Edge states for second order elliptic operators

David Gontier
CEREMADE, Université Paris-Dauphine

March 1st 2021
ERC Meeting

Dauphine IPSL* CEREMADE

Some historical remarks.

May 20, 2019: New definition of the kg by the Bureau International des Poids et Mesures (BIPM) ${ }^{1}$:
"Le kilogramme, symbole kg, est l'unité de masse du SI. Il est défini en prenant la valeur numérique fixée de la constante de Planck, h, égale à 6, 62607015×10^{-34} J.s."

Question: How do you measure h ? How do you measure h with 10^{-9} accuracy?
Comments by von Klitzing2: "The discovery of the QHE led to a new type of electrical resistor [...]. This resistor is universal for all 2D electron systems in strong magnetic fields with an uncertainty of less than one part in 10^{10}."

QHE $=$ Quantum Hall Effect ${ }^{3}$ (von Klitzing got Nobel prize in 1985 for discovery of Quantum Hall Effect).

[^0]Modern interpretation: The plateaus correspond to different topological phases of matter ${ }^{4}$, and the QHE is a manifestation of bulk-edge correspondence.
"When some bulk systems are cut, edge modes must appear at the boundary. These modes are quantized: we can associate a topological number to them."

The Rossby Waves (wind) might be a manifestation of bulk-edge correspondence (Tauber/Delplace/Venaille, J. Fluid Mech. Vol 868 (2019).)
Many proofs of bulk-edge correspondence, in many contexts, using many tools:

- First proof (complex analysis): Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).
- Operator/functional theory: Elbau/Graf, Commun. Math. Phys. 229, 415-432 (2002). Elgart/Graf/Schenker, Commun. Math. Phys. 259, (2005).
- K-theory Kellendonk/Richter/Schulz-Baldes, Rev. Math. Phys. 14, 87-119 (2002).
- Micro-local analysis Drouot, arXiv: 1909.10474 (2019).
- Vector bundle theory: Graf/Porta, Comm. Math. Phys. 324, 851-895 (2013).
- Maslov index Avila/Schulz-Baldes/Villegas-Blas, Math. Phys., Analysis and Geometry 16, (2013).

[^1]
Another motivation: spectral pollution

We want to compute the spectrum of the (simple) operator

$$
H:=-\partial_{x x}^{2}+V(x), \quad \text { with } \quad V(x)=50 \cdot \cos (2 \pi x)+10 \cdot \cos (4 \pi x) .
$$

The potential V is 1-periodic. Assume we study H in a box $[t, t+L]$ with Dirichlet boundary conditions.

Depending on where we fix the origin t, the spectrum differs...
There are branches of spurious eigenvalues = spectral pollution (they appear for all L).
The corresponding eigenvectors are edge modes: they are localized near the boundaries (they cannot propagate in the bulk).

In this talk: understand why edge modes must appear.

Framework

Bulk operator
Let V be a bounded potential. $H:=-\partial_{x x}^{2}+V$ acting on $L^{2}(\mathbb{R})$ is self-adjoint (with domain $H^{2}(\mathbb{R})$).
Edge operator
We want to define $H^{\sharp}:=-\partial_{x x}^{2}+V$ acting on $L^{2}\left(\mathbb{R}^{+}\right)$.
Self-adjoint extensions
The operator H^{\sharp} with core domain $C_{0}^{\infty}\left(\mathbb{R}^{+}\right)$has
minimal domain $\mathcal{D}_{\min }:=H_{0}^{2}\left(\mathbb{R}^{+}\right), \quad$ maximal domain $\mathcal{D}_{\max }=\mathcal{D}_{\min }^{*}=H^{2}\left(\mathbb{R}^{+}\right)$.
$\mathcal{D}_{\text {min }} \neq \mathcal{D}_{\max }$, so H^{\sharp} is not self-adjoint (we need to set boundary conditions). A domain $\mathcal{D}_{\text {min }} \subset \mathcal{D} \subset \mathcal{D}_{\text {max }}$ defines a self-adjoint extension of H^{\sharp} iff $\mathcal{D}^{*}=\mathcal{D}$, where

$$
\mathcal{D}^{*}:=\left\{\psi \in L^{2}\left(\mathbb{R}^{+}\right), \quad T_{\psi}: \phi \mapsto\left\langle\psi, H^{\sharp} \phi\right\rangle \text { is bounded on } \mathcal{D}\right\} .
$$

Key remark: $E \in \mathbb{R}$ is an eigenvalue of $\left(H^{\sharp}, \mathcal{D}\right)$ iff

- E is an eigenvalue of $\left(H^{\sharp}, \mathcal{D}_{\max }\right)$: there is $\psi \in \mathcal{D}_{\max }$ so that $H^{\sharp} \psi=E \psi$;
- $\psi \in \mathcal{D}$.

Vectorial space of weak-solution $\mathcal{S}(E):=\operatorname{Ker}\left(H_{\max }^{\sharp}-E\right)$.

$$
E \in \mathbb{R} \text { is an eigenvalue of }\left(H^{\sharp}, \mathcal{D}\right) \text { iff } \mathcal{S}(E) \cap \mathcal{D} \neq\{0\} \text {. }
$$

Remark

- $\mathcal{S}(E)$ depends only on the bulk (no boundary conditions);
- \mathcal{D} depends only on the edge (usually independent of V, e.g. Dirichlet boundary conditions).

Boundary symplectic space

Idea: compute this intersection in the boundary space

$$
\psi \in \mathcal{D}_{\max }=H^{2}\left(\mathbb{R}^{+}\right) \quad \mapsto \quad \operatorname{Tr} \psi:=\left(\psi(0), \psi^{\prime}(0)\right) \in \mathcal{H}_{b}:=\mathbb{C}^{2}
$$

Remark: The map $\operatorname{Tr}: \mathcal{D}_{\max } \rightarrow \mathcal{H}_{b}$ is onto.
Symplectic form (= non degenerate, continuous, sesquilinear form $\omega: \mathcal{H}_{b} \times \mathcal{H}_{b} \rightarrow \mathbb{C}$ such that $\omega(\mathbf{x}, \mathbf{y})=-\overline{\omega(\mathbf{y}, \mathbf{x})}$.

$$
\forall \mathbf{x}=\left(x, x^{\prime}\right) \in \mathbb{C}^{2}, \forall \mathbf{y}=\left(y, y^{\prime}\right) \in \mathbb{C}^{2}, \quad \omega(\mathbf{x}, \mathbf{y}):=\bar{x} y^{\prime}-\overline{x^{\prime}} y
$$

Lagrangian spaces A sub-vectorial space $\ell \subset \mathcal{H}_{b}$ is Lagrangian if $\ell^{\circ}=\ell$, where

$$
\ell^{\circ}:=\left\{\mathbf{x} \in \mathcal{H}_{b}, \quad \forall \mathbf{y} \in \mathcal{H}_{b}, \omega(\mathbf{x}, \mathbf{y})=0\right\}
$$

Second Green's formula (for second order elliptic operator)

$$
\begin{aligned}
\forall \psi, \phi \in \mathcal{D}_{\max }, \quad\left\langle\psi, H_{\max }^{\sharp} \phi\right\rangle-\left\langle H_{\max }^{\sharp} \psi, \phi\right\rangle & =\overline{\psi(0)} \phi^{\prime}(0)-\overline{\psi^{\prime}(0)} \phi(0) \\
& =\omega(\operatorname{Tr}(\psi), \operatorname{Tr}(\phi))
\end{aligned}
$$

Self-adjoint extensions and Lagrangian planes

Lemma (classical)

The self-adjoint extensions of H^{\sharp} are in one-to-one correspondence with the Lagrangian planes of \mathcal{H}_{b}. More specifically, $\mathcal{D}_{\min } \subset \mathcal{D} \subset \mathcal{D}_{\text {max }}$ defines a self-adjoint extension iff it is of the form

$$
\mathcal{D}=\operatorname{Tr}^{-1}(\ell), \quad \text { for a Lagrangian subspace } \ell .
$$

Proof.
Let $\mathcal{D}_{\text {min }} \subset \mathcal{D} \subset \mathcal{D}_{\text {max }}$, and set $\ell:=\operatorname{Tr} \mathcal{D}$. Let $\mathbf{x} \in \ell^{\circ}$ and $\psi \in \operatorname{Tr}^{-1}\{\mathbf{x}\} \subset H_{\text {max }}^{\sharp}$, we have

$$
\forall \phi \in \mathcal{D}, \quad \omega(\operatorname{Tr} \psi, \operatorname{Tr} \phi)=0, \quad \text { so } \quad\left\langle\psi, H_{\max }^{\sharp} \phi\right\rangle=\left\langle H_{\max }^{\sharp} \psi, \phi\right\rangle
$$

In particular, $\phi \mapsto\left\langle\psi, H_{\max }^{\sharp} \phi\right\rangle$ is bounded on \mathcal{D}, so $\psi \in \mathcal{D}^{*}$. Conversely, we check that $\psi \in \mathcal{D}^{*}$ implies $\operatorname{Tr}(\psi) \in \ell^{\circ}$. This proves that $\mathcal{D}^{*}=\operatorname{Tr}^{-1}\left(\ell^{\circ}\right)$.

Examples

- Dirichlet boundary conditions corresponds to the plane $\ell_{D}:=\{0\} \times \mathbb{C}$.
- Neumann boundary conditions corresponds to the plane $\ell_{N}:=\mathbb{C} \times\{0\}$.
- θ-Robin boundary conditions corresponds to the plane $\ell_{\theta}:=\operatorname{Vect}_{\mathbb{C}}\{(\sin (\pi \theta), \cos (\pi \theta))\}$:

$$
\Psi^{\prime}(0)+\alpha \Psi(0)=0, \quad \alpha=\tan (\pi \theta)
$$

($\theta=0$ is Dirichlet, and $\theta=1 / 2$ is Neumann. Note that $\theta \mapsto \ell_{\theta}$ is 1 -periodic...)

Weak solutions and Lagrangian planes
Define $H_{\max }^{\sharp, \pm}:=-\Delta+V$ on $L^{2}\left(\mathbb{R}^{ \pm}\right)$with domain $H^{2}\left(\mathbb{R}^{ \pm}\right)$.

Lemma (new?)

Let $E \in \mathbb{R}$ be in the resolvent set of the bulk operator H. Let $\mathcal{S}^{ \pm}(E):=\operatorname{Ker}\left(H_{\max }^{\sharp, \pm}-E\right)$ be the set of weak solutions, and let $\ell^{ \pm}(E):=\operatorname{Tr} \mathcal{S}^{ \pm}(E)$. Then $\ell^{ \pm}(E)$ are Lagrangian planes, and

$$
\mathcal{H}_{b}=\ell^{-}(E) \oplus \ell^{+}(E) .
$$

Proof.
Step 1. First we have

$$
\forall \psi, \phi \in \mathcal{S}^{+}(E), \quad\left\langle\psi, H_{\max }^{\sharp} \phi\right\rangle-\left\langle H_{\max }^{\sharp} \psi, \phi\right\rangle=\langle\psi, E \phi\rangle-\langle E \psi, \phi\rangle=0
$$

So, by Green's identity, $\omega(\operatorname{Tr}(\psi), \operatorname{Tr}(\phi))=0$, hence $\ell^{+}(E) \subset \ell^{+}(E)^{\circ}$. Similarly, $\ell^{-}(E) \subset \ell^{-}(E)^{\circ}$.
Step 2. Since $E \notin \sigma(H)$, the map $(H-E)^{-1}$ is well-defined and maps $L^{2}(\mathbb{R})$ to $H^{2}(\mathbb{R})$. Writing

$$
\mathcal{H}:=L^{2}(\mathbb{R})=\mathcal{H}^{+} \oplus \mathcal{H}^{-}, \quad \text { with } \quad \mathcal{H}^{ \pm}:=\left\{\psi \in L^{2}(\mathbb{R}), \psi(x)=0 \text { on } \quad \mathbb{R}^{\mp}\right\}
$$

gives

$$
\mathcal{D}:=H^{2}(\mathbb{R})=\mathcal{D}^{+}+\mathcal{D}^{-}, \quad \text { with } \quad \mathcal{D}^{ \pm}:=(H-E)^{-1} \mathcal{H}^{ \pm}
$$

If $f \in \mathcal{D}^{+}$, then f is square integrable, and $\left(-\partial_{x x}^{2}+V-E\right) f=0$ on \mathbb{R}^{-}. So the restriction of f to \mathbb{R}^{-} belongs to $\mathcal{S}^{-}(E)$. This proves $\mathcal{D}^{+} \subset \mathcal{S}^{-}(E)$, and similarly, $\mathcal{D}^{-} \subset \mathcal{S}^{+}(E)$. Taking traces gives

$$
\ell^{+}(E)+\ell^{-}(E) \supset \operatorname{Tr}\left(\mathcal{D}^{-}\right)+\operatorname{Tr}\left(\mathcal{D}^{+}\right)=\operatorname{Tr}(\mathcal{D})=\mathcal{H}_{b}
$$

Together with Step 1, and some simple algebra, we obtain the result.

Lagrangian planes and unitaries

The J matrix

$$
J:=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \text { so that } \quad \omega(\mathbf{x}, \mathbf{y})=\bar{x} y^{\prime}-\overline{x^{\prime}} y=\langle\mathbf{x}, J \mathbf{y}\rangle_{\mathbb{C}^{2}} .
$$

We have $J^{2}=-1$, so $\sigma(J)=\{-\mathrm{i}, \mathrm{i}\}$. In addition,

$$
\operatorname{Ker}(J-\mathrm{i}) \oplus \operatorname{Ker}(J+\mathrm{i})=\mathcal{H}_{b}, \quad \text { with, explicitly, } \quad \operatorname{Ker}(J \mp \mathrm{i})=\binom{1}{ \pm \mathrm{i}} \mathbb{C} .
$$

Lemma (reformulation of Leray, Analyse Lagrangienne et mécanique quantique, 1978)

The Lagrangian planes of $\left(\mathcal{H}_{b}=\mathbb{C}^{2}, \omega\right)$ are in one-to-one correspondence with the unitaries $\mathcal{U}: \mathbb{C} \rightarrow \mathbb{C}$, with

$$
\ell:=\left\{\binom{1}{\mathrm{i}} x+\binom{1}{-\mathrm{i}} \mathcal{U} x, \quad x \in \mathbb{C}\right\} .
$$

Example: For the Robin Lagrangian plane $\ell_{\theta}:=\operatorname{Vect}_{\mathbb{C}}\{(\sin (\pi \theta), \cos (\pi \theta))\}$, we have

$$
\binom{\sin (\pi \theta)}{\cos (\pi \theta)}=\binom{1}{\mathrm{i}} \frac{1}{2}[\sin (\pi \theta)-\mathrm{i} \cos (\pi \theta)]+\binom{1}{-\mathrm{i}} \frac{1}{2}[\sin (\pi \theta)+\mathrm{i} \cos (\pi \theta)],
$$

so $\mathcal{U}_{\theta}=\frac{\sin (\pi \theta)+\mathrm{i} \cos (\pi \theta)}{\sin (\pi \theta)-\mathrm{i} \cos (\pi \theta)}=\mathrm{e}^{-2 \mathrm{i} \pi \theta} \in \mathbb{S}^{1} \approx \mathrm{U}(1)$.

Lemma

If ℓ_{1} and ℓ_{2} are two Lagrangian planes, then

$$
\operatorname{dim}\left(\ell_{1} \cap \ell_{2}\right)=\operatorname{dim} \operatorname{Ker}\left(\mathcal{U}_{1}-\mathcal{U}_{2}\right)=\operatorname{dim} \operatorname{Ker}\left(\mathcal{U}_{1}^{*} \mathcal{U}_{2}-1\right) .
$$

Gathering the previous results gives the following.

Lemma

For all $E \in \mathbb{R} \backslash \sigma(H)$, and for $\left(H^{\sharp}, \mathcal{D}^{\sharp}\right)$ a self-adjoint extension of the edge operator, we have

$$
\operatorname{dim} \operatorname{Ker}\left(H^{\sharp}-E\right)=\operatorname{dim}\left(\mathcal{D}^{\sharp} \cap \mathcal{S}^{+}(E)\right)=\operatorname{dim}\left(\ell^{\sharp} \cap \ell^{+}(E)\right)=\operatorname{dim} \operatorname{Ker}\left(\left(\mathcal{U}^{\sharp}\right)^{*} \mathcal{U}(E)-1\right) .
$$

Remarks:

- the last problem is set on $U(1) \approx \mathbb{S}^{1}$. It is somehow much simpler to study;
- we only used that $\left(-\partial_{x x}^{2}+V\right)$ is self-adjoint (V needs not be periodic);
- the proofs work similarly for general second order elliptic operators.

Yes,... but why do we have edge states?
Idea: consider periodic families of second order elliptic operators \Longrightarrow periodic families of Lagrangian planes ℓ_{t}^{\sharp} and $\ell_{t}^{+}(E) \Longrightarrow$ periodic family $t \rightarrow\left(\mathcal{U}_{t}^{\sharp}\right)^{*} \mathcal{U}_{t}(E) \in \mathbb{S}^{1}$.

Including orientations

Theorem (DG 2021)

Let $t \mapsto H_{t}$ be a continuous periodic family of bulk operators.
Let $t \mapsto\left(H_{t}^{\sharp}, \mathcal{D}_{t}^{\sharp}\right)$ be a continuous periodic family of (self-adjoint extensions of) edge operators.
Assume that $E \in \mathbb{R}$ is in none of the spectra of the bulk operators H_{t}. Then

$$
\begin{aligned}
\operatorname{Sf}\left(H_{t}^{\sharp}, E\right) & =\operatorname{Mas}\left(\ell_{t}^{\sharp}, \ell_{t}^{+}(E)\right)=\operatorname{Sf}\left(\left(\mathcal{U}_{t}^{\sharp}\right)^{*} \mathcal{U}_{t}(E), 1\right) \\
& =\text { Winding }\left(\left(\mathcal{U}_{t}^{\sharp}\right)^{*} \mathcal{U}_{t}(E)\right) \\
& =\text { Winding }\left(\mathcal{U}_{t}(E)\right)-\operatorname{Winding}\left(\mathcal{U}_{t}^{\sharp}\right) \quad \in \mathbb{Z}
\end{aligned}
$$

Spectral flow $\operatorname{Sf}\left(H_{t}, E\right)$ counts the net number of eigenvalues going downwards in the gap where E lies. Maslov index ${ }^{5} \operatorname{Mas}\left(\ell_{1}(t), \ell_{2}(t)\right)$ counts the number of signed crossings of Lagrangian plane.

Winding number: if $t \mapsto \mathcal{U}(t) \in \mathbb{S}^{1}$ is continuous and periodic,
Winding $(\mathcal{U})=\sharp\{$ turns in the positive directions $\}=\sharp\left\{\mathcal{U}(\cdot)\right.$ crosses $1 \in \mathbb{S}^{1}$, counting orientations $\}$.
The winding number is an homomorphism, which gives the last line of the Theorem.
In the last line, we decoupled the bulk and the edge: the spectral flow is a combination of the two! If the previous integer is non-null, edge states appear at the energy E for some $t \in[0,1]$.

[^2]
Example 1: Robin boundary conditions

Consider a bulk Hamiltonian $H_{\theta}:=-\partial_{x x}^{2}+V$ (independent of θ)
Consider the edge Hamiltonian $H_{\theta}^{\sharp}:=-\partial_{x x}^{2}+V$, with θ-Robin boundary conditions, i.e. with domain $\mathcal{D}_{\theta}=\operatorname{Tr}^{-1}\left(\ell_{\theta}\right)$.

For E in the resolvent set of $-\partial_{x x}^{2}+V$, we have

- Winding $\left(\mathcal{U}_{\theta}^{+}(E)\right)=0$, since the bulk operator is independent of V;
- Winding $\left(\mathcal{U}_{\theta}^{\sharp}\right)=$ Winding $\left(\mathrm{e}^{-2 \mathrm{i} \pi \theta}\right)=-1$.

Lemma

In each spectral gap of $H=-\partial_{x x}^{2}+V$, there is a spectral flow of exactly 1 eigenvalue going downwards. This includes the lower gap $(-\infty, \inf \sigma(H))$.

Example 2: Junctions
Let $H_{L}(t):=-\partial_{x x}^{2}+V_{L, t}$ and $H_{R}(t):=-\partial_{x x}^{2}+V_{R, t}$ be two periodic families of Schrödinger operators. We consider the junction operator

$$
H_{t}^{\text {junction }}:=-\partial_{x x}^{2}+\left[V_{L, t}(x) \mathbb{1}(x<0)+V_{R, t}(x) \mathbb{1}(x>0)\right] .
$$

Theorem

If $E \in \mathbb{R}$ is in the resolvent set of all left and right bulk operators, then

$$
\operatorname{Sf}\left(H_{t}^{\text {junction }}, E\right)=\text { Winding }\left(\mathcal{U}_{R}^{+}(E)\right)-\text { Winding }\left(\mathcal{U}_{L}^{-}(E)\right)
$$

Idea of the proof

We note that E is an eigenvalue of H iff $\ell^{+}(E) \cap \ell^{-}(E) \neq\{0\}$:
the Cauchy solution of $\left(-\partial_{x x}^{2}+V-E\right) \psi=0, \operatorname{Tr}(\psi) \in \ell^{+}(E) \cap \ell^{-}(E)$ is square-integrable on \mathbb{R}.
Actually, we have

$$
\operatorname{dim} \operatorname{Ker}(H-E)=\operatorname{dim}\left(\ell^{+}(E) \cap \ell^{-}(E)\right)=\operatorname{dim} \operatorname{Ker}\left(\mathcal{U}^{-}(E)^{*} \mathcal{U}^{+}(E)-1\right)
$$

Adding the parameter t, and taking into account orientations, we get

$$
\begin{aligned}
\operatorname{Sf}\left(H_{t}, E\right) & =\operatorname{Mas}\left(\ell_{t}^{+}(E), \ell_{t}^{-}(E)\right)=\operatorname{Sf}\left(\mathcal{U}_{t}^{-}(E)^{*} \mathcal{U}_{t}^{+}(E), 1\right)=\operatorname{Winding}\left(\mathcal{U}_{t}^{-}(E)^{*} \mathcal{U}_{t}^{+}(E)\right) \\
& =\operatorname{Winding}\left(\mathcal{U}_{t}^{+}(E)\right)-\operatorname{Winding}\left(\mathcal{U}_{t}^{-}(E)\right) .
\end{aligned}
$$

For the junction operator $H_{t}^{\text {junction }}, \mathcal{U}_{t}^{+}(E)$ only depends on the right side, while $\mathcal{U}_{t}^{-}(E)$ only depends on the left.

Example 3: Dislocations

Let $V(x)$ be a 1-periodic potential. We consider the bulk operator

$$
H_{t}:=-\partial_{x x}^{2}+V(x-t)
$$

and the edge operator H_{t}^{\sharp} on \mathbb{R}^{+}with Dirichlet boundary conditions.
Since H_{t} is a translated version of H_{0}, and using Bloch theory, we have

$$
\sigma\left(H_{t}\right)=\sigma\left(H_{0}\right)=\bigcup_{k \in B . Z .} \bigcup_{n=1}^{\infty}\left\{\varepsilon_{n, k}\right\}
$$

where $\varepsilon_{n, k}$ are the Bloch eigenmodes.

Lemma

For E in a gap of H_{0}, we have

$$
\operatorname{Sf}\left(H_{t}^{\sharp}, E\right)=\mathcal{N}(E)
$$

where $\mathcal{N}(E)$ is the number of Bloch modes below E.
Idea of the proof (adapted from R. Hempel M. Kohlmann, J. Math. Anal. Appl. 381 (2011).)
The state $\gamma_{E}:=\mathbb{1}\left(H_{0}-E\right)$ represents a state having $\mathcal{N}(E)$ electrons per unit cell.
Consider the dislocated operator

$$
\mathcal{H}_{t}^{\text {junction }}:=-\partial_{x x}^{2}+[V(x) \mathbb{1}(x<0)+V(x-t) \mathbb{1}(x>0)]
$$

At $t=0$, and $t=1$, we recover the bulk operator H. During the motion $t \in[0,1]$, a new cell has appeared, so $\mathcal{N}(E)$ electrons have appeared. They can only come from the upper bands, so a flow of $\mathcal{N}(E)$ eigenvalues going downwards must appear.

Numerical simulation

In our setting (one dimensional Schrödinger operator), all gaps are open, so $\mathcal{N}(E)=N$ in the N-th gap. Potential

$$
V(x)=50 \cdot \cos (2 \pi x)+10 \cdot \cos (4 \pi x)
$$

Figure: (left) Spectrum of $H^{\sharp}(t)$ for $t \in[0,1]$. (center) Spectrum of the operator on $[t, t+L]$, (right) Spectrum for a junction operator.

On the right, we observe a spectral flow of eigenmodes for the left boundary (going downwards), and a spectral flow of eigenmodes for the right boundary (going upwards).

Example 4: Protected states in the Dirac equation

Dirac equation

$$
\mathrm{i}\binom{\psi^{\uparrow}}{-\psi^{\downarrow}}^{\prime}=\left(\begin{array}{cc}
0 & V(x) \\
V(x) & 0
\end{array}\right)\binom{\psi^{\uparrow}}{\psi^{\downarrow}}+E\binom{\psi^{\uparrow}}{\psi^{\downarrow}}
$$

Lemma (Fefferman/Lee-Thorp/Weinstein, AMS Vol. 247 (2017).)

If V switches from V_{per} at $x \leq-L$ to $-V_{\mathrm{per}}$ at $x \geq L$, then 0 is in the spectrum of the Dirac operator. $=$ «Topologically protected state».

Introduce the t parameter

$$
V_{\chi}^{\sharp}(t, x)=\chi(x) V_{\mathrm{per}}(x)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+(1-\chi(x)) V_{\mathrm{per}}(x)\left(\begin{array}{cc}
\sin (2 \pi t) & \cos (2 \pi t) \\
\cos (2 \pi t) & -\sin (2 \pi t)
\end{array}\right) .
$$

Lemma

There a decreasing spectral flow of exactly 1 eigenvalue going downwards in each essential gap, and $\mathcal{D}_{\chi}^{\sharp}\left(\frac{1}{2}-t\right)=-\mathcal{D}_{\chi}^{\sharp}\left(\frac{1}{2}+t\right)$. In particular, 0 is an eigenvalue at $t=1 / 2$.

Conclusion

Extensions

- The theory applies to operators acting on $L^{2}\left(\mathbb{R}, \mathbb{C}^{n}\right)$. The unitaries $\mathcal{U}(t)$ are now in $\mathrm{U}(n)$. We need to consider the winding of $\operatorname{det} \mathcal{U}(t) \in \mathbb{S}^{1}$.
- The theory also applies to the infinite dimensional setting

$$
H=-\Delta+V \quad \text { acting on } \quad L^{2}(\mathbb{R} \times[0,1], \mathbb{C}) \quad \text { (tube) }
$$

- The boundary space is now $\mathcal{H}_{b}=H^{3 / 2}([0,1]) \times H^{1 / 2}([0,1])$.
- One needs to assume finite dimensional crossings. It does not work for all self-adjoint extensions.
- $\operatorname{det}(\mathcal{U}(t))$ has no meaning.
- Based on the infinite dimensional version of the Maslov index by Furutani, Latushkin and Sukhtaiev.

> Thank you for your attention.

[^0]: ${ }^{1}$ https://www.bipm.org/fr/measurement-units/
 ${ }^{2}$ von Klitzing, Nature Physics 13, 2017
 ${ }^{3}$ K. von Klitzing; G. Dorda; M. Pepper, Phys. Rev. Lett. 45 (6): 494-497, 1980.

[^1]: ${ }^{4}$ D.J. Thouless, F.D.M. Haldane and J.M. Kosterlitz got Nobel prize in 2016 for the discovery of topological phases of matter

[^2]: ${ }^{5}$ Maslov, Théorie des perturbations et méthodes asymptotiques. 1972

