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Some historical remarks.

May 20, 2019: New definition of the kg by the Bureau International des Poids et Mesures (BIPM)1 :
”Le kilogramme, symbole kg, est l’unité de masse du SI. Il est défini en prenant la valeur numérique fixée de la
constante de Planck, h, égale à 6, 626 070 15× 10−34 J.s.”

Question: How do you measure h? How do you measure h with 10−9 accuracy?

Comments by von Klitzing2: ”The discovery of the QHE led to a new type of electrical resistor […]. This
resistor is universal for all 2D electron systems in strong magnetic fields with an uncertainty of less than one
part in 1010.”

QHE = Quantum Hall Effect3 (von Klitzing got Nobel prize in 1985 for discovery of Quantum Hall Effect).

1https://www.bipm.org/fr/measurement-units/
2von Klitzing, Nature Physics 13, 2017
3K. von Klitzing; G. Dorda; M. Pepper, Phys. Rev. Lett. 45 (6): 494–497, 1980.
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Modern interpretation: The plateaus correspond to different topological phases of matter4, and the QHE is
a manifestation of bulk-edge correspondence:

”For some systems, one can associate an edge index I] ∈ Z, and a bulk index I ∈ Z, and one has

I] = I (bulk-edge correspondence).

These indices are «topological», hence are stable with respect to temperature, noise, deformation, …”

The Planck constant h is related to I , while the electrical resistor by von Klitzing measures I].

The Rossby Waves (wind) might be a manifestation of bulk-edge correspondence (Tauber/Delplace/Venaille, J.
Fluid Mech. Vol 868 (2019). )
In this talk: not about QH/2d. Here, a simple 1d model where bulk-edge correspondence happens.

4D.J. Thouless, F.D.M. Haldane and J.M. Kosterlitz got Nobel prize in 2016 for the discovery of topological phases of matter
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Goal: (simple) introduction to bulk-edge correspondence.

Motivation
Let V : R → R be a 1-periodic smooth potential, and let Vt(x) := V (x− t). We consider

The periodic (bulk) operator
H(t) := −∂2xx + Vt.

The dislocated operator
H]

χ(t) := −∂2xx + [V0χ+ Vt(1− χ)] ,

where χ is a cut-off with χ(x) = 1 if x < −L and χ(x) = 0 if x > L.

Question: How does the spectrum ofH]
χ(t) vary with t?

Remark: Everything is 1-periodic in t.
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Figure: Spectrum of H]
χ(t) for t ∈ [0, 1].

Theorem (Korotyaev 2000, Hempel Kohlmann 2011, DG 2020)

In the n-th essential gap, there is a flow of n eigenvalues going downwards as t goes from 0 to 1.
In addition, these eigenvalues are simple, and their associated eigenvectors are exponentially localised.

= edge states
We provide here a simple topological proof, which will prove bulk-edge correspondence in this case.

E. Korotyaev, Commun. Math. Phys., 213(2):471–489, 2000.

R. Hempel and M. Kohlmann., J. Math. Anal. Appl., 381(1):166–178, 2011.
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Periodic operators
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Preliminaries.
Potential: Let V ∈ C1(R,R) be any potential (not necessarily 1-periodic).

Hamiltonian: H := −∂2xx + V as an operator on L2(R).
Associated ODE: −u′′ + V (x)u = Eu, on R.
Vector space of solutions: Let LV (E) denote the vectorial space of solutions of the ODE.
Since it is a second order ODE, dimLV (E) = 2, and

LV (E) = Ran {cE , sE} ,
{
−c′′E + V cE = EcE

cE(0) = 1, c′E(0) = 0
,

{
−s′′E + V sE = EsE

sE(0) = 0, s′E(0) = 1
.

Lemma (definition?)

E ∈ R is an eigenvalue ofH iff LV (E) ∩ L2 6= ∅.

Transfer matrix

TE(x) :=

(
cE(x) c′E(x)
sE(x) s′E(x)

)
.

Lemma
For all x ∈ R, we have detTE(x) = 1

Indeed, detTE is the Wronskian of the ODE. At x = 0, we have TE(0) = I2, and

(detTE)′ =
(
cEs

′
E − sEc

′
E

)′
= cEs

′′
E − sEc

′′
E = cE(V − E)sE − sE(V − E)cE = 0.
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Case of periodic potentials.
We now assume that V is 1-periodic.
If u(x) is solution to the ODE, then so is u(·+ 1). In particular there are constants α, β, γ, δ such that{

cE(x+ 1) = αcE(x) + βsE(x)

sE(x+ 1) = γcE(x) + δsE(x).
or equivalently TE(x+ 1) =

(
α γ
β δ

)
TE(x).

At x = 0, we recognise TE(x = 1), so TE(x+ 1) = TE(1)TE(x) .

So for any solution u ∈ LE , we have(
u(x+ n)
u′(x+ n)

)
= [TE(1)]n

(
u(x)
u′(x)

)
.

=⇒ The behaviour of solutions at infinity is given by the singular values of TE(1).

Recall that if λ1 and λ2 are the singular values of TE(1), then λ1λ2 = detTE(1) = 1.
Also, λ1 + λ2 = Tr(TE) ∈ R.
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Two cases.
if |λ1| > 1, then |λ2| < 1. Then λ1, λ2 ∈ R and |Tr(TE)| > 2 .

There is one mode exponentially increasing at +∞ and exponentially decreasing at −∞.
There is one mode exponentially increasing at −∞ and exponentially decreasing at +∞.
The elements of LE cannot be approximated in L2, which implies E /∈ σ(H).

if |λ1| = 1, the |λ2| = 1. Then |λ1| = 1, λ2 = λ1 and |Tr(TE)| ≤ 2 .

All solutions in LE are bounded (quasi-periodic).
All solutions in LE can be approximated in L2, which implies E ∈ σess(H).

The spectrum ofH can be read from the (continuous) map E 7→ Tr(TE).

Example: for V (x) := 50 · cos(2πx) + 10 · cos(4πx),
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Theorem (Spectrum of 1-dimensional periodic operators)

If V is 1-periodic, the spectrumH := −∂2xx + V (x) is purely essential (no eigenvalues).
It is composed of bands:

σ(H) = σess(H) =
⋃
n≥1

[E−
n , E

+
n ].

Essential gap: The interval gn := (E+
n , E

−
n+1) is called the n-th essential gap of the operatorH .

Physical interpretation:

If E ∈ σ(H), waves with energy E can travel through the medium (quasi-periodic solutions);

If E /∈ σ(H), waves cannot propagate: they are exponentially attenuated in the medium. In
scattering theory, we would say that the wave is totally reflected.

Example: If V = 0, thenH = −∂2xx. We have −u′′ = Eu if u = αei
√
E + βe−i

√
E .

If E ≥ 0,
√
E ∈ R, and we have travelling waves;

If E < 0,
√
E ∈ iR, and we have exponential waves.

The spectrum of −∂2xx is [0,∞).
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Bulk index

David Gontier Edge states in ODE for dislocations 11 / 25



A basic remark
If −∂2xxu+ (V − E)u = 0 is a non null real-valued solution, then u(x) and u′(x) cannot vanish at the
same time (Cauchy-Lipschitz).

We can therefore define the discrete set Z[u] := u−1({0}), and the map

x 7→ θ[u, x] :=
u′(x)− iu(x)

u′(x) + iu(x)
from R to S1 := {z ∈ C, |z| = 1 }.

Lemma
Z[u] and θ[u, x] only depends on Vect{u}: θ[u, x0] = θ[v, x0] iff u = λv.

In the sequel, we fix x0, consider a periodic family of solutions ut forHt, and compute the
winding number of t 7→ θ[ut, x0].
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The Maslov5 bulk index.
Translated Hamiltonian: We now fix V ∈ C1 a 1-periodic potential, and we set:

Vt(x) := V (x− t), Lt(E) := LVt (E), and Ht := −∂2xx + Vt.

Translations: If τtf(x) := f(x− t), we haveHt = τtH0τ∗t , soHt is unitary equivalent toH0.
=⇒ σ(Ht) = σ(H). In particular, the gaps gn are independent of t ∈ R.

We fix E ∈ gn in a common open gap.

Splitting of LV (E). Since E /∈ σ(Ht), there is a natural splitting Lt(E) = L+
t (E)⊕ L−

t (E), where

L±
t (E) = Vect{modes exp. decreasing at ±∞}, dimL±

t (E) = 1, L+
t (E) ∩ L−

t (E) = {0}.

Remark: The map t 7→ L±
t (E) is 1-periodic, so the map t 7→ θ

[
L±
t (E), x

]
is also 1-periodic on S1.

Winding number: We denote by M± the corresponding winding numbers. By continuity, they are
independent of E ∈ gn and of x ∈ R.

Lemma

M+ = M−. The common number is our bulk index (it is a Maslov index).

Proof. Since L+ 6= L−, we have θ+t 6= θ−t , so
θ+t
θ−t

∈ S1 never touches 1, hence has null winding number.

This gives M+ −M− = 0.

5Maslov, Théorie des perturbations et méthodes asymptotiques. 1972
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Lemma
M counts the flow of the discrete set Zt across any x0 ∈ R.

Proof. Fix x0 ∈ R.
Step 1. We can compute the winding number of θt(x0) := θ[L+

t (x0)] by counting the number of times
it crosses the value 1 ∈ S1 (with orientation).

Step 2. We have θt∗ (x0) = 1 iff u(t∗, x0) = 0 iff x0 ∈ Zt∗ .
Let x(t) ∈ Zt be the branch of zeros of u(t, ·) such that x(t∗) = x0, that is u(t, x(t)) = 0.
By the implicit theorem,

x′(t∗) = −
∂tu(t∗, x0)

∂xu(t∗, x0)
.

On the other hand, a computation shows that

∂tθ(t
∗, x0) = −2i

∂tu(t∗, x0)

∂xu(t∗, x0)
= 2ix′(t∗).

At t = t∗, θ(t, x0) is locally turning positively iff x′(t∗) is crossing x0 from the left to the right!

x0

t
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Bonus, in the dislocated case.

Lemma
In the case Vt(x) := V (x− t), we haveM = n in the n-th gap.

Proof.
Step 1. In this case, we have Zt := Z0 + t. By periodicity, we have Z1 = Z0 + 1 = Z0.
If x0 ∈ Z0, then x0 +1 ∈ Z0. In particular, (E, ut=0|[x0,x0+1]) is an eigenpair of the Dirichlet problem{(

−∂2xx + V (x)
)
u = Eu, on (x0, x0 + 1)

u(x0) = u(x0 + 1) = 0.

The flow M corresponds to the number of zeros of u in the interval [x0, x0 + 1).

Step 2 (deformation). For 0 ≤ s ≤ 1, we introduce (E(s), ũs) the Dirichlet eigenpair of{(
−∂2xx + sV (x)

)
ũs = Esũs, on (x0, x0 + 1)

ũs(x0) = ũs(x0 + 1) = 0.

which is a continuation of (E, u) at s = 1, and by Ms the number of zeros of ũs in the interval
[x0, x0 + 1).

By continuity, E(s) cannot cross the essential spectrum, so E(s) is always in the n-th gap.
By Cauchy-Lipschitz, two zeros cannot merge, so Ms is independent of s, and M = Ms=1.
At s = 0, we recover the usual Laplacian.

We deduce that E(s) is the branch of n-th eigenvalues, and that M = n.
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Edge index and edgemodes

David Gontier Edge states in ODE for dislocations 16 / 25



The half-line Dirichlet Hamiltonian.

H]
D(t) := −∂2xx + V (x− t), on R+ with Dirichlet boundary conditions at x = 0.

Essential spectrum: We have σess(H
]
D(t)) = σess(H0) independent of t. So gn is well-defined.

Key remark: E is an eigenvalue ofH]
D(t) iff 0 ∈ Z+

t (E).

Lemma
If E ∈ gn is in the n-th gap, there are exactly n values 0 ≤ t1 < t2 · · · < tn < 1 such that E is an
eigenvalue ofH]

D(tk).
The corresponding eigenfunctions (= edge modes) are exponentially localised near x = 0.

Corollary: spectral pollution
If one numerically studies the periodic HamiltonianH(0) on a large box with Dirichlet boundary
conditions, spurious eigenvalues will appear.
On a box [t, L+ t] with L large, there will be flows of spurious eigenvalues in all essential gaps,
corresponding to the localised edge modes near the boundaries t and L+ t.
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Figure: Spectrum of H]
D(t) as a function of t (the dotted lines represent resonances).

Theorem (Bulk-edge correspondence)
The branches of eigenvalues are decreasing function of t.
In particular, in the n-th gap, the decreasing spectral flow ofH]

D(·) is S]
D,n = n.
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Idea of the proof.

If
(
Ẽ(t), ũ(t)

)
is a branch of eigenpair forH(t) with ‖ũt‖2 = 1. We haveH(t)ũ(t) = Ẽ(t), and

Ẽ(t) = 〈ũ(t), H(t)ũ(t)〉. Differentiating in t gives (Hellman-Feynman argument)

Ẽ′(t) = 〈ũt, ∂tHtũt〉+ 〈∂tũt, Htũt〉+ 〈ũt, Ht∂tũt〉

= 〈ũt, (∂tVt) ũt〉+ Ẽ(t) (〈∂tũt, ũt〉+ 〈ũt, ∂tũt〉)︸ ︷︷ ︸
=∂t‖ũt‖2=0

=

ˆ ∞

0
(∂tVt) |ũt|2dx.

On the other hand, if u(t) is a branch of functions in L+
t (E) (E is fixed now), then

(−∂2xx + Vt − E)ut = 0.

These functions do not satisfy Dirichlet in general! Differentiating in t gives

(−∂2xx + Vt − E)∂tut + (∂tVt)ut = 0.

We multiply by ut and integrate on R+. We integrate by part and obtain (now we have boundary terms)
ˆ ∞

0
(∂tVt) |ut|2 = ∂xut(0)∂tut(0).

Of course, at the point t, we have ut = ũt. In the special case where Vt(x) = V (x− t) so that
ut(x) = u(x− t), we obtain

Ẽ′(t) = −|∂tut|2(0) < 0.

The proof relies on integration by parts.
In some sense, this is a form of bulk-edge correspondence.
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The case of dislocation.

H]
χ(t) := −∂2xx + χ(x)V0(x) + [1− χ(x)]Vt(x) =: −∂2xx + V ]

χ(t).

Here, χ is a switch function: χ(x) = 1 if x < −L and χ(x) = 0 if x > L.

Remarks: • At t = 0, we recoverH0, which has purely essential spectrum.
• t 7→ H(t) is 1-periodic in t.

Fact: • σess
(
H]

χ(t)
)

is independent of t, so the essential gaps gn are well-defined.

Theorem

The decreasing spectral flow ofH]
χ(·) is S]

χ,n = n in the n-th gap gn.
It is independent of the switch function χ.

Idea of the proof.
Let L],±

t (E) be the vectorial space of solutions which are square integrable at ±∞.
Key remark: E is an eigenvalue forH]

χ(t) iff L],+
t (E) ∩ L],−

t (E) 6= {0}, iff θ],+(x0, t) = θ],−(x0, t).
Looking at x� L, we see that L],+

t (E) ≈ L+
t (E), so M],+ = M+.

Looking at x� L, we see that L],−
t (E) ≈ L−

0 (E), so M],− = 0 (independent of t).

We deduce that the winding is
θ],+(x0, t)

θ],−(x0, t)
is

M],+ −M],− = M+ − 0 = n.

Hence it crosses the value 1 ∈ S1 exactly n times (with orientation).
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Figure: Spectrum of H]
χ(t) for t ∈ [0, 1].

Remark: The spectral flow is independent of χ, but the form of the eigenvalue branches depends on χ.
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Extensions
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The Dirac case.
The Dirac equation is an ODE with values in C2 (spins), of the form

i

(
ψ↑

−ψ↓

)′
=

(
0 V (x)

V (x) 0

)(
ψ↑

ψ↓

)
+ E

(
ψ↑

ψ↓

)
.

Lemma ( Fefferman/Lee-Thorp/Weinstein, AMS Vol. 247 (2017).)
If V switches from Vper at x ≤ −L to −Vper at x ≥ L, then 0 is in the spectrum of the Dirac operator.
= «Topologically protected state».

Idea: embed the 0 eigenvalue in a spectral flow!
Replace the group of translations with the group of spin rotations: family of operators D]

χ(t):

Consider V ]
χ(t, x) = χ(x)Vper(x)

(
0 1
1 0

)
+ (1− χ(x))Vper(x)

(
sin(2πt) cos(2πt)
cos(2πt) − sin(2πt)

)
.

Remark: at t = 1
2
, this is a transition from Vper to −Vper.
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Lemma (DG, 2020)

The decreasing spectral flow is 1 in each essential gap, and D]
χ(

1
2
− t) = −D]

χ(
1
2
+ t).

In particular, 0 is an eigenvalue at t = 1/2 (= previous result).

Figure: Spectrum of the Dirac operator D]
χ(t) as a function of t
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Future work: the 2d case
Study dislocations in 2d. Similar results, but in infinite dimensions.

Study dislocations + rotations in 2d.

Reference:
Edge states in Ordinary Differential Equations for dislocations, D.G., J. Math. Phys. 61, 2020 (arXiv 1908.01377).

Thank you for your attention!
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