Cristallisation in the Lieb-Thirring inequality

David Gontier
joint work with Rupert L. Frank and Mathieu Lewin

CEREMADE, Université Paris-Dauphine

Séminaire Problème spectraux en Physique Mathématique, IHP
October 12, 2020

Slides available at www. ceremade.dauphine.fr/~gontier/Presentations/2020_10_12_IHP.pdf.

Dauphine 1 PSL CERE MADE UMR $_{\text {UNRS }}$ T534

Lieb-Thirring inequality

Let $\gamma \geq 0$ satisfy

$$
\left\{\begin{array}{lll}
\gamma \geq \frac{1}{2} & \text { in dimension } & d=1 \\
\gamma>0 & \text { in dimension } & d=2 \\
\gamma \geq 0 & \text { in dimension } & d=3
\end{array}\right.
$$

There exists (an optimal -smallest- constant) $L_{\gamma, d}>0$ so that, for all $V \in L^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}\right)$

$$
\sum_{n=1}^{\infty}\left|\lambda_{n}(-\Delta+V)\right|^{\gamma} \leq L_{\gamma, d} \int_{\mathbb{R}^{d}} V_{-}(x)^{\gamma+\frac{d}{2}} \mathrm{~d} x
$$

(Lieb-Thirring inequality)
where λ_{n} is the n-th min-max eigenvalue of $-\Delta+V$ if exists, 0 otherwise $\left(\lambda_{n} \leq 0\right)$, and where $V_{-}:=\max \{0,-V\}$.

References

Case $\gamma>\ldots$ (strict inequality)

- E. H. Lieb, W. E. Thirring, Bound on kinetic energy of fermions which proves stability of matter, Phys. Rev. Lett., 35 (1975).
- E. H. Lieb, W. E. Thirring, Studies in Mathematical Physics, 1976.

Case $\gamma=0$ for $d \geq 3$ (Cwikel-Lieb-Rozenblum (CLR) inequality)

- M. Cwikel, Ann. of Math., 106 (1977).
- E.H. Lieb, Bull. Amer. Math. Soc., 82 (1976).
- G. V. Rozenblum, Dokl. Akad. Nauk SSSR, 202 (1972).

Case $\gamma=\frac{1}{2}$ for $d=1$

- T. Weidl, Comm. Math. Phys., 178 (1996).
- D. Hundertmark, E.H. Lieb, and L.E. Thomas, Adv. Theor. Math. Phys., 2 (1998).

Let $\gamma \geq 0$ satisfy

$$
\left\{\begin{array}{lll}
\gamma \geq \frac{1}{2} & \text { in dimension } & d=1 \\
\gamma>0 & \text { in dimension } & d=2 \\
\gamma \geq 0 & \text { in dimension } & d=3
\end{array}\right.
$$

There exists (an optimal -smallest- constant) $L_{\gamma, d}>0$ so that, for all $V \in L^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}\right)$

$$
\sum_{n=1}^{\infty}\left|\lambda_{n}(-\Delta+V)\right|^{\gamma} \leq L_{\gamma, d} \int_{\mathbb{R}^{d}} V_{-}(x)^{\gamma+\frac{d}{2}} \mathrm{~d} x .
$$

(Lieb-Thirring inequality)
where λ_{n} is the n-th min-max eigenvalue of $-\Delta+V$ if exists, 0 otherwise ($\lambda_{n} \leq 0$), and where $V_{-}:=\max \{0,-V\}$.

First remarks:

- If $\gamma=0$ (CLR), bound the number of negative eigenvalues.
- The right-hand side is extensive.
- Invariant by translations, and by scaling $V \mapsto t^{2} V(t x)$.

In this presentation, we study the «optimisers» of the Lieb-Thirring inequality.

Two important regimes

The \mathbf{N}-bound state case. We have $L_{\gamma, d} \geq L_{\gamma, d}^{(N)}$, where $L_{\gamma, d}^{(N)}$ is the best constant in the inequality

$$
\sum_{n=1}^{N}\left|\lambda_{n}(-\Delta+V)\right|^{\gamma} \leq L_{\gamma, d}^{(N)} \int_{\mathbb{R}^{d}} V_{-}(x)^{\gamma+\frac{d}{2}}
$$

Example (the $N=1$ case). $L_{\gamma, d}^{(1)}:=\sup _{\substack{ \\V \in L^{\gamma+\frac{d}{2}}}}^{\max _{\substack{u \in H^{1}\left(\mathbb{R}^{d}\right) \\\|u\|_{L^{2}=1}}} \frac{-|\langle u,(-\Delta+V) u\rangle|^{\gamma}}{\int_{\mathbb{R}^{d}} V_{-}^{\gamma+\frac{d}{2}}} .}$
Switching the sup/max, and optimising first in V gives the usual Gagliardo-Niremberg inequality

$$
\forall u \in H^{1}\left(\mathbb{R}^{d}\right), \quad K_{p, d}^{\mathrm{GN}}\|u\|_{L^{2 p}\left(\mathbb{R}^{d}\right)}^{\frac{2}{d(p-1)}} \leq\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{\frac{(2-d) p+d}{d(p-1)}}, \quad p=\left(\gamma+\frac{d}{2}\right)^{\prime}
$$

The semi-classical case. For all $V \in L^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}\right)$, in the limit $\hbar \rightarrow 0$,

$$
\sum_{n=1}^{\infty} \left\lvert\, \lambda_{n}\left(-\Delta+\left.V(\hbar \cdot)\right|^{\gamma} \approx \frac{\hbar^{d}}{(2 \pi)^{d}} \iint_{\left(\mathbb{R}^{d}\right)^{2}} \mathbb{1}\left(|p|^{2}+V(x)\right)_{-}^{\gamma} \mathrm{d} p \mathrm{~d} x=L_{\gamma, d}^{\mathrm{sc}} \int_{\mathbb{R}^{d}} V_{-}^{\gamma+\frac{d}{2}}\right.\right.
$$

with

$$
L_{\gamma, d}^{\mathrm{sc}}:=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}\left(|p|^{2}-1\right)^{\gamma} \mathrm{d} p
$$

Facts: $L_{\gamma, d}=\lim \uparrow L_{\gamma, d}^{(N)}$ and $L_{\gamma, d} \geq \max \left\{L_{\gamma, d}^{(1)}, L_{\gamma, d}^{\mathrm{sc}}\right\}$.
Lieb-Thirring (first) conjecture: $L_{\gamma, d} \stackrel{?}{=} \max \left\{L_{\gamma, d}^{(1)}, L_{\gamma, d}^{\mathrm{sc}}\right\}$.
LT conjecture: The optimal scenario is either the one-bound state, or the semi-classical one $=$ fluid phase.

Known facts about Lieb-Thirring

- $\gamma \mapsto L_{\gamma, d} / L_{\gamma, d}^{\text {sc }}$ is decreasing (Aizenmann-Lieb, 1978), and ≥ 1.

For $d \leq 8$, there is a unique point $\gamma_{c}(d)>0$ so that $L_{\gamma, d}=L_{\gamma, d}^{\text {sc }}$ iff $\gamma \geq \gamma_{c}(d)$.

- $\gamma \mapsto L_{\gamma, d}^{(1)} / L_{\gamma, d}^{\mathrm{sc}}$ is decreasing, and cross 1 at a unique point $\gamma_{1 \cap \mathrm{sc}}(d)$ if $d \leq 8$.

Figure: The curves $L_{\gamma, d}^{(1)} / L_{\gamma, d}^{\mathrm{sc}}$ as a function of γ, for $d=2$ (red) to $d=8$ (brown).

d	1	2	3	4	5	6	7	$d \geq 8$
$\gamma_{1 \cap \mathrm{sc}}(d)$	$=3 / 2$	1.1654	0.8627	0.5973	0.3740	0.1970	0.0683	no crossing

- $\gamma \geq 3 / 2$ is semi-classical: $L_{\gamma, d}=L_{\gamma, d}^{\text {sc }}$ for all $\gamma \geq \frac{3}{2}$. (Lieb-Thirring 1976 ($\mathrm{d}=1$), Laptev-Weidl 2000 (all d)).
- $\gamma=1 / 2$ in dimension 1. $L_{\frac{1}{2}, 1}=L_{\frac{1}{2}, 1}^{(1)}$ (Weidl, 1996).
- $\gamma<1$ is not semi-classical. For all $\gamma<1, L_{\gamma, d}>L_{\gamma, d}^{\text {sc }}$ (Hellfer-Robert, 2010).

Theorem (R.L. Frank, DG, M.Lewin, 2020)

For all

$$
\gamma>\max \left\{0,2-\frac{d}{2}\right\}= \begin{cases}3 / 2 & \text { in dimension } \\ d=1 \\ 1 & \text { in dimension } \\ d=2 \\ 1 / 2 & \text { in dimension } \\ d=3 \\ 0 & \text { in dimension } \\ d>4\end{cases}
$$

we have $L_{\gamma, d}^{(2)}>L_{\gamma, d}^{(1)}$. In particular, the one bound state scenario is not optimal. If in addition, $\gamma>1$, we have $L_{\gamma, d}>L_{\gamma, d}^{(N)}$ for all N : the N-th bound state scenario is not optimal.

In dimension $d=2$, for all $\gamma \in(1,1.1654]$, the «optimal» potential V has an infinity of bound states, but is not semi-classical (= Crystallisation).
Current knowledge in low dimensions:

Fact: There is an optimal potential V for $L_{\gamma, d}^{(1)}$.
Let $p:=\left(\gamma+\frac{d}{2}\right)^{\prime}$ and Q be the (unique) radial decreasing solution to (Gagliardo-Niremberg)

$$
\begin{equation*}
-\Delta Q-Q^{2 p-1}=-Q, \quad \text { and set } \quad m:=\int_{\mathbb{R}^{d}} Q^{2} \tag{*}
\end{equation*}
$$

Then $V=-Q^{2(p-1)}$ is an optimiser for $L_{\gamma, d}^{(1)}$. Actually,

$$
\lambda_{1}(-\Delta+V)=-1, \quad \text { and } \quad \int_{\mathbb{R}^{d}} V_{-}^{\gamma+\frac{d}{2}}=\int_{\mathbb{R}^{d}} Q^{2 p}, \quad \text { so } \quad L_{\gamma, d}^{(1)}=\frac{1}{\int_{\mathbb{R}^{d}} Q^{2 p}}
$$

Idea: Consider the test potential

$$
\widetilde{V}(x):=-\left(Q_{+}^{2}(x)+Q_{-}^{2}(x)\right)^{p-1}, \quad \text { where } \quad Q_{ \pm}(x):=Q\left(x \pm \frac{R}{2} e_{1}\right) .
$$

We add the densities, not the potentials! See [Gontier, Lewin, Nazar, 2020] for similar ideas in NLS. We have

$$
L_{\gamma, d}^{(2)} \geq \frac{\left|\lambda_{1}(-\Delta+\widetilde{V})\right|^{\gamma}+\left|\lambda_{2}(-\Delta+\widetilde{V})\right|^{\gamma}}{\int_{\mathbb{R}^{d}}|\widetilde{V}|^{\gamma+\frac{d}{2}}}
$$

Remark: $Q(x) \approx C|x|^{-\frac{d-1}{2}} \mathrm{e}^{-|x|}$ for x large. The «interaction» between the two bubbles is exponentially small. All quantities are expressed with

$$
A:=A(R):=\frac{1}{2} \int_{\mathbb{R}^{d}}\left(Q_{+}^{2}+Q_{-}^{2}\right)^{p}-Q_{+}^{2 p}-Q_{-}^{2 p} \quad \geq 0, \quad \text { since } \quad p \geq 1
$$

Key Remark: Evaluating around 0 , we obtain that $A(R) \geq c s t \cdot \mathrm{e}^{-p|R|} \cdot R^{-(d-1)}$.

Computation of the numerator
We can bound from below the numerator by looking at $(-\Delta+\widetilde{V})$ projected on $\operatorname{Ran}\left\{Q_{+}, Q_{-}\right\}$. We find

$$
\left|\lambda_{1}(-\Delta+\widetilde{V})\right|^{\gamma}+\left|\lambda_{2}(-\Delta+\widetilde{V})\right|^{\gamma} \geq 2+\frac{2 \gamma}{m} A+\underbrace{O\left(\mathrm{e}^{-2 R}\right)}_{=o(A) \text { if } p<2}
$$

Computation of the denominator
Since $p=\left(\gamma+\frac{d}{2}\right)^{\prime}$, we get

$$
\int_{\mathbb{R}^{d}}|\tilde{V}|^{\gamma+\frac{d}{2}}=\int_{\mathbb{R}^{d}}\left(Q_{+}^{2}+Q_{-}^{2}\right)^{p}=2 \int_{\mathbb{R}^{d}} Q^{2 p}+2 A
$$

Estimate. This gives, if $p<2$, i.e. if $\gamma \geq 2-\frac{d}{2}$, that

$$
L_{\gamma, d}^{(2)} \geq \underbrace{\frac{1}{\int_{\mathbb{R}^{d}} Q^{2 p}}}_{=L_{\gamma, d}^{(1)}}\left(1+\left(\gamma-\frac{m}{\int_{\mathbb{R}^{d}} Q^{2 p}}\right) A+o(A)\right)
$$

Computation of the numerator
We can bound from below the numerator by looking at $(-\Delta+\widetilde{V})$ projected on $\operatorname{Ran}\left\{Q_{+}, Q_{-}\right\}$. We find

$$
\left|\lambda_{1}(-\Delta+\widetilde{V})\right|^{\gamma}+\left|\lambda_{2}(-\Delta+\widetilde{V})\right|^{\gamma} \geq 2+\frac{2 \gamma}{m} A+\underbrace{O\left(\mathrm{e}^{-2 R}\right)}_{=o(A) \text { if } p<2}
$$

Computation of the denominator
Since $p=\left(\gamma+\frac{d}{2}\right)^{\prime}$, we get

$$
\int_{\mathbb{R}^{d}}|\tilde{V}|^{\gamma+\frac{d}{2}}=\int_{\mathbb{R}^{d}}\left(Q_{+}^{2}+Q_{-}^{2}\right)^{p}=2 \int_{\mathbb{R}^{d}} Q^{2 p}+2 A
$$

Estimate. This gives, if $p<2$, i.e. if $\gamma \geq 2-\frac{d}{2}$, that

$$
L_{\gamma, d}^{(2)} \geq \underbrace{\frac{1}{\int_{\mathbb{R}^{d}} Q^{2 p}}}_{=L_{\gamma, d}^{(1)}}\left(1+\left(\gamma-\frac{m}{\int_{\mathbb{R}^{d}} Q^{2 p}}\right) A+o(A)\right)
$$

Pozhoev's identities. $\int(*) \times Q$ and $\int(*) \times x \cdot \nabla Q$ give

$$
\left\{\begin{array}{l}
\int_{\mathbb{R}^{d}}|\nabla Q|^{2}-\int_{\mathbb{R}^{d}} Q^{2 p}=-\int_{\mathbb{R}^{d}} Q^{2}=-m, \\
\left(\frac{d}{2}-1\right) \int_{\mathbb{R}^{d}}|\nabla Q|^{2}-\frac{d}{2 p} \int_{\mathbb{R}^{d}} Q^{2 p}=-\frac{d}{2} m,
\end{array} \quad \text { which implies } \quad\left(\gamma-\frac{m}{\int_{\mathbb{R}^{d}} Q^{2 p}}\right)=\frac{\gamma}{p m} \geq 0\right.
$$

Periodic Lieb-Thirring

Facts:

- If $\gamma \geq \gamma_{c}(d)$, the «optimal» V is the semi-classical case $V=c s t$.
- If $\gamma \geq 1$, the «optimal» V must have infinitely many bound states.

Idea: Study the periodic Lieb-Thirring inequality.

Lemma

Let γ be as before. Then, for all periodic $V \in L_{\text {loc }}^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}\right)$, we have

$$
\underline{\operatorname{Tr}}\left((-\Delta+V)_{-}^{\gamma}\right) \leq L_{\gamma, d} f V_{-}^{\gamma+\frac{d}{2}} .
$$

with the same best constant $L_{\gamma, d}$. In addition, $V=c s t<0$ is an optimiser iff $L_{\gamma, d}=L_{\gamma, d}^{\mathrm{sc}}$.
Here, if \mathcal{L} is any periodic lattice of V, with cell Γ, then
Trace per unit volume:

$$
\underline{\operatorname{Tr}}\left((-\Delta+V)_{-}^{\gamma}\right):=\lim _{L \rightarrow \infty} \frac{1}{|L \Gamma|} \operatorname{Tr}_{L^{2}\left(\mathbb{R}^{d}\right)}\left(\mathbb{1}_{L \Gamma}(-\Delta+V)^{\gamma} \mathbb{1}_{L \Gamma}\right)
$$

Integral per unit volume:

$$
f V_{-}^{\gamma+\frac{d}{2}}:=\lim _{L \rightarrow \infty} \frac{1}{|L \Gamma|} \int_{L \Gamma} V_{-}^{\gamma+\frac{d}{2}}=\frac{1}{|\Gamma|} \int_{\Gamma} V_{-}^{\gamma+\frac{d}{2}}
$$

Conjecture: We have

- either there is $N \in \mathbb{N}$ and $V_{N} \in L^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}\right)$ so that $L_{\gamma, d}=L_{\gamma, d}^{(N)}$, with optimal potential V_{N};
- or $L_{\gamma, d}>L_{\gamma, d}^{(N)}$ for all $N \in \mathbb{N}$, in which case there is periodic optimiser. This minimiser can be constant ($L=L^{\mathrm{sc}}$) or not (crystallisation).

The case $\gamma=3 / 2$ in dimension $d=1$.
In the original article by Lieb-Thirring 1976, they proved

$$
L_{3 / 2,1}=L_{3 / 2,1}^{(1)}=L_{3 / 2,1}^{(N)}=L_{3 / 2,1}^{\mathrm{sc}}=\frac{3}{16}
$$

Idea of the proof. Consider the Korteweg-de-Vries equation in $W=W(t, x)$ defined by

$$
\partial_{t} W:=6 W \partial_{x} W-\partial_{x x x}^{3} W, \quad W(t=0, x)=V(x)
$$

Then,

- the norm $\int_{\mathbb{R}} W^{2}$ is independent of t (here, $2=3 / 2+1 / 2=\gamma+\frac{d}{2}$);
- the general KdV theory shows that the profile of W splits into non-interacting bubbles (= solitons) as $t \rightarrow \infty$;
In addition, each soliton must be of the form

$$
V_{1}(x):=\frac{-2 c^{2}}{\cosh ^{2}(c x)}
$$

- the spectrum of $-\Delta+W(t, \cdot)$ is independent of t (Lax' theory).

Can we have a periodic superposition of solitons?

Theorem (R.L. Frank, DG, M. Lewin)

For all $0<k<1$, the potential

$$
V_{k}(x):=2 k^{2} \operatorname{sn}(x \mid k)^{2}-1-k^{2}, \quad \text { with minimal period } \quad 2 K(k)
$$

is an optimiser for the periodic problem at $\gamma=3 / 2$ and $d=1$. Here, $\operatorname{sn}(\cdot \mid k)$ is the Jacobi elliptic function, and $K(\cdot)$ is the complete elliptic integral of the first kind. In addition,

$$
\lim _{k \rightarrow 0} V_{k}(x)=-1 \quad \text { and } \quad \lim _{k \rightarrow 1} V_{k}(x)=\frac{-2}{\cosh ^{2}(x)}
$$

This potential is sometime called the periodic Lamé potential, or the cnoidal wave. It interpolates between the semi-classical constant and the $N=1$ soliton.
The operator $-\Delta+V_{k}$ has a single negative Bloch band, and a spectral gap of size k^{2}.

Figure: The potential V_{k} for some values of k.

How to distinguish these solutions?

Recall that the inequality is invariant by scaling $V \mapsto t^{2} V(t x)$.
Let $\widetilde{V_{k}}$ be the 1-periodic version of V_{k}.
Fact: the map $(0,1) \ni k \mapsto \int_{0}^{1}{\widetilde{V_{k}}}^{2}$ is increasing from π^{2} to ∞.
Idea: Study the problem at $\mathcal{I}^{\gamma+\frac{d}{2}}:=f V_{-}^{\gamma+\frac{d}{2}}$ fixed. Let \mathcal{L} be a lattice with unit cell $|\Gamma|=1$, and set

$$
L_{\gamma, d, \mathcal{L}}(\mathcal{I}):=\frac{1}{\mathcal{I}^{\gamma+\frac{d}{2}}} \sup \left\{f_{B . Z .} \varepsilon_{1}\left(-\Delta_{q}+V\right)_{-}^{\gamma} \mathrm{d} q, V \in L_{\mathrm{per}}^{\gamma+\frac{d}{2}}(\Gamma), f V^{\gamma+\frac{d}{2}}=\mathcal{I}^{\gamma+\frac{d}{2}}\right\}
$$

- B.Z. is the Brillouin zone, q is the Bloch quasi-momentum, $-\Delta_{q}:=|-\mathrm{i} \nabla+q|^{2}$ acts on $L^{2}(\Gamma)$;
- we only consider the first band (variant with K bands possible), so

$$
f_{B . Z .} \varepsilon_{1}\left(-\Delta_{q}+V\right)_{-}^{\gamma} \mathrm{d} q \leq \underline{\operatorname{Tr}}\left((-\Delta+V)_{-}^{\gamma}\right)
$$

with equality iff $-\Delta+V$ has a single negative Bloch band.
Remark: In the $\gamma=3 / 2$ and $d=1$ case,

- For $\mathcal{I} \leq \pi^{2}$, the constant potential $V=-\mathcal{I}$ has a single negative Bloch band, so $V=-\mathcal{I}$ is an optimiser (there is no spectral gap: semi-classical/fluid case, metallic system);
- At $\mathcal{I}=\pi^{2}$, the second Bloch band of $V=-\mathcal{I}$ touches 0 ;
- For $\mathcal{I}>\pi^{2}, V=-\mathcal{I}$ is no longer an optimiser. But there is $0<k<1$, so that $\widetilde{V_{k}}$ is an optimiser (there is a spectral gap of size k^{2} : solid phase, insulating system).

Numerical results in dimension $d=1$
We plot $\gamma \mapsto L_{\gamma, 1}(\mathcal{I}) / L_{\gamma, 1}^{\text {sc }}$ for different values of \mathcal{I}.

- All curves cross at $\gamma=3 / 2$, as expected.
- If $\mathcal{I}<\pi^{2}$, the corresponding curve hits 1 (semi-classical) for some $\gamma<3 / 2$.
- If $\gamma<3 / 2$, the curves are increasing with \mathcal{I}. The potentials concentrate as $\mathcal{I} \rightarrow \infty$. Lieb-Thirring conjecture in dimension $d=1: L_{\gamma, 1}=L_{\gamma, 1}^{(1)}$: optimisers are not periodic.

Numerical results in dimension $d=2$
We fix $\gamma=1.1654>\gamma_{1 \text { nsc }}(d=2)$, and plot $\mathcal{I} \mapsto L_{\gamma, 2, \mathcal{L}}(\mathcal{I}) / L_{\gamma, 2}^{\mathrm{sc}}$ for different lattices.

- The black curve represents the value $L_{\gamma, 2}^{(1)} / L_{\gamma, 2}^{\mathrm{sc}}$, which is less than 1 since $\gamma=1.1654>\gamma_{1 \cap \mathrm{sc}}(2)$.
- For $\mathcal{I} \approx 30$, the triangular lattice gives a better bound than the fluid phase: crystallisation.
- We need very precise computations: precision to the order 10^{-7}.
- We believe that the previous exponentially small attraction scenario indeed happens.

	Triangular	Square	Hexagonal	$L_{\gamma, 2}^{(1)}$
Critical γ	1.165417	1.165395	1.165390	1.165378

Table: Critical values of γ for different lattices.

