Crystallization in Lieb-Thirring inequalities

David Gontier joint work with Rupert L. Frank and Mathieu Lewin

CEREMADE, Université Paris-Dauphine

ICMP August 6, 2021

Dauphine | PSL CEREMADE

Theorem (Lieb-Thirring inequality, '75-76)

Let $d \ge 1$ (dimension), and let $\gamma > \max(0, 1 - d/2)$. There exists (an optimal -smallest- constant) $L_{\gamma,d} > 0$ so that, for all $V \in L^{\gamma + \frac{d}{2}}(\mathbb{R}^d)$

$$\sum_{n=1}^{\infty} |\lambda_n(-\Delta+V)|^{\gamma} \le L_{\gamma,d} \int_{\mathbb{R}^d} V(x)_{-}^{\gamma+\frac{d}{2}} \mathrm{d}x$$

(Lieb-Thirring inequality).

Similar results hold in the critical cases $\gamma = 0$ in dimensions $d \ge 3$ (Cwikel-Lieb-Rozenblum (CLR) inequality, '72-77), and $\gamma = \frac{1}{2}$ in dimension d = 1 (Weidl '96).

First remarks

- In the case $\gamma = 0, d \ge 3$ (CLR), bound the **number** of negative eigenvalues.
- The right-hand side is extensive.

Main application: Large fermionic systems (simple proof of the stability of matter by Lieb-Thirring '75).

Finite rank Lieb-Thirring.

$$\sum_{n=1}^{N} |\lambda_n(-\Delta+V)|^{\gamma} \le L_{\gamma,d}^{(N)} \int_{\mathbb{R}^d} V(x)_-^{\gamma+\frac{d}{2}}.$$

Remark: The case N = 1 is equivalent to **Gagliardo-Nirenberg-Sobolev** inequality.

Semi-classical limit. For all $V \in L^{\gamma + \frac{d}{2}}(\mathbb{R}^d)$, in the limit $\hbar \to 0$,

$$\sum_{n=1}^{\infty} |\lambda_n(-\Delta + V(\hbar \cdot))|^{\gamma} \approx L_{\gamma,d}^{\mathrm{sc}} \int_{\mathbb{R}^d} V(\hbar \cdot)_{-}^{\gamma + \frac{d}{2}}.$$

Facts:

$$L_{\gamma,d} = \lim \uparrow L_{\gamma,d}^{(N)}, \quad \text{and} \quad \boxed{L_{\gamma,d} \geq \max \left\{ L_{\gamma,d}^{(N)}, L_{\gamma,d}^{\text{sc}} \right\}.}$$

Main questions:

- What is the value of the best constant L_{γ,d} ?
- Is there an optimal potential for $L_{\gamma,d}$, or for the finite-rank version $L_{\gamma,d}^{(N)}$?
- Do we have equality $L_{\gamma,d} = L_{\gamma,d}^{(N)}$ for some (finite) N?

Lieb-Thirring (first) conjecture: $L_{\gamma,d} \stackrel{?}{=} \max\{L_{\gamma,d}^{(1)}, L_{\gamma,d}^{sc}\}$.

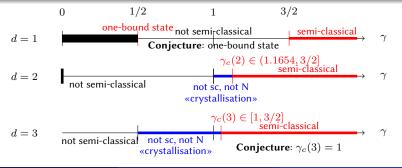
The optimal scenario is either the one-bound state, or the semi-classical one = fluid phase.

Known facts about Lieb-Thirring

- $\gamma \mapsto L_{\gamma,d}/L^{sc}_{\gamma,d}$ is decreasing (Aizenmann-Lieb, 1978), and ≥ 1 . There is a unique point $\gamma_{c}(d) > 0$ so that $L_{\gamma,d} = L^{sc}_{\gamma,d}$ iff $\gamma \geq \gamma_{c}(d)$.
- $\gamma = 3/2$ in dimension d = 1. $L_{\gamma,d} = L_{\gamma,d}^{(N)} = L_{\gamma,d}^{sc} = \frac{3}{16}$. (Lieb-Thirring 1976).
- $\gamma \geq 3/2$ is semi-classical: $L_{\gamma,d} = L_{\gamma,d}^{\mathrm{sc}}$ for all $\gamma \geq \frac{3}{2}$. (Laptev-Weidl 2000).
- $\gamma = 1/2$ in dimension d = 1. $L_{\frac{1}{2},1} = L_{\frac{1}{2},1}^{(1)}$. (Hundertmark-Lieb-Thomas, 1998).
- $\gamma < 1$ is not semi-classical. $L_{\gamma,d} > L_{\gamma,d}^{
 m sc}$ for all $\gamma < 1$. (Hellfer-Robert, 2010).

Theorem (R.L. Frank, DG, M. Lewin, 2021)

For all $\gamma > \max\left\{0, 2 - \frac{d}{2}\right\}$, and all $N \in \mathbb{N}$, we have $L_{\gamma,d}^{(2N)} > L_{\gamma,d}^{(N)}$. In particular, $L_{\gamma,d} > L_{\gamma,d}^{(N)}$. The N-th bound state scenario is never optimal.



Idea of the proof $(L_{\gamma,d}^{(2)} > L_{\gamma,d}^{(1)})$

Fact: $L_{\gamma,d}^{(1)} \sim$ Gagliardo-Niremberg-Sobolev inequality, for which we know the optimizer. Let $p := (\gamma + \frac{d}{2})'$ and Q be the (unique) radial decreasing solution to

$$-\Delta Q - Q^{2p-1} = -Q,$$

Then $V := -Q^{2(p-1)}$ is an optimizer for $L_{\gamma,d}^{(1)}$.

Idea: Consider the following *test potential* for $L_{\gamma,d}^{(2)}$:

$$\widetilde{V}(x) := - \left[Q^2(x - Re_1) + Q^2(x + Re_1) \right]^{p-1}.$$

We add the **densities**, not the **potentials**!

• $Q(x) \underset{x \to \infty}{\sim} C|x|^{-\frac{d-1}{2}} \mathrm{e}^{-|x|}.$

• The «interaction» between the two bubbles is exponentially small (tunnelling effect).

A computation reveals that

$$L_{\gamma,d}^{(2)} \ge L_{\gamma,d}^{(1)} \left(1 + \alpha \mathrm{e}^{-2pR} + O\left(\mathrm{e}^{-4R}\right) \right), \quad \alpha > 0$$

• We have $L_{\gamma,d}^{(2)} > L_{\gamma,d}^{(1)}$ if p < 2, which is our condition $\gamma > 2 - d/2$.

Remarks:

• This condition is optimal in d = 1, where we have $L_{3/2,1}^{(2)} = L_{3/2,1}^{(1)}$.

 $\bullet~$ For $\gamma=0$ in dimension $d\geq 3$ (finite rank CLR), we also have $L_{0,d}^{(2)}=L_{0,d}^{(1)}$

Crystallization

- If $\gamma \geq \gamma_c(d)$, the «optimal» V is the semi-classical case V = cst.
- If $\gamma \ge \max(0, 2 d/2)$, the «optimal» V must have infinitely many bound states.

Idea: Study the periodic Lieb-Thirring inequality.

Lemma

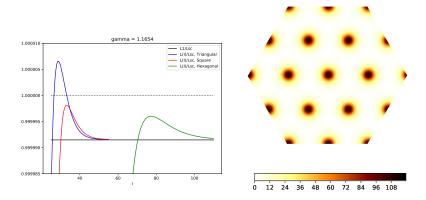
Let $\gamma > \max\{0, 1 - d/2\}$. Then, for all periodic $V \in L^{\gamma + \frac{d}{2}}_{\text{loc}}(\mathbb{R}^d)$, we have

$$\underline{\operatorname{Tr}}\left(\left(-\Delta+V\right)_{-}^{\gamma}\right) \leq L_{\gamma,d} \oint V_{-}^{\gamma+\frac{d}{2}}.$$

with the same best constant $L_{\gamma,d}$. In addition, V = cst < 0 is an optimizer iff $L_{\gamma,d} = L_{\gamma,d}^{sc}$.

In the case where $L_{\gamma,d} > L_{\gamma,d}^{sc}$, the constant potential is not optimal \implies crystallization.

In dimension d = 2, we numerically found periodic potentials which beat both $L_{\gamma,d}^{\rm sc}$ and $L_{\gamma,d}^{(1)}$.



	Triangular	Square	Hexagonal	$L_{\gamma,2}^{(1)}$
Critical γ	1.165417	1.165395	1.165390	1.165378

Table: Critical values of γ for different lattices.

Conclusions

- Lieb-Thirring inequality valid for $\gamma > \max\{0, 1 d/2\}$.
- If $\gamma > \max\{0, 2 d/2\}$, then there is no optimal potential with a finite number of bound states.

Lieb-Thirring conjectures (still open)

- Dimension $d = 1, \gamma \in (1/2, 3/2)$. $L_{\gamma,d} \stackrel{?}{=} L_{\gamma,d}^{(1)}$.
- Dimension $d = 3, \gamma = 1d$. $L_{1,3} \stackrel{?}{=} L_{1,3}^{\mathrm{sc}}$.