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Lieb-Thirring inequality.
(In this talk, only dimension d = 1 and power γ = 3/2).

Theorem (Lieb-Thirring)

Let V ∈ L2(R) satisfies V ≤ 0, and letH := −∂2
xx + V . Let λ1 < λ2 < · · · < 0 be the negative

eigenvalues ofH . Then, for all N ∈ N∗, we have

N∑
j=1

|λj |3/2 ≤
3

16

ˆ
R
|V |2(x)dx, (LT (N)).

Goal of this talk: We will provide three different proofs:

Lieb-Thirring original proof (1975-1976, fast, once you know the soliton theory…)

Benguria-Loss proof (2000, very fast)

Zakharov-Faddeev proof (1972, very complex, uses all the scattering theory machinery).

In the process, we will prove the following

Theorem
For allN ∈ N∗, the set of potentials V for which we have equality is a real manifold of dimension 2N , called
the set of N -solitons. In other words, the set of N -solitons is parametrised by 2N coefficients.

Remark. The set of solitons has been extensively studied (see Deift-Trubowitz 79 and Crum 54). They
appear in many, many contexts.
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Some preliminary remarks
Translational invariance
Assume V is an optimizer. Then V (· − t) is also an optimizer (invariance by translations).

Scaling invariance
If V is an optimizer, with eigenvalue λ1 < λ2 < · · · < λn < 0, then

Va(x) := a2V (ax)

is also an optimizer, with eigenvalues a2λ1 < a2λ2 < · · · < a2λn < 0.
(proof: consider the eigenfunctions ua,j(x) = a1/2uj(ax)).

Lemma (The N = 1 case)
IfN = 1, the only optimizers of the LT inequality are the potentials

Va,t(x) :=
−2a2

cosh2(a(x− t))
.

Such function is called a soliton.

Parameters The parameter t gives the location of the soliton, and a gives the scale or the amplitude of the
soliton. Note that ˆ

R
|Va,t|2(x) = a2.
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Lieb-Thirring original proof, 1975-1976 (Following P. Lax 1968 -also following Gardner, Kruskal and Miura)

Let t 7→ Vt be a smooth family of potentials. Let (λt, ut) be a branch of eigenpair for Ht := −∂2
xx + Vt,

with ‖ut‖2 = 1, then
Hut = λtut, λt = 〈ut, Htut〉, ‖ut‖2 = 1.

Differentiating gives the Hellman-Feynman equation

∂tλt = 〈∂tut, Htut〉+ 〈ut, (∂tHt)ut〉+ 〈ut, Ht(∂tut)〉
= λt (〈∂tut, ut〉+ 〈ut, ∂tut)︸ ︷︷ ︸

=∂t‖ut‖2=0

+〈ut, (∂tVt)ut〉.

Lax pair. Assume ∂tVt = [B,H] for some operator B. Then

∂tλt = 〈ut, (∂tVt)ut〉 = 〈ut, BH −HB,ut〉 = λt〈ut, (B −B)ut〉 = 0.

Theorem (Lax)

If ∂tVt = [B,H], then the operators Ht all have the same spectrum: σ(HT ) = σ(H0).

Examples
If B = ∂x, we have [B,H] = [∂x, V ] = (∂xV ).
The solution of ∂tVt = ∂xVt is Vt(x) = V0(x+ t). So V and V (· − t) gives the same spectrum…
If B = 4∂3

xxx − 3V ′ − 6V ∂x, then a computation gives

∂tVt = −V ′′′
t + 6VtV

′
t (Korteweg de Vries (KdV) equation).

So if Vt solves the KdV equation, Ht := −∂2
xx + Vt have the same spectrum for all t.

In addition,
´
|Vt|2 is constant.
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Lieb-Thirring original proof (end)
Conclusion
Consider V0 an optimizer for LT(N), and let Vt be the KdV solution of{

∂tVt = −V ′′′
t + 6VtV ′

t

Vt=0 = V0.

Then Vt is also an optimizer for LT.
”Now the theory of the KdV equation says that as t → ∞, Vt evolves into a sum of solitons […]. The
solitons are well separated since they have different velocities”.

Bubbles
Evolving KdV splits the solitons = bubbles. We are back to the case N = 1.

Parameters ?
The 2N parameters are in some sense the location and magnitude of each soliton.

Problem

The LT proof relies on the theory of KdV… not very satisfying.

The parametrisation of the N -soliton is not so clear (superposition of solitons?).
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A magical change of functions (Crum 1954 (?))
Let λ = −β2 < 0, and let u > 0 be a positive solution (not necessarily in L2) of

(−∂2
xx + V + β2)u = 0.

Then

h :=
u′

u
satisfies h′ =

uu′′ − (u′2)

u2
= (V + β2)− h2 (Riccati (non-linear) equation).

Introducing the operators

A := ∂x − h(x) so that A∗ = −∂x − h(x),

we have

A∗A = (−∂x − h) (∂x − h) = −∂2
xx + [∂x, h] + h2 = −∂2

xx + h2 + h′

= −∂2
xx + V + β2

and

AA∗ = (∂x − h) (−∂x − h) = −∂2
xx + [h, ∂x] + h2 = −∂2

xx − h′ + h2

= −∂2
xx + V + β2 − 2h′.

Commutation. We have σ(A∗A) \ {0} = σ(AA∗) \ {0}.

Conclusion

−∂2
xx + V and − ∂2

xx + V − 2 (log u)′′ .

have the same spectrum, expect maybe at λ = −β2.
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Example: Adding one soliton
Free Hamiltonian. Start from

H0 = −∂2
xx, V0 ≡ 0.

Let β > 0 and set λ = (iβ)2. The positive solutions of (−u′′ + β2)u = 0 are of the form

u(x) := eβaeβx + eβ(a+2b)e−βx = eβaeβb
(
eβ(x−b) + e−β(x−b)

)
= 2eβ(a+b) cosh(β(x− b)).

This gives

h =
u′

u
= β

sinh(β(x− b))

cosh(β(x− b))
, and h′ =

β2

cosh2(β(x− b))
.

So,

H0 := −∂2
xx and H1 := −∂2

xx −
2β2

cosh2(β(x− b))

have the same spectrum, except maybe at λ = −β2. Actually, H1 has a simple eigenvalue at λ.

Remark
We needed only two parameters to add a soliton: the eigenvalue λ = −β2, and the translation factor b.
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Benguria-Loss proof (removing a soliton)
Let V be a (fast decaying) potential. Consider u1 the first (positive) eigenvalue of H with eigenvalue
λ1 < 0, so

−u′′
1 + V u1 = λ1u1.

Since V decays fast,

u1(x) ≈ cst · e−
√

|λ1||x|(1 + o(1)), as x → ∞.

and

h1(x) :=
u′
1

u1
≈ ∓

√
|λ1|(1 + o(1)), as ± x → ∞.

By the previous result:

H = −∂2
xx + V, and H = −∂2

xx + V1 with V1 := V − 2∂xx log u1,

have the same spectrum, except maybe at λ1. Actually, λ1 ∈ σ(H) and λ1 /∈ σ(H1).

We removed the first eigenbound, but we did not modify the rest of the spectrum.
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Benguria-Loss proof (end)
In addition, we have

ˆ
R
|V1|2 =

ˆ
R
(V − 2h′

1)
2 =

ˆ
R
V 2 + 4

ˆ
R
h′
1(h

′
1 − V )

Riccati
=

ˆ
R
V 2 − 4

ˆ
R
h′
1(λ1 + h2

1)

=

ˆ
R
V 2 − 4λ1 [h1]

∞
−∞ −

[
4

3
h3
1

]∞
−∞

=

ˆ
R
V 2 −

16

3
|λ1|3/2.

Repeating the process. Set Vn the potential after n iterations. Then

n∑
j=1

|λj |3/2 =
3

16

ˆ
R
|V |2 −

3

16

ˆ
R
|Vn|2.

This already proves the LT inequality.

If V is an optimizer for LT(N), then we must have VN = 0.
In addition, all Vj must be optimizer for LT(N-j).
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Scattering theory
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Basics in Scattering theory
Assume V is compactly supported in [−L,L] (for simplicity). Consider

z ∈ U := {z ∈ C, Im z ≥ 0}

and the 2nd order ODE

−u′′ + V u = z2u.

Outside [−L,L], we must have

−u′′ = z2u, so u is of the form u(x) = C±
1 eizx + C±

2 e−izx, for ± x > L.

We introduce fz(x) and gz(x) the solution with the asymptotics{
fz(x) = eizx for x > L

gz(x) = e−izx for x < −L
.

Remark
If Im z > 0, then fz is exponentially decaying at +∞, and gz is exponentially decaying at −∞.
Similarly, f−z is exponentially increasing at +∞, and g−z is exponentially increasing at −∞.

Basis of solution. The pair (fz , f−z) and (gz , g−z) both span the set of solutions. there are factor a(ζ),
b(ζ), c(ζ) and d(ζ) so that {

fz = b(z)gz + a(z)g−z

gz = c(z)fz + d(z)f−z .
(1)

Example
If V ≡ 0, we have a = d = 1 and b = c = 1.

The complex-valued number a(z) is sometime called the transmission coefficient.
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Lemma
For all z ∈ U, we have

a(z) = d(z) =
1

2iz
W (fz , gz) =

1

2iz

(
fzg

′
z − f ′

zgz
)
(x) (Wronskian).

In addition, if z = k ∈ R∗, we have b(k) = −c(k), and

|a(k)|2 = 1 + |b(k)|2.

Proof. Take Wronkians everywhere and manipulate the equations until you succeed!
Transmission and reflection coefficients

T (z) :=
1

a(z)
, and R(z) :=

b(z)

a(z)
, satisfy ∀k ∈ R∗, |T |2(k) + |R|2(k) = 1.

Scattering matrix

S(k) :=

(
T (k) R(k)

−R(k) T (k)

)
is unitary.

We say that V is reflection-less if for all k ∈ R∗, we have b(k) = 0, which is also |a(k)| = 1.

Forward scattering: Compute S from V
Inverse scattering: Recover V from S (almost possible). Recover S from |a(k)| (almost possible).
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Zakharov-Faddev proof

Theorem (Zakharov-Faddeev)

For all V with
´
R(1 + |x|) · |V |(x) < ∞, the operatorH has a finite number of eigenvaluesN (Bargmann’s

bound), and
N∑

j=1

|λj |3/2 =
3

16

ˆ
R
|V |2 −

3

2π

ˆ
R
k2 log |a(k)|dk.

In particular, since |a(k)| ≥ 1, we recover LT(N). In addition, we have equality iff |a(k)| = 1, that is:

V is an optimizer for LT iff V is reflection-less.
Remarks

Actually, they prove formulas for all
∑N

j=1 |λj |n+ 1
2 , n ∈ N.

When V is reflectionless, we obtain a series of equality. They are all related to ”Lax pairs”
(
∑N

j=1 |λj |5/2 is related to KdV).

Similar equalities for
∑N

j=1 |λj |n can be found in Buslaev/Faddeev 1960.
Laptev/Weidl (2000) extended the proof to the matrix case H = (−∂2

xx)× In + V on L2(R,Cn).

N∑
j=1

|λj |3/2 =
3

16

ˆ
R
TrV 2(x)−

3

2π

ˆ
R
k2 log | detA(k)|dk.

This allows to prove the Lieb-Thirring conjecture Ld,3/2 = Lsc
d,3/2

for all dimensions d ≥ 1.

The proof, although quite short, does not provide useful insights.
Can we characterize the reflection-less potentials?
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Lemma

We have a(z) = 0 iff z2 ∈ σdisc(H).
Writing λj = (iβj)

2 with βj > 0, the only zeros of a are {iβj}1≤j≤N .
Finally, at these points, we have

a′(iβ) = −i

ˆ
R
fiβgiβ .

Idea of the proof
We have a(z) = 0 iff W (fz , gz) = 0.
If this happens, fz and gz are linearly dependent, hence both functions decays exponentially at ±∞.
In particular, they are square-integrable, and satisfy Hfz = z2fz , so z2 ∈ σ(H).

Norming constant

cj :=

ˆ
R
f2
iβ .

Theorem (Deift-Trubowitz 1979)

If the potential V satisfies
´
(1 + |x|)|V |(x) < ∞, then V can be recovered from (|R(k)|, {βj}, {cj}).

If V is reflection-less, it can be recovered from ({βj}, {cj}).

We recover the 2N parameters.
Idea of the proof
Similar to Benguria-Loss proof (remove the states one-by-one).
The difficult part is to prove that we can recover the first eigenfunction fiβ1

from (|R(k)|, {βj}, {cj}).
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Periodic setting

Theorem (R.L. Frank, DG, M. Lewin)
For all 0 < k < 1, the potential

Vk(x) := 2k2sn (x|k)2 − 1− k2 , with minimal period 2K(k),

is an optimiser for the periodic Lieb-Thirring inequality. Here, sn(·|k) is the Jacobi elliptic function, andK(·)
is the complete elliptic integral of the first kind. In addition,

lim
k→0

Vk(x) = −1 and lim
k→1

Vk(x) =
−2

cosh2(x)
.

This potential is sometime called the periodic Lamé potential, or the cnoidal wave.
It interpolates between the semi-classical constant and the N = 1 soliton.
The operator −∆+ Vk has a single negative Bloch band, and a spectral gap of size k2.
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Figure: The potential Vk for some values of k.
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