Edge states in semi-materials

David Gontier
CEREMADE, Université Paris-Dauphine

January 14th 2021

Dauphine | PSL* CEREMADE

Some historical remarks.

May 20, 2019: New definition of the kg by the Bureau International des Poids et Mesures (BIPM) ${ }^{1}$:
"Le kilogramme, symbole kg, est l'unité de masse du SI. Il est défini en prenant la valeur numérique fixée de la constante de Planck, h, égale à 6, 62607015×10^{-34} J.s."

Question: How do you measure h ? How do you measure h with 10^{-9} accuracy?
Comments by von Klitzing2: "The discovery of the QHE led to a new type of electrical resistor [...]. This resistor is universal for all 2D electron systems in strong magnetic fields with an uncertainty of less than one part in $10^{10 . " ~}$

QHE = Quantum Hall Effect ${ }^{3}$ (von Klitzing got Nobel prize in 1985 for discovery of Quantum Hall Effect).

[^0]Modern interpretation: The plateaus correspond to different topological phases of matter ${ }^{4}$, and the QHE is a manifestation of bulk-edge correspondence:
"For some systems, one can associate an edge index $I^{\sharp} \in \mathbb{Z}$, and a bulk index $I \in \mathbb{Z}$, and one has

$$
I^{\sharp}=I \quad \text { (bulk-edge correspondence). }
$$

These indices are «topological», hence are stable with respect to temperature, noise, deformation, ..."
The Planck constant h is related to I, while the electrical resistor by von Klitzing measures I^{\sharp}.

The Rossby Waves (wind) might be a manifestation of bulk-edge correspondence (Tauber/Delplace/Venaille, J. Fluid Mech. Vol 868 (2019).)
In this talk: Simple 1d model where bulk-edge correspondence happens.

[^1]
Another motivation: spectral pollution

We want to compute the spectrum of the (simple) operator

$$
H:=-\partial_{x x}^{2}+V(x), \quad \text { with } \quad V(x)=50 \cdot \cos (2 \pi x)+10 \cdot \cos (4 \pi x) .
$$

The potential V is 1-periodic. Assume we study H in a box $[t, t+L]$ with Dirichlet boundary conditions.

Depending on where we fix the origin t, the spectrum differs...
There are branches of spurious eigenvalues $=$ spectral pollution.

Goal: (simple) introduction to bulk-edge correspondence.

Motivation

Let $V: \mathbb{R} \rightarrow \mathbb{R}$ be a 1-periodic smooth potential, and let $V_{t}(x):=V(x-t)$. We consider

- The periodic (bulk) operator

$$
H(t):=-\partial_{x x}^{2}+V_{t} \quad \text { acting on } L^{2}(\mathbb{R})
$$

- The edge operator

$$
H_{D}^{\sharp}(t):=-\partial_{x x}^{2}+V_{t} \quad \text { acting on } L^{2}\left(\mathbb{R}^{+}\right) \text {, with Dirichlet boundary conditions }
$$

Theorem (Korotyaev 2000, Hempel Kohlmann 2011, DG 2020)

In the n-th essential gap, there is a flow of n eigenvalues going downwards as t goes from 0 to 1. In addition, these eigenvalues are simple, and their associated eigenvectors are exponentially localised.
= edge states
We provide here a simple topological proof, which will prove bulk-edge correspondence in this case.

Periodic operators

Preliminaries.

Potential: Let $V \in C^{1}(\mathbb{R}, \mathbb{R})$ be any potential (not necessarily 1-periodic).
Hamiltonian: $\quad H:=-\partial_{x x}^{2}+V$ as an operator on $L^{2}(\mathbb{R})$.
Associated ODE: $-u^{\prime \prime}+V(x) u=E u$, on \mathbb{R}.
Vector space of solutions: Let $\mathcal{L}_{V}(E)$ denote the vectorial space of solutions of the ODE.
Since it is a second order ODE, $\operatorname{dim} \mathcal{L}_{V}(E)=2$, and

$$
\mathcal{L}_{V}(E)=\operatorname{Ran}\left\{c_{E}, s_{E}\right\}, \quad\left\{\begin{array}{l}
-c_{E}^{\prime \prime}+V c_{E}=E c_{E} \\
c_{E}(0)=1, c_{E}^{\prime}(0)=0
\end{array}, \quad\left\{\begin{array}{l}
-s_{E}^{\prime \prime}+V s_{E}=E s_{E} \\
s_{E}(0)=0, s_{E}^{\prime}(0)=1
\end{array}\right.\right.
$$

Lemma (definition?)

$E \in \mathbb{R}$ is an eigenvalue of H iff $\mathcal{L}_{V}(E) \cap L^{2}(\mathbb{R}) \neq \emptyset$.
Transfer matrix

$$
T_{E}(x):=\left(\begin{array}{cc}
c_{E}(x) & c_{E}^{\prime}(x) \\
s_{E}(x) & s_{E}^{\prime}(x)
\end{array}\right) .
$$

Lemma

For all $x \in \mathbb{R}$, we have $\operatorname{det} T_{E}(x)=1$
Indeed, $\operatorname{det} T_{E}$ is the Wronskian of the ODE. At $x=0$, we have $T_{E}(0)=\mathbb{I}_{2}$, and

$$
\left(\operatorname{det} T_{E}\right)^{\prime}=\left(c_{E} s_{E}^{\prime}-s_{E} c_{E}^{\prime}\right)^{\prime}=c_{E} s_{E}^{\prime \prime}-s_{E} c_{E}^{\prime \prime}=c_{E}(V-E) s_{E}-s_{E}(V-E) c_{E}=0
$$

Case of periodic potentials.
We now assume that V is 1 -periodic.
If $u(x)$ is solution to the ODE, then so is $u(\cdot+1)$. In particular there are constants $\alpha, \beta, \gamma, \delta$ such that

$$
\left\{\begin{array}{l}
c_{E}(x+1)=\alpha c_{E}(x)+\beta s_{E}(x) \\
s_{E}(x+1)=\gamma c_{E}(x)+\delta s_{E}(x) .
\end{array} \quad \text { or equivalently } \quad T_{E}(x+1)=\left(\begin{array}{cc}
\alpha & \gamma \\
\beta & \delta
\end{array}\right) T_{E}(x) .\right.
$$

At $x=0$, we recognise $T_{E}(x=1)$, so $T_{E}(x+1)=T_{E}(1) T_{E}(x)$.
So for any solution $u \in \mathcal{L}_{E}$, we have

$$
\binom{u(x+n)}{u^{\prime}(x+n)}=\left[T_{E}(1)\right]^{n}\binom{u(x)}{u^{\prime}(x)} .
$$

\Longrightarrow The behaviour of solutions at infinity is given by the singular values of $T_{E}(1)$.
Recall that if λ_{1} and λ_{2} are the singular values of $T_{E}(1)$, then $\lambda_{1} \lambda_{2}=\operatorname{det} T_{E}(1)=1$. Also, $\lambda_{1}+\lambda_{2}=\operatorname{Tr}\left(T_{E}\right) \in \mathbb{R}$.

Two cases.

- if $\left|\lambda_{1}\right|>1$, then $\left|\lambda_{2}\right|<1$. Then $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ and $\left|\operatorname{Tr}\left(T_{E}\right)\right|>2$.

There is one mode exponentially increasing at $+\infty$ and exponentially decreasing at $-\infty$. There is one mode exponentially increasing at $-\infty$ and exponentially decreasing at $+\infty$. The elements of \mathcal{L}_{E} cannot be approximated in L^{2}, which implies $E \notin \sigma(H)$.

- if $\left|\lambda_{1}\right|=1$, the $\left|\lambda_{2}\right|=1$. Then $\left|\lambda_{1}\right|=1, \lambda_{2}=\overline{\lambda_{1}}$ and $\left|\operatorname{Tr}\left(T_{E}\right)\right| \leq 2$.

All solutions in \mathcal{L}_{E} are bounded (quasi-periodic).
All solutions in \mathcal{L}_{E} can be approximated in L^{2}, which implies $E \in \sigma_{\text {ess }}(H)$.

The spectrum of H can be read from the (continuous) map $E \mapsto \operatorname{Tr}\left(T_{E}\right)$.

Example: for $V(x):=50 \cdot \cos (2 \pi x)+10 \cdot \cos (4 \pi x)$,

Theorem (Spectrum of 1-dimensional periodic operators)

If V is 1-periodic, the spectrum $H:=-\partial_{x x}^{2}+V(x)$ is purely essential (no eigenvalues).
It is composed of bands:

$$
\sigma(H)=\sigma_{\mathrm{ess}}(H)=\bigcup_{n \geq 1}\left[E_{n}^{-}, E_{n}^{+}\right]
$$

Essential gap: The interval $g_{n}:=\left(E_{n}^{+}, E_{n+1}^{-}\right)$is called the n-th essential gap of the operator H.
Physical interpretation:

- If $E \in \sigma(H)$, waves with energy E can travel through the medium (quasi-periodic solutions);
- If $E \notin \sigma(H)$, waves cannot propagate: they are exponentially attenuated in the medium. In scattering theory, we would say that the wave is totally reflected.

Example: If $V=0$, then $H=-\partial_{x x}^{2}$. We have $-u^{\prime \prime}=E u$ if $u=\alpha \mathrm{e}^{\mathrm{i} \sqrt{E}}+\beta \mathrm{e}^{-\mathrm{i} \sqrt{E}}$.

- If $E \geq 0, \sqrt{E} \in \mathbb{R}$, and we have travelling waves;
- If $E<0, \sqrt{E} \in i \mathbb{R}$, and we have exponential waves.
- The spectrum of $-\partial_{x x}^{2}$ is $[0, \infty)$.

Bulk index

A basic remark

If $-\partial_{x x}^{2} u+(V-E) u=0$ is a non null real-valued solution, then $u(x)$ and $u^{\prime}(x)$ cannot vanish at the same time (Cauchy-Lipschitz).
We can therefore define the discrete set $\mathcal{Z}[u]:=u^{-1}(\{0\})$, and the map

$$
x \mapsto \theta[u, x]:=\frac{u^{\prime}(x)-\mathrm{i} u(x)}{u^{\prime}(x)+\mathrm{i} u(x)} \quad \text { from } \mathbb{R} \text { to } \mathbb{S}^{1}:=\{z \in \mathbb{C},|z|=1\}
$$

Lemma

$\mathcal{Z}[u]$ and $\theta[u, x]$ only depends on $\operatorname{Vect}\{u\}: \theta\left[u, x_{0}\right]=\theta\left[v, x_{0}\right]$ iff $u=\lambda v$.

In the sequel, we fix x_{0}, consider a periodic family of solutions u_{t} for H_{t}, and compute the winding number of $t \mapsto \theta\left[u_{t}, x_{0}\right]$.

The Maslov ${ }^{5}$ bulk index.

Translated Hamiltonian: We now fix $V \in C^{1}$ a 1-periodic potential, and we set:

$$
V_{t}(x):=V(x-t), \quad \mathcal{L}_{t}(E):=\mathcal{L}_{V_{t}}(E), \quad \text { and } \quad H_{t}:=-\partial_{x x}^{2}+V_{t} .
$$

Translations: If $\tau_{t} f(x):=f(x-t)$, we have $H_{t}=\tau_{t} H_{0} \tau_{t}^{*}$, so H_{t} is unitary equivalent to H_{0}.
$\Longrightarrow \sigma\left(H_{t}\right)=\sigma(H)$. In particular, the gaps g_{n} are independent of $t \in \mathbb{R}$.
We fix $E \in g_{n}$ in a common open gap.
Splitting of $\mathcal{L}_{V}(E)$. Since $E \notin \sigma\left(H_{t}\right)$, there is a natural splitting $\mathcal{L}_{t}(E)=\mathcal{L}_{t}^{+}(E) \oplus \mathcal{L}_{t}^{-}(E)$, where

$$
\mathcal{L}_{t}^{ \pm}(E)=\operatorname{Vect}\{\text { modes exp. decreasing at } \pm \infty\}, \quad \operatorname{dim} \mathcal{L}_{t}^{ \pm}(E)=1, \quad \mathcal{L}_{t}^{+}(E) \cap \mathcal{L}_{t}^{-}(E)=\{\mathbf{0}\} .
$$

Remark: The map $t \mapsto \mathcal{L}_{t}^{ \pm}(E)$ is 1-periodic, so the map $t \mapsto \theta\left[\mathcal{L}_{t}^{ \pm}(E), x\right]$ is also 1-periodic on \mathbb{S}^{1}. Winding number: We denote by $\mathcal{M}^{ \pm}$the corresponding winding numbers. By continuity, they are independent of $E \in g_{n}$ and of $x \in \mathbb{R}$.

Lemma

$\mathcal{M}^{+}=\mathcal{M}^{-}$. The common number is our bulk index (it is a Maslov index).
Proof. Since $\mathcal{L}^{+} \neq \mathcal{L}^{-}$, we have $\theta_{t}^{+} \neq \theta_{t}^{-}$, so $\frac{\theta_{t}^{+}}{\theta_{t}^{-}} \in \mathbb{S}^{1}$ never touches 1 , hence has null winding number. This gives $\mathcal{M}^{+}-\mathcal{M}^{-}=0$.

[^2]
Lemma

\mathcal{M} counts the flow of the discrete set \mathcal{Z}_{t} across any $x_{0} \in \mathbb{R}$.
Proof. Fix $x_{0} \in \mathbb{R}$.
Step 1. We can compute the winding number of $\theta_{t}\left(x_{0}\right):=\theta\left[\mathcal{L}_{t}^{+}\left(x_{0}\right)\right]$ by counting the number of times it crosses the value $1 \in \mathbb{S}^{1}$ (with orientation).

Step 2. We have $\theta_{t^{*}}\left(x_{0}\right)=1$ iff $u\left(t^{*}, x_{0}\right)=0$ iff $x_{0} \in \mathcal{Z}_{t^{*}}$.
Let $x(t) \in \mathcal{Z}_{t}$ be the branch of zeros of $u(t, \cdot)$ such that $x\left(t^{*}\right)=x_{0}$, that is $u(t, x(t))=0$.
By the implicit theorem,

$$
x^{\prime}\left(t^{*}\right)=-\frac{\partial_{t} u\left(t^{*}, x_{0}\right)}{\partial_{x} u\left(t^{*}, x_{0}\right)}
$$

On the other hand, a computation shows that

$$
\partial_{t} \theta\left(t^{*}, x_{0}\right)=-2 \mathrm{i} \frac{\partial_{t} u\left(t^{*}, x_{0}\right)}{\partial_{x} u\left(t^{*}, x_{0}\right)}=2 \mathrm{i} x^{\prime}\left(t^{*}\right)
$$

At $t=t^{*}, \theta\left(t, x_{0}\right)$ is locally turning positively iff $x^{\prime}\left(t^{*}\right)$ is crossing x_{0} from the left to the right!

Lemma

In the case $V_{t}(x):=V(x-t)$, we have $\mathcal{M}=n$ in the n-th gap.

Proof.

Step 1. In this case, we have $\mathcal{Z}_{t}:=\mathcal{Z}_{0}+t$. By periodicity, we have $\mathcal{Z}_{1}=\mathcal{Z}_{0}+1=\mathcal{Z}_{0}$.
If $x_{0} \in \mathcal{Z}_{0}$, then $x_{0}+1 \in \mathcal{Z}_{0}$. In particular, $\left(E,\left.u_{t=0}\right|_{\left[x_{0}, x_{0}+1\right]}\right)$ is an eigenpair of the Dirichlet problem

$$
\left\{\begin{array}{l}
\left(-\partial_{x x}^{2}+V(x)\right) u=E u, \quad \text { on } \quad\left(x_{0}, x_{0}+1\right) \\
u\left(x_{0}\right)=u\left(x_{0}+1\right)=0 .
\end{array}\right.
$$

The flow \mathcal{M} corresponds to the number of zeros of u in the interval $\left[x_{0}, x_{0}+1\right)$.
Step 2 (deformation). For $0 \leq s \leq 1$, we introduce $\left(E(s), \widetilde{u_{s}}\right)$ the Dirichlet eigenpair of

$$
\left\{\begin{array}{l}
\left(-\partial_{x x}^{2}+s V(x)\right) \widetilde{u_{s}}=E_{s} \widetilde{u_{s}}, \quad \text { on } \quad\left(x_{0}, x_{0}+1\right) \\
\widetilde{u_{s}}\left(x_{0}\right)=\widetilde{u_{s}}\left(x_{0}+1\right)=0
\end{array}\right.
$$

which is a continuation of (E, u) at $s=1$, and by \mathcal{M}_{s} the number of zeros of $\widetilde{u_{s}}$ in the interval $\left[x_{0}, x_{0}+1\right)$.

By continuity, $E(s)$ cannot cross the essential spectrum, so $E(s)$ is always in the n-th gap.
By Cauchy-Lipschitz, two zeros cannot merge, so \mathcal{M}_{s} is independent of s, and $\mathcal{M}=\mathcal{M}_{s=1}$.
At $s=0$, we recover the usual Laplacian.
We deduce that $E(s)$ is the branch of n-th eigenvalues, and that $\mathcal{M}=n$.

Edge index and edge modes

The half-line Dirichlet Hamiltonian.

$$
H_{D}^{\sharp}(t):=-\partial_{x x}^{2}+V(x-t), \quad \text { on } \mathbb{R}^{+} \quad \text { with Dirichlet boundary conditions at } x=0 .
$$

Essential spectrum: We have $\sigma_{\text {ess }}\left(H_{D}^{\sharp}(t)\right)=\sigma_{\text {ess }}\left(H_{0}\right)$ independent of t. So g_{n} is well-defined. Key remark: E is an eigenvalue of $H_{D}^{\sharp}(t)$ iff $0 \in \mathcal{Z}_{t}^{+}(E)$.

Lemma

If $E \in g_{n}$ is in the n-th gap, there are exactly n values $0 \leq t_{1}<t_{2} \cdots<t_{n}<1$ such that E is an eigenvalue of $H_{D}^{\sharp}\left(t_{k}\right)$.
The corresponding eigenfunctions ($=$ edge modes) are exponentially localised near $x=0$.

Theorem (Bulk-edge correspondence)

The branches of eigenvalues are decreasing function of t. In particular, in the n-th gap, the decreasing spectral flow of $H_{D}^{\sharp}(\cdot)$ is $\mathcal{S}_{D, n}^{\sharp}=n$.

Idea of the proof.

If $(\widetilde{E}(t), \widetilde{u}(t))$ is a branch of eigenpair for $H(t)$ with $\left\|\widetilde{u}_{t}\right\|^{2}=1$. We have $H(t) \widetilde{u}(t)=\widetilde{E}(t)$, and $\widetilde{E}(t)=\langle\widetilde{u}(t), H(t) \widetilde{u}(t)\rangle$. Differentiating in t gives (Hellman-Feynman)

$$
\begin{aligned}
\widetilde{E}^{\prime}(t) & =\left\langle\widetilde{u_{t}}, \partial_{t} H_{t} \widetilde{u_{t}}\right\rangle+\left\langle\partial_{t} \widetilde{u_{t}}, H_{t} \widetilde{u_{t}}\right\rangle+\left\langle\widetilde{u_{t}}, H_{t} \partial_{t} \widetilde{u_{t}}\right\rangle \\
& =\left\langle\widetilde{u_{t}},\left(\partial_{t} V_{t}\right) \widetilde{u_{t}}\right\rangle+\widetilde{E}(t) \underbrace{\left(\left\langle\partial_{t} \widetilde{u_{t}}, \widetilde{u_{t}}\right\rangle+\left\langle\widetilde{u_{t}}, \partial_{t} \widetilde{u_{t}}\right\rangle\right)}_{=\partial_{t}\left\|\widetilde{u_{t}}\right\|^{2}=0}=\int_{0}^{\infty}\left(\partial_{t} V_{t}\right)\left|\widetilde{u}_{t}\right|^{2} \mathrm{~d} x
\end{aligned}
$$

On the other hand, if $u(t)$ is a branch of functions in $\mathcal{L}_{t}^{+}(E)$ (E is fixed now), then

$$
\left(-\partial_{x x}^{2}+V_{t}-E\right) u_{t}=0
$$

These functions do not satisfy Dirichlet in general! Differentiating in t gives

$$
\left(-\partial_{x x}^{2}+V_{t}-E\right) \partial_{t} u_{t}+\left(\partial_{t} V_{t}\right) u_{t}=0
$$

We multiply by u_{t} and integrate on \mathbb{R}^{+}. We integrate by part and obtain (now we have boundary terms)

$$
\int_{0}^{\infty}\left(\partial_{t} V_{t}\right)\left|u_{t}\right|^{2}=\partial_{x} u_{t}(0) \partial_{t} u_{t}(0)
$$

At the point t, we have $u_{t}=\widetilde{u_{t}}$. In the special case where $V_{t}(x)=V(x-t)$ so that $u_{t}(x)=u(x-t)$, we obtain

$$
\widetilde{E}^{\prime}(t)=-\left|\partial_{t} u_{t}\right|^{2}(0)<0
$$

The proof relies on integration by parts.
In some sense, this is a form of bulk-edge correspondence.

Extensions

The previous arguments can be used to extend the result to many other cases:

- Any boundary conditions;
- Different models (one-dimensional Dirac equation);
- Operators on \mathbb{C}^{n}, of the form $H=\left(-\partial_{x x}^{2}\right) \mathbb{I}_{n}+V_{t}(x)$, with $V_{t}(x)$ a $n \times n$ hermitian matrix. In the latter case, the map $\theta\left[u_{t}, x\right]$ becomes a unitary $\theta[\mathcal{L}, x] \in \mathrm{U}(n)$.

Two-dimensional case
Let $V \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ be a \mathbb{Z}^{2}-periodic function. We consider (no t-parameter)

- The periodic bulk operator

$$
H:=-\Delta+V(\mathbf{x}), \quad \text { acting on } L^{2}\left(\mathbb{R}^{2}\right) ;
$$

- The edge operator

$$
H_{D}^{\sharp}:=-\Delta+V(\mathbf{x}) \quad \text { acting on } L^{2}\left(\mathbb{R}^{+} \times \mathbb{R}\right)+\text { Dirichlet boundary conditions. }
$$

Both models are periodic in the x_{2}-direction. We can perform partial-Bloch transformation:

- Bloch bulk operator

$$
H(t):=\left(-\mathrm{i} \partial_{y}+t\right)^{2}-\partial_{x x}^{2}+V \quad \text { acting on } L^{2}(\mathbb{R} \times[0,1]) ;
$$

- Bloch edge operator

$$
H_{D}^{\sharp}(t):=\left(-\mathrm{i} \partial_{y}+t\right)^{2}-\partial_{x x}^{2}+V \quad \text { acting on } L^{2}\left(\mathbb{R}^{+} \times[0,1]\right) ;
$$

It is the $n=\infty$ version of the previous case. The map θ becomes a unitary of $L^{2}([0,1])$.

Depending on the model, edge can (must) exist, or not.
Example: Graphene (a bit special... no spectral gap...).
Depending on the direction of the cut, edge can/must appear.

Armchair

Zigzag

References:

- Edge states in Ordinary Differential Equations for dislocations, D.G., J. Math. Phys. 61, 2020 (arXiv 1908.01377).
- Edge states for second order elliptic operators, D.G., soon on arXiv.

Thank you for your attention.

[^0]: ${ }^{1}$ https://www.bipm.org/fr/measurement-units/
 ${ }^{2}$ von Klitzing, Nature Physics 13, 2017
 ${ }^{3}$ K. von Klitzing; G. Dorda; M. Pepper, Phys. Rev. Lett. 45 (6): 494-497, 1980.

[^1]: ${ }^{4}$ D.J. Thouless, F.D.M. Haldane and J.M. Kosterlitz got Nobel prize in 2016 for the discovery of topological phases of matter

[^2]: ${ }^{5}$ Maslov, Théorie des perturbations et méthodes asymptotiques. 1972

