Cristallisation in the Lieb-Thirring inequality

David Gontier joint work with Rupert L. Frank and Mathieu Lewin

CEREMADE, Université Paris-Dauphine

Séminaire Problème spectraux en Physique Mathématique, IHP October 12, 2020

Slides available at www.ceremade.dauphine.fr/~gontier/Presentations/2020_10_12_IHP.pdf.

Dauphine | PSL CEREMADE

Lieb-Thirring inequality

Let $\gamma \geq 0$ satisfy

$$\begin{cases} \gamma \geq \frac{1}{2} & \text{ in dimension } d = 1, \\ \gamma > 0 & \text{ in dimension } d = 2, \\ \gamma \geq 0 & \text{ in dimension } d = 3. \end{cases}$$

There exists (an optimal -smallest- constant) $L_{\gamma,d} > 0$ so that, for all $V \in L^{\gamma + \frac{d}{2}}(\mathbb{R}^d)$

$$\sum_{n=1}^{\infty} |\lambda_n(-\Delta+V)|^{\gamma} \le L_{\gamma,d} \int_{\mathbb{R}^d} V_{-}(x)^{\gamma+\frac{d}{2}} \mathrm{d}x.$$

(Lieb-Thirring inequality)

where λ_n is the *n*-th min-max eigenvalue of $-\Delta + V$ if exists, 0 otherwise ($\lambda_n \leq 0$), and where $V_- := \max\{0, -V\}$.

References

Case $\gamma > \dots$ (strict inequality)

- E. H. Lieb, W. E. Thirring, Bound on kinetic energy of fermions which proves stability of matter, Phys. Rev. Lett., 35 (1975).
- E. H. Lieb, W. E. Thirring, Studies in Mathematical Physics, 1976.

Case $\gamma = 0$ for $d \ge 3$ (Cwikel-Lieb-Rozenblum (CLR) inequality)

- M. Cwikel, Ann. of Math., 106 (1977).
- E.H. Lieb, Bull. Amer. Math. Soc., 82 (1976).
- G. V. Rozenblum, Dokl. Akad. Nauk SSSR, 202 (1972).

Case $\gamma = \frac{1}{2}$ for d = 1

- T. Weidl, Comm. Math. Phys., 178 (1996).
- O. Hundertmark, E.H. Lieb, and L.E. Thomas, Adv. Theor. Math. Phys., 2 (1998).

Let $\gamma \geq 0$ satisfy

$$\begin{cases} \gamma \geq \frac{1}{2} & \text{ in dimension } d = 1, \\ \gamma > 0 & \text{ in dimension } d = 2, \\ \gamma \geq 0 & \text{ in dimension } d = 3. \end{cases}$$

There exists (an optimal -smallest- constant) $L_{\gamma,d} > 0$ so that, for all $V \in L^{\gamma + \frac{d}{2}}(\mathbb{R}^d)$

$$\sum_{n=1}^{\infty} |\lambda_n(-\Delta+V)|^{\gamma} \le L_{\gamma,d} \int_{\mathbb{R}^d} V_-(x)^{\gamma+\frac{d}{2}} \mathrm{d}x.$$
 (Lieb-Thirring inequality)

where λ_n is the *n*-th min-max eigenvalue of $-\Delta + V$ if exists, 0 otherwise ($\lambda_n \leq 0$), and where $V_- := \max\{0, -V\}$.

First remarks:

- If $\gamma = 0$ (CLR), bound the **number** of negative eigenvalues.
- The right-hand side is extensive.
- Invariant by translations, and by scaling $V \mapsto t^2 V(tx)$.

In this presentation, we study the «optimisers» of the Lieb-Thirring inequality.

Two important regimes

The N-bound state case. We have $L_{\gamma,d} \ge L_{\gamma,d}^{(N)}$, where $L_{\gamma,d}^{(N)}$ is the best constant in the inequality

$$\sum_{n=1}^{N} |\lambda_n(-\Delta+V)|^{\gamma} \le L_{\gamma,d}^{(N)} \int_{\mathbb{R}^d} V_-(x)^{\gamma+\frac{d}{2}}.$$

Example (the $N = 1$ case).
$$L_{\gamma,d}^{(1)} := \sup_{V \in L^{\gamma+\frac{d}{2}}} \max_{\substack{u \in H^1(\mathbb{R}^d) \\ ||u||_{L^2} = 1}} \frac{-|\langle u, (-\Delta+V)u \rangle|^{\gamma}}{\int_{\mathbb{R}^d} V_-^{\gamma+\frac{d}{2}}}.$$

Switching the sup/max, and optimising first in V gives the usual Gagliardo-Niremberg inequality

$$\forall u \in H^1(\mathbb{R}^d), \quad K_{p,d}^{\mathrm{GN}} \|u\|_{L^{2p}(\mathbb{R}^d)}^{\frac{2}{d(p-1)}} \le \|\nabla u\|_{L^2(\mathbb{R}^d)} \|u\|_{L^2(\mathbb{R}^d)}^{\frac{(2-d)p+d}{d(p-1)}}, \quad p = \left(\gamma + \frac{d}{2}\right)'.$$

The semi-classical case. For all $V \in L^{\gamma + \frac{d}{2}}(\mathbb{R}^d)$, in the limit $\hbar \to 0$,

$$\sum_{n=1}^{\infty} |\lambda_n(-\Delta + V(\hbar \cdot)|^{\gamma} \approx \frac{\hbar^d}{(2\pi)^d} \iint_{(\mathbb{R}^d)^2} \mathbb{1}(|p|^2 + V(x))_-^{\gamma} \mathrm{d}p \mathrm{d}x = L_{\gamma,d}^{\mathrm{sc}} \int_{\mathbb{R}^d} V_-^{\gamma + \frac{d}{2}},$$

with

$$L_{\gamma,d}^{\mathbf{sc}} := \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} (|p|^2 - 1)^{\gamma} \mathrm{d}p.$$

Facts: $L_{\gamma,d} = \lim \uparrow L_{\gamma,d}^{(N)}$ and $L_{\gamma,d} \ge \max\{L_{\gamma,d}^{(1)}, L_{\gamma,d}^{sc}\}$. **Lieb-Thirring (first) conjecture:** $L_{\gamma,d} \stackrel{?}{=} \max\{L_{\gamma,d}^{(1)}, L_{\gamma,d}^{sc}\}$.

LT conjecture: The optimal scenario is either the one-bound state, or the semi-classical one = fluid phase.

David Gontier

Known facts about Lieb-Thirring

- $\gamma \mapsto L_{\gamma,d}/L_{\gamma,d}^{sc}$ is decreasing (Aizenmann-Lieb, 1978), and ≥ 1 . For $d \leq 8$, there is a unique point $\gamma_c(d) > 0$ so that $L_{\gamma,d} = L_{\gamma,d}^{sc}$ iff $\gamma \geq \gamma_c(d)$.
- $\gamma \mapsto L_{\gamma,d}^{(1)}/L_{\gamma,d}^{\mathrm{sc}}$ is decreasing, and cross 1 at a unique point $\gamma_{1\cap\mathrm{sc}}(d)$ if $d \leq 8$.

Figure: The curves $L_{\gamma,d}^{(1)}/L_{\gamma,d}^{sc}$ as a function of γ , for d = 2 (red) to d = 8 (brown).

d	1	2	3	4	5	6	7	$d \ge 8$
$\gamma_{1\cap \mathrm{sc}}(d)$	= 3/2	1.1654	0.8627	0.5973	0.3740	0.1970	0.0683	no crossing

• $\gamma \geq 3/2$ is semi-classical: $L_{\gamma,d} = L_{\gamma,d}^{sc}$ for all $\gamma \geq \frac{3}{2}$. (Lieb-Thirring 1976 (d = 1), Laptev-Weidl 2000 (all d)).

- $\gamma=1/2$ in dimension 1. $L_{rac{1}{2},1}=L_{rac{1}{2},1}^{(1)}$ (Weidl, 1996).
- $\gamma < 1$ is not semi-classical. For all $\gamma < 1$, $L_{\gamma,d} > L_{\gamma,d}^{sc}$ (Hellfer-Robert, 2010).

Theorem (R.L. Frank, DG, M.Lewin, 2020)

For all

$$\gamma > \max\left\{0, 2 - \frac{d}{2}\right\} = \begin{cases} 3/2 & \text{in dimension} \quad d = 1\\ 1 & \text{in dimension} \quad d = 2\\ 1/2 & \text{in dimension} \quad d = 3\\ 0 & \text{in dimension} \quad d > 4, \end{cases}$$

we have $L_{\gamma,d}^{(2)} > L_{\gamma,d}^{(1)}$. In particular, the one bound state scenario is not optimal. If in addition, $\gamma > 1$, we have $L_{\gamma,d} > L_{\gamma,d}^{(N)}$ for all N: the N-th bound state scenario is not optimal.

In dimension d = 2, for all $\gamma \in (1, 1.1654]$, the «optimal» potential V has an infinity of bound states, but is not semi-classical (= Crystallisation). Current knowledge in low dimensions:

Idea of the proof

Fact: There is an optimal potential V for $L^{(1)}_{\gamma d}$.

Let $p := (\gamma + \frac{d}{2})'$ and Q be the (unique) radial decreasing solution to (Gagliardo-Niremberg)

$$-\Delta Q - Q^{2p-1} = -Q, \quad \text{and set} \quad m := \int_{\mathbb{R}^d} Q^2. \qquad (*)$$

Then $V = -Q^{2(p-1)}$ is an optimiser for $L_{\gamma,d}^{(1)}$. Actually,

$$\lambda_1(-\Delta+V)=-1,\quad \text{and}\quad \int_{\mathbb{R}^d}V_-^{\gamma+\frac{d}{2}}=\int_{\mathbb{R}^d}Q^{2p},\quad \text{so}\quad L_{\gamma,d}^{(1)}=\frac{1}{\int_{\mathbb{R}^d}Q^{2p}}$$

Idea: Consider the test potential

$$\widetilde{V}(x) := -\left(Q_{+}^{2}(x) + Q_{-}^{2}(x)\right)^{p-1}, \quad \text{where} \quad Q_{\pm}(x) := Q\left(x \pm \frac{R}{2}e_{1}\right).$$

We add the **densities**, not the **potentials**! See [Gontier, Lewin, Nazar, 2020] for similar ideas in NLS. We have

$$L^{(2)}_{\gamma,d} \geq \frac{|\lambda_1(-\Delta+\widetilde{V})|^{\gamma} + |\lambda_2(-\Delta+\widetilde{V})|^{\gamma}}{\int_{\mathbb{R}^d} |\widetilde{V}|^{\gamma+\frac{d}{2}}}$$

Remark: $Q(x) \approx C|x|^{-\frac{d-1}{2}} e^{-|x|}$ for x large. The «interaction» between the two *bubbles* is exponentially small. All quantities are expressed with

$$A:=A(R):=\frac{1}{2}\int_{\mathbb{R}^d} \left(Q_+^2+Q_-^2\right)^p-Q_+^{2p}-Q_-^{2p} \quad \ge 0, \quad \text{since} \quad p\ge 1.$$

Key Remark: Evaluating around 0, we obtain that $A(R) \ge cst \cdot e^{-p|R|} \cdot R^{-(d-1)}$.

Computation of the numerator

We can bound from below the numerator by looking at $(-\Delta + \tilde{V})$ projected on $\operatorname{Ran}\{Q_+, Q_-\}$. We find

$$|\lambda_1(-\Delta+\widetilde{V})|^{\gamma} + |\lambda_2(-\Delta+\widetilde{V})|^{\gamma} \ge 2 + \frac{2\gamma}{m}A + \underbrace{O(\mathrm{e}^{-2R})}_{=o(A) \text{ if } p<2}$$

Computation of the denominator Since $p = (\gamma + \frac{d}{2})'$, we get

$$\int_{\mathbb{R}^d} |\widetilde{V}|^{\gamma + \frac{d}{2}} = \int_{\mathbb{R}^d} (Q_+^2 + Q_-^2)^p = 2 \int_{\mathbb{R}^d} Q^{2p} + 2A.$$

Estimate. This gives, if p < 2, *i.e.* if $\gamma \ge 2 - \frac{d}{2}$, that

$$L_{\gamma,d}^{(2)} \ge \underbrace{\frac{1}{\int_{\mathbb{R}^d} Q^{2p}}}_{=L_{\gamma,d}^{(1)}} \left(1 + \left(\gamma - \frac{m}{\int_{\mathbb{R}^d} Q^{2p}} \right) A + o(A) \right).$$

Computation of the numerator

We can bound from below the numerator by looking at $(-\Delta + \widetilde{V})$ projected on $\operatorname{Ran}\{Q_+, Q_-\}$. We find

$$|\lambda_1(-\Delta+\widetilde{V})|^{\gamma} + |\lambda_2(-\Delta+\widetilde{V})|^{\gamma} \ge 2 + \frac{2\gamma}{m}A + \underbrace{O(\mathrm{e}^{-2R})}_{=o(A) \text{ if } p<2}$$

Computation of the denominator Since $p = (\gamma + \frac{d}{2})'$, we get

$$\int_{\mathbb{R}^d} |\widetilde{V}|^{\gamma + \frac{d}{2}} = \int_{\mathbb{R}^d} (Q_+^2 + Q_-^2)^p = 2 \int_{\mathbb{R}^d} Q^{2p} + 2A.$$

Estimate. This gives, if p < 2, *i.e.* if $\gamma \ge 2 - \frac{d}{2}$, that

$$L_{\gamma,d}^{(2)} \ge \underbrace{\frac{1}{\int_{\mathbb{R}^d} Q^{2p}}}_{=L_{\gamma,d}^{(1)}} \left(1 + \left(\gamma - \frac{m}{\int_{\mathbb{R}^d} Q^{2p}} \right) A + o(A) \right).$$

Pozhoev's identities. $\int(*)\times Q$ and $\int(*)\times x\cdot \nabla Q$ give

$$\begin{cases} \int_{\mathbb{R}^d} |\nabla Q|^2 - \int_{\mathbb{R}^d} Q^{2p} = -\int_{\mathbb{R}^d} Q^2 = -m, \\ \left(\frac{d}{2} - 1\right) \int_{\mathbb{R}^d} |\nabla Q|^2 - \frac{d}{2p} \int_{\mathbb{R}^d} Q^{2p} = -\frac{d}{2}m, \end{cases} \quad \text{ which implies } \left(\gamma - \frac{m}{\int_{\mathbb{R}^d} Q^{2p}}\right) = \frac{\gamma}{pm} \ge 0.$$

Periodic Lieb-Thirring

Facts:

- If $\gamma \geq \gamma_c(d)$, the «optimal» V is the semi-classical case V = cst.
- If $\gamma \geq 1$, the «optimal» V must have infinitely many bound states.

Idea: Study the periodic Lieb-Thirring inequality.

Lemma

Let γ be as before. Then, for all periodic $V \in L^{\gamma+\frac{d}{2}}_{\text{loc}}(\mathbb{R}^d)$, we have

$$\underline{\operatorname{Tr}}\left(\left(-\Delta+V\right)_{-}^{\gamma}\right) \leq L_{\gamma,d} \oint V_{-}^{\gamma+\frac{d}{2}}.$$

with the same best constant $L_{\gamma,d}$. In addition, V = cst < 0 is an optimiser iff $L_{\gamma,d} = L_{\gamma,d}^{sc}$.

Here, if \mathcal{L} is **any** periodic lattice of V, with cell Γ , then Trace per unit volume:

$$\underline{\mathrm{Tr}}\left((-\Delta+V)_{-}^{\gamma}\right) := \lim_{L \to \infty} \frac{1}{|L\Gamma|} \mathrm{Tr}_{L^{2}(\mathbb{R}^{d})} \left(\mathbbm{1}_{L\Gamma}(-\Delta+V)^{\gamma} \mathbbm{1}_{L\Gamma}\right).$$

Integral per unit volume:

$$\int V_-^{\gamma+\frac{d}{2}} := \lim_{L \to \infty} \frac{1}{|L\Gamma|} \int_{L\Gamma} V_-^{\gamma+\frac{d}{2}} = \frac{1}{|\Gamma|} \int_{\Gamma} V_-^{\gamma+\frac{d}{2}}$$

Conjecture: We have

- either there is $N \in \mathbb{N}$ and $V_N \in L^{\gamma + \frac{d}{2}}(\mathbb{R}^d)$ so that $L_{\gamma,d} = L_{\gamma,d}^{(N)}$, with optimal potential V_N ;
- or $L_{\gamma,d} > L_{\gamma,d}^{(N)}$ for all $N \in \mathbb{N}$, in which case there is periodic optimiser. This minimiser can be constant $(L = L^{sc})$ or not (crystallisation).

The case $\gamma = 3/2$ in dimension d = 1.

In the original article by Lieb-Thirring 1976, they proved

$$L_{3/2,1} = L_{3/2,1}^{(1)} = L_{3/2,1}^{(N)} = L_{3/2,1}^{\rm sc} = \frac{3}{16}.$$

Idea of the proof. Consider the Korteweg-de-Vries equation in W = W(t, x) defined by

$$\partial_t W := 6W \partial_x W - \partial_{xxx}^3 W, \quad W(t=0,x) = V(x).$$

Then,

- the norm $\int_{\mathbb{R}} W^2$ is independent of t (here, $2=3/2+1/2=\gamma+\frac{d}{2});$
- the general KdV theory shows that the profile of W splits into non-interacting bubbles (= solitons) as $t \to \infty$;

In addition, each soliton must be of the form

$$V_1(x) := \frac{-2c^2}{\cosh^2(cx)}.$$

• the spectrum of $-\Delta + W(t, \cdot)$ is independent of t (Lax' theory).

Can we have a periodic superposition of solitons?

Theorem (R.L. Frank, DG, M. Lewin)

For all 0 < k < 1, the potential

 $V_k(x) := 2k^2 \operatorname{sn}(x|k)^2 - 1 - k^2$

with minimal period 2K(k),

is an optimiser for the periodic problem at $\gamma = 3/2$ and d = 1. Here, $\operatorname{sn}(\cdot|k)$ is the Jacobi elliptic function, and $K(\cdot)$ is the complete elliptic integral of the first kind. In addition,

$$\lim_{k \to 0} V_k(x) = -1 \quad and \quad \lim_{k \to 1} V_k(x) = \frac{-2}{\cosh^2(x)}.$$

This potential is sometime called the periodic Lamé potential, or the cnoidal wave. It interpolates between the semi-classical constant and the N = 1 soliton. The operator $-\Delta + V_k$ has a single negative Bloch band, and a spectral gap of size k^2 .

Figure: The potential V_k for some values of k.

- · · ·	
David	Gontier
Duna	Contract

How to distinguish these solutions?

Recall that the inequality is invariant by scaling $V \mapsto t^2 V(tx)$.

Let $\widetilde{V_k}$ be the 1-periodic version of V_k .

J

Fact: the map $(0,1) \ni k \mapsto \int_0^1 \widetilde{V_k}^2$ is increasing from π^2 to ∞ .

Idea: Study the problem at $\mathcal{I}^{\gamma + \frac{d}{2}} := \int V_{-}^{\gamma + \frac{d}{2}}$ fixed. Let \mathcal{L} be a lattice with unit cell $|\Gamma| = 1$, and set

$$L_{\gamma,d,\mathcal{L}}(\mathcal{I}) := \frac{1}{\mathcal{I}^{\gamma + \frac{d}{2}}} \sup\left\{ \int_{B.Z.} \varepsilon_1(-\Delta_q + V)^{\gamma}_{-} \mathrm{d}q, \ V \in L^{\gamma + \frac{d}{2}}_{\mathrm{per}}(\Gamma), \oint V^{\gamma + \frac{d}{2}} = \mathcal{I}^{\gamma + \frac{d}{2}} \right\}.$$

• B.Z. is the Brillouin zone, q is the Bloch quasi-momentum, $-\Delta_q := |-i\nabla + q|^2$ acts on $L^2(\Gamma)$;

• we only consider the first band (variant with K bands possible), so

$$\int_{B.Z.} \varepsilon_1 (-\Delta_q + V)_-^{\gamma} \mathrm{d}q \leq \underline{\mathrm{Tr}} \left((-\Delta + V)_-^{\gamma} \right)$$

with equality iff $-\Delta + V$ has a single negative Bloch band.

Remark: In the $\gamma = 3/2$ and d = 1 case,

- For $\mathcal{I} \leq \pi^2$, the constant potential $V = -\mathcal{I}$ has a single negative Bloch band, so $V = -\mathcal{I}$ is an optimiser (there is no spectral gap: semi-classical/fluid case, metallic system);
- At $\mathcal{I} = \pi^2$, the second Bloch band of $V = -\mathcal{I}$ touches 0;
- For $\mathcal{I} > \pi^2$, $V = -\mathcal{I}$ is no longer an optimiser. But there is 0 < k < 1, so that $\widetilde{V_k}$ is an optimiser (there is a spectral gap of size k^2 : solid phase, insulating system).

Numerical results in dimension d = 1We plot $\gamma \mapsto L_{\gamma,1}(\mathcal{I})/L_{\gamma,1}^{\mathrm{sc}}$ for different values of \mathcal{I} .

- All curves cross at $\gamma = 3/2$, as expected.
- If $\mathcal{I} < \pi^2$, the corresponding curve hits 1 (semi-classical) for some $\gamma < 3/2$.
- If $\gamma < 3/2$, the curves are increasing with \mathcal{I} . The potentials concentrate as $\mathcal{I} \to \infty$. Lieb-Thirring conjecture in dimension d = 1: $L_{\gamma,1} = L_{\gamma,1}^{(1)}$: optimisers are not periodic.

Numerical results in dimension d = 2

We fix $\gamma = 1.1654 > \gamma_{1\cap sc}(d=2)$, and plot $\mathcal{I} \mapsto L_{\gamma,2,\mathcal{L}}(\mathcal{I})/L_{\gamma,2}^{sc}$ for different lattices.

• The black curve represents the value $L_{\gamma,2}^{(1)}/L_{\gamma,2}^{sc}$, which is less than 1 since $\gamma = 1.1654 > \gamma_{1\cap sc}(2)$.

- For $\mathcal{I} \approx 30$, the triangular lattice gives a better bound than the fluid phase: crystallisation.
- We need very precise computations: precision to the order 10^{-7} .
- We believe that the previous exponentially small attraction scenario indeed happens.

	Triangular	Square	Hexagonal	$L_{\gamma,2}^{(1)}$
Critical γ	1.165417	1.165395	1.165390	1.165378

Table: Critical values of γ for different lattices.