-Thorp/Weinstein, AMS Vol. 247 (2017).)

If V switches from V_{per} at $x \leq -L$ to $-V_{\text{per}}$ at $x \geq L$, then 0 is in the spectrum of the Dirac operator. = «Topologically protected state».

Idea: embed the 0 eigenvalue in a spectral flow!

Replace the group of translations with the group of spin rotations: family of operators $\mathcal{D}^{\sharp}_{\chi}(t)$:

Consider
$$V_{\chi}^{\sharp}(t,x) = \chi(x)V_{\text{per}}(x) \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} + (1-\chi(x))V_{\text{per}}(x) \begin{pmatrix} \sin(2\pi t) & \cos(2\pi t)\\ \cos(2\pi t) & -\sin(2\pi t) \end{pmatrix}$$

Remark: at $t = \frac{1}{2}$, this is a transition from V_{per} to $-V_{per}$.

Lemma (DG, 2020)

The decreasing spectral flow is 1 in each essential gap, and $\mathcal{D}^{\sharp}_{\chi}(\frac{1}{2}-t) = -\mathcal{D}^{\sharp}_{\chi}(\frac{1}{2}+t)$. In particular, 0 is an eigenvalue at t = 1/2 (= previous result).

Figure: Spectrum of the Dirac operator $\mathcal{D}^{\sharp}_{\chi}(t)$ as a function of t

Future work: the 2d case

- Study dislocations in 2*d*. Similar results, but in infinite dimensions.
- Study dislocations + rotations in 2d.

Reference:

Edge states in Ordinary Differential Equations for dislocations, D.G., J. Math. Phys. 61, 2020 (arXiv 1908.01377).

Thank you for your attention!