N-solitons and the Lieb-Thirring inequality

David Gontier

CEREMADE, Université Paris-Dauphine

June 3, 2021 ERC Meeting

Dauphine | PSL CEREMADE

Lieb-Thirring inequality.

(In this talk, only dimension d = 1 and power $\gamma = 3/2$).

Theorem (Lieb-Thirring)

Let $V \in L^2(\mathbb{R})$ satisfies $V \leq 0$, and let $H := -\partial_{xx}^2 + V$. Let $\lambda_1 < \lambda_2 < \cdots < 0$ be the negative eigenvalues of H. Then, for all $N \in \mathbb{N}^*$, we have

$$\sum_{j=1}^{N} |\lambda_j|^{3/2} \le \frac{3}{16} \int_{\mathbb{R}} |V|^2(x) \mathrm{d}x, \qquad (LT(N)).$$

Goal of this talk: We will provide three different proofs:

- Lieb-Thirring original proof (1975-1976, fast, once you know the soliton theory...)
- Benguria-Loss proof (2000, very fast)
- Zakharov-Faddeev proof (1972, very complex, uses all the scattering theory machinery).

In the process, we will prove the following

Theorem

For all $N \in \mathbb{N}^*$, the set of potentials V for which we have equality is a real manifold of dimension 2N, called the set of N-solitons. In other words, the set of N-solitons is parametrised by 2N coefficients.

Remark. The set of solitons has been extensively studied (see Deift-Trubowitz 79 and Crum 54). They appear in many, many contexts.

Some preliminary remarks

Translational invariance

Assume V is an optimizer. Then $V(\cdot - t)$ is also an optimizer (invariance by translations).

Scaling invariance

If V is an optimizer, with eigenvalue $\lambda_1 < \lambda_2 < \cdots < \lambda_n < 0,$ then

$$V_a(x) := a^2 V(ax)$$

is also an optimizer, with eigenvalues $a^2\lambda_1 < a^2\lambda_2 < \cdots < a^2\lambda_n < 0$. (proof: consider the eigenfunctions $u_{a,j}(x) = a^{1/2}u_j(ax)$).

Lemma (The N = 1 case)

If N = 1, the only optimizers of the LT inequality are the potentials

$$V_{a,t}(x) := \frac{-2a^2}{\cosh^2(a(x-t))}$$

Such function is called a soliton.

Parameters The parameter t gives the *location* of the soliton, and a gives the *scale* or the *amplitude* of the soliton. Note that

$$\int_{\mathbb{R}} |V_{a,t}|^2(x) = a^2.$$

Lieb-Thirring original proof, 1975-1976 (Following P. Lax 1968 -also following Gardner, Kruskal and Miura) Let $t \mapsto V_t$ be a smooth family of potentials. Let (λ_t, u_t) be a branch of eigenpair for $H_t := -\partial_{xx}^2 + V_t$, with $||u_t||^2 = 1$, then

$$Hu_t = \lambda_t u_t, \quad \lambda_t = \langle u_t, H_t u_t \rangle, \quad ||u_t||^2 = 1.$$

Differentiating gives the Hellman-Feynman equation

$$\partial_t \lambda_t = \langle \partial_t u_t, H_t u_t \rangle + \langle u_t, (\partial_t H_t) u_t \rangle + \langle u_t, H_t (\partial_t u_t) \rangle$$

= $\lambda_t \underbrace{(\langle \partial_t u_t, u_t \rangle + \langle u_t, \partial_t u_t)}_{= \partial_t ||u_t||^2 = 0} + \langle u_t, (\partial_t V_t) u_t \rangle.$

Lax pair. Assume $\partial_t V_t = [B, H]$ for some operator B. Then

$$\partial_t \lambda_t = \langle u_t, (\partial_t V_t) u_t \rangle = \langle u_t, BH - HB, u_t \rangle = \lambda_t \langle u_t, (B - B) u_t \rangle = 0.$$

Theorem (Lax)

If $\partial_t V_t = [B, H]$, then the operators H_t all have the same spectrum: $\sigma(H_T) = \sigma(H_0)$.

Examples

- If $B = \partial_x$, we have $[B, H] = [\partial_x, V] = (\partial_x V)$. The solution of $\partial_t V_t = \partial_x V_t$ is $V_t(x) = V_0(x + t)$. So V and $V(\cdot - t)$ gives the same spectrum...
- If $B = 4\partial_{xxx}^3 3V' 6V\partial_x$, then a computation gives

 $\partial_t V_t = -V_t^{\prime\prime\prime} + 6V_t V_t^{\prime}$ (Korteweg de Vries (KdV) equation).

So if V_t solves the KdV equation, $H_t := -\partial_{xx}^2 + V_t$ have the same spectrum for all t. In addition, $\int |V_t|^2$ is constant.

Lieb-Thirring original proof (end)

Conclusion

Consider V_0 an optimizer for LT(N), and let V_t be the KdV solution of

$$\begin{cases} \partial_t V_t = -V_t''' + 6V_t V_t' \\ V_{t=0} = V_0. \end{cases}$$

Then V_t is also an optimizer for LT.

"Now the theory of the KdV equation says that as $t \to \infty$, V_t evolves into a sum of solitons [...]. The solitons are well separated since they have different velocities".

Bubbles

Evolving KdV splits the solitons = bubbles. We are back to the case N = 1.

Parameters ?

The 2N parameters are *in some sense* the location and magnitude of each soliton.

Problem

- The LT proof relies on the theory of KdV... not very satisfying.
- The parametrisation of the N-soliton is not so clear (superposition of solitons?).

A magical change of functions (Crum 1954 (?)) Let $\lambda = -\beta^2 < 0$, and let u > 0 be a positive solution (not necessarily in L^2) of

$$(-\partial_{xx}^2 + V + \beta^2)u = 0.$$

Then

$$h:=\frac{u'}{u} \quad \text{satisfies} \quad h'=\frac{uu''-(u'^2)}{u^2}=(V+\beta^2)-h^2 \quad (\text{Riccati (non-linear) equation}).$$

Introducing the operators

$$A := \partial_x - h(x)$$
 so that $A^* = -\partial_x - h(x)$,

we have

$$A^*A = (-\partial_x - h)(\partial_x - h) = -\partial_{xx}^2 + [\partial_x, h] + h^2 = -\partial_{xx}^2 + h^2 + h$$
$$= -\partial_{xx}^2 + V + \beta^2$$

and

$$AA^* = (\partial_x - h) (-\partial_x - h) = -\partial_{xx}^2 + [h, \partial_x] + h^2 = -\partial_{xx}^2 - h' + h^2$$

= $-\partial_{xx}^2 + V + \beta^2 - 2h'.$

Commutation. We have $\sigma(A^*A) \setminus \{0\} = \sigma(AA^*) \setminus \{0\}.$

Conclusion

$$-\partial_{xx}^2 + V$$
 and $-\partial_{xx}^2 + V - 2(\log u)''$.

have the same spectrum, expect maybe at $\lambda = -\beta^2$.

Example: Adding one soliton Free Hamiltonian. Start from

$$H_0 = -\partial_{xx}^2, \quad V_0 \equiv 0.$$

Let $\beta > 0$ and set $\lambda = (i\beta)^2$. The **positive** solutions of $(-u'' + \beta^2)u = 0$ are of the form

$$u(x) := e^{\beta a} e^{\beta x} + e^{\beta(a+2b)} e^{-\beta x} = e^{\beta a} e^{\beta b} \left(e^{\beta(x-b)} + e^{-\beta(x-b)} \right)$$
$$= 2e^{\beta(a+b)} \cosh(\beta(x-b)).$$

This gives

$$h = \frac{u'}{u} = \beta \frac{\sinh(\beta(x-b))}{\cosh(\beta(x-b))}, \quad \text{and} \quad h' = \frac{\beta^2}{\cosh^2(\beta(x-b))}.$$

So,

$$H_0 := -\partial_{xx}^2 \quad \text{and} \quad H_1 := -\partial_{xx}^2 - \frac{2\beta^2}{\cosh^2(\beta(x-b))}$$

have the same spectrum, except maybe at $\lambda = -\beta^2$. Actually, H_1 has a simple eigenvalue at λ .

Remark

We needed only two parameters to *add a soliton*: the eigenvalue $\lambda = -\beta^2$, and the *translation* factor b.

Benguria-Loss proof (removing a soliton)

Let V be a (fast decaying) potential. Consider u_1 the first (positive) eigenvalue of H with eigenvalue $\lambda_1 < 0$, so

$$-u_1'' + Vu_1 = \lambda_1 u_1.$$

Since V decays fast,

$$u_1(x)\approx cst\cdot \mathrm{e}^{-\sqrt{|\lambda_1|}|x|}(1+o(1)),\quad \text{as }x\to\infty.$$

and

$$h_1(x):=\frac{u_1'}{u_1}\approx \mp \sqrt{|\lambda_1|}(1+o(1)), \quad \text{as} \quad \pm \, x \to \infty.$$

By the previous result:

$$H = -\partial_{xx}^2 + V, \quad \text{and} \quad H = -\partial_{xx}^2 + V_1 \quad \text{with} \quad V_1 := V - 2\partial_{xx}\log u_1,$$

have the same spectrum, except maybe at λ_1 . Actually, $\lambda_1 \in \sigma(H)$ and $\lambda_1 \notin \sigma(H_1)$.

We removed the first eigenbound, but we did not modify the rest of the spectrum.

Benguria-Loss proof (end)

In addition, we have

$$\begin{split} \int_{\mathbb{R}} |V_1|^2 &= \int_{\mathbb{R}} (V - 2h_1')^2 = \int_{\mathbb{R}} V^2 + 4 \int_{\mathbb{R}} h_1' (h_1' - V) \\ &\stackrel{\text{Riccati}}{=} \int_{\mathbb{R}} V^2 - 4 \int_{\mathbb{R}} h_1' (\lambda_1 + h_1^2) \\ &= \int_{\mathbb{R}} V^2 - 4\lambda_1 \left[h_1 \right]_{-\infty}^{\infty} - \left[\frac{4}{3} h_1^3 \right]_{-\infty}^{\infty} = \int_{\mathbb{R}} V^2 - \frac{16}{3} |\lambda_1|^{3/2}. \end{split}$$

Repeating the process. Set V_n the potential after n iterations. Then

$$\sum_{j=1}^{n} |\lambda_j|^{3/2} = \frac{3}{16} \int_{\mathbb{R}} |V|^2 - \frac{3}{16} \int_{\mathbb{R}} |V_n|^2.$$

This already proves the LT inequality.

If V is an optimizer for LT(N), then we must have $V_N = 0$. In addition, all V_j must be optimizer for LT(N-j).

Scattering theory

Basics in Scattering theory

Assume V is compactly supported in [-L, L] (for simplicity). Consider

$$z \in \mathbb{U} := \{ z \in \mathbb{C}, \quad \operatorname{Im} z \ge 0 \}$$

and the 2nd order ODE

$$-u'' + Vu = z^2 u.$$

Outside [-L, L], we must have

 $-u^{\prime\prime}=z^2u, \quad \text{so }u \text{ is of the form} \quad u(x)=C_1^\pm \mathrm{e}^{\mathrm{i} zx}+C_2^\pm \mathrm{e}^{-\mathrm{i} zx}, \quad \text{for} \quad \pm x>L.$

We introduce $f_z(x)$ and $g_z(x)$ the solution with the asymptotics

$$\begin{cases} f_z(x) = e^{izx} & \text{for } x > L \\ g_z(x) = e^{-izx} & \text{for } x < -L \end{cases}.$$

Remark

If Im z > 0, then f_z is exponentially decaying at $+\infty$, and g_z is exponentially decaying at $-\infty$. Similarly, f_{-z} is exponentially increasing at $+\infty$, and g_{-z} is exponentially increasing at $-\infty$.

Basis of solution. The pair (f_z, f_{-z}) and (g_z, g_{-z}) both span the set of solutions. there are factor $a(\zeta)$, $b(\zeta)$, $c(\zeta)$ and $d(\zeta)$ so that

$$\begin{cases} f_z = b(z)g_z + a(z)g_{-z} \\ g_z = c(z)f_z + d(z)f_{-z}. \end{cases}$$
(1)

Example

If $V \equiv 0$, we have a = d = 1 and b = c = 1.

The complex-valued number a(z) is sometime called the **transmission** coefficient.

David Gontier

Lemma

For all $z \in \mathbb{U}$, we have

$$a(z) = d(z) = \frac{1}{2iz}W(f_z, g_z) = \frac{1}{2iz}(f_zg'_z - f'_zg_z)(x)$$
 (Wronskian).

In addition, if $z = k \in \mathbb{R}^*$, we have $b(k) = -\overline{c(k)}$, and

$$|a(k)|^2 = 1 + |b(k)|^2.$$

Proof. Take Wronkians everywhere and manipulate the equations until you succeed! Transmission and reflection coefficients

$$T(z) := \frac{1}{a(z)}, \text{ and } R(z) := \frac{b(z)}{a(z)}, \text{ satisfy } \forall k \in \mathbb{R}^*, |T|^2(k) + |R|^2(k) = 1.$$

Scattering matrix

$$S(k) := \begin{pmatrix} T(k) & \underline{R}(k) \\ -\overline{R}(k) & \overline{T}(k) \end{pmatrix} \quad \text{is unitary}.$$

We say that V is reflection-less if for all $k \in \mathbb{R}^*$, we have b(k) = 0, which is also |a(k)| = 1.

Forward scattering: Compute S from V Inverse scattering: Recover V from S (almost possible). Recover S from |a(k)| (almost possible).

Zakharov-Faddev proof

Theorem (Zakharov-Faddeev)

For all V with $\int_{\mathbb{R}}(1+|x|)\cdot |V|(x) < \infty$, the operator H has a finite number of eigenvalues N (Bargmann's bound), and

$$\sum_{j=1}^{N} |\lambda_j|^{3/2} = \frac{3}{16} \int_{\mathbb{R}} |V|^2 - \frac{3}{2\pi} \int_{\mathbb{R}} k^2 \log |a(k)| \mathrm{d}k.$$

In particular, since $|a(k)| \ge 1$, we recover LT(N). In addition, we have equality iff |a(k)| = 1, that is:

V is an optimizer for LT iff V is reflection-less.

Remarks

- Actually, they prove formulas for all $\sum_{j=1}^{N} |\lambda_j|^{n+\frac{1}{2}}$, $n \in \mathbb{N}$.
- When V is reflectionless, we obtain a series of equality. They are all related to "Lax pairs" $(\sum_{j=1}^{N} |\lambda_j|^{5/2}$ is related to KdV).
- Similar equalities for $\sum_{j=1}^{N} |\lambda_j|^n$ can be found in Buslaev/Faddeev 1960.
- Laptev/Weidl (2000) extended the proof to the matrix case $H = (-\partial_{xx}^2) \times \mathbb{I}_n + V$ on $L^2(\mathbb{R}, \mathbb{C}^n)$.

$$\sum_{j=1}^{N} |\lambda_j|^{3/2} = \frac{3}{16} \int_{\mathbb{R}} \operatorname{Tr} V^2(x) - \frac{3}{2\pi} \int_{\mathbb{R}} k^2 \log |\det A(k)| \mathrm{d}k.$$

This allows to prove the Lieb-Thirring conjecture $L_{d,3/2} = L_{d,3/2}^{sc}$ for all dimensions $d \ge 1$.

The proof, although quite short, does not provide useful insights. Can we characterize the reflection-less potentials?

Lemma

We have a(z) = 0 iff $z^2 \in \sigma_{\text{disc}}(H)$. Writing $\lambda_j = (i\beta_j)^2$ with $\beta_j > 0$, the only zeros of a are $\{i\beta_j\}_{1 \leq j \leq N}$. Finally, at these points, we have

$$a'(\mathbf{i}\beta) = -\mathbf{i}\int_{\mathbb{R}} f_{\mathbf{i}\beta}g_{\mathbf{i}\beta}.$$

Idea of the proof

We have a(z) = 0 iff $W(f_z, g_z) = 0$.

If this happens, f_z and g_z are linearly dependent, hence both functions decays exponentially at $\pm \infty$. In particular, they are square-integrable, and satisfy $Hf_z = z^2 f_z$, so $z^2 \in \sigma(H)$.

Norming constant

$$c_j := \int_{\mathbb{R}} f_{\mathbf{i}\beta}^2.$$

Theorem (Deift-Trubowitz 1979)

If the potential V satisfies $\int (1 + |x|)|V|(x) < \infty$, then V can be recovered from $(|R(k)|, \{\beta_j\}, \{c_j\})$. If V is reflection-less, it can be recovered from $(\{\beta_j\}, \{c_j\})$.

We recover the 2N parameters.

Idea of the proof

Similar to Benguria-Loss proof (remove the states one-by-one).

The difficult part is to prove that we can recover the first eigenfunction $f_{i\beta_1}$ from $(|R(k)|, \{\beta_j\}, \{c_j\})$.

Periodic setting

Theorem (R.L. Frank, DG, M. Lewin)

For all 0 < k < 1, the potential

$$V_k(x) := 2k^2 \operatorname{sn}(x|k)^2 - 1 - k^2$$
, with minimal period $2K(k)$.

is an optimiser for the periodic Lieb-Thirring inequality. Here, $\operatorname{sn}(\cdot|k)$ is the Jacobi elliptic function, and $K(\cdot)$ is the complete elliptic integral of the first kind. In addition,

$$\lim_{k \to 0} V_k(x) = -1 \quad and \quad \lim_{k \to 1} V_k(x) = \frac{-2}{\cosh^2(x)}.$$

This potential is sometime called the periodic Lamé potential, or the cnoidal wave. It interpolates between the semi-classical constant and the N = 1 soliton. The operator $-\Delta + V_k$ has a single negative Bloch band, and a spectral gap of size k^2 .

Figure: The potential V_k for some values of k.